2
|
Dash S, Aydin Y, Widmer KE, Nayak L. Hepatocellular Carcinoma Mechanisms Associated with Chronic HCV Infection and the Impact of Direct-Acting Antiviral Treatment. J Hepatocell Carcinoma 2020; 7:45-76. [PMID: 32346535 PMCID: PMC7167284 DOI: 10.2147/jhc.s221187] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 03/06/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatitis C virus (HCV) infection is the major risk factor for liver cirrhosis and hepatocellular carcinoma (HCC). The mechanisms of HCC initiation, growth, and metastasis appear to be highly complex due to the decade-long interactions between the virus, immune system, and overlapping bystander effects of host metabolic liver disease. The lack of a readily accessible animal model system for HCV is a significant obstacle to understand the mechanisms of viral carcinogenesis. Traditionally, the primary prevention strategy of HCC has been to eliminate infection by antiviral therapy. The success of virus elimination by antiviral treatment is determined by the SVR when the HCV is no longer detectable in serum. Interferon-alpha (IFN-α) and its analogs, pegylated IFN-α (PEG-IFN-α) alone with ribavirin (RBV), have been the primary antiviral treatment of HCV for many years with a low cure rate. The cloning and sequencing of HCV have allowed the development of cell culture models, which accelerated antiviral drug discovery. It resulted in the selection of highly effective direct-acting antiviral (DAA)-based combination therapy that now offers incredible success in curing HCV infection in more than 95% of all patients, including those with cirrhosis. However, several emerging recent publications claim that patients who have liver cirrhosis at the time of DAAs treatment face the risk of HCC occurrence and recurrence after viral cure. This remains a substantial challenge while addressing the long-term benefit of antiviral medicine. The host-related mechanisms that drive the risk of HCC in the absence of the virus are unknown. This review describes the multifaceted mechanisms that create a tumorigenic environment during chronic HCV infection. In addition to the potential oncogenic programming that drives HCC after viral clearance by DAAs, the current status of a biomarker development for early prediction of cirrhosis regression and HCC detection post viral treatment is discussed. Since DAAs treatment does not provide full protection against reinfection or viral transmission to other individuals, the recent studies for a vaccine development are also reviewed.
Collapse
Affiliation(s)
- Srikanta Dash
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, LA70112, USA
- Southeast Louisiana Veterans Health Care System, New Orleans, LA70119, USA
- Department of Medicine, Division of Gastroenterology, Tulane University Health Sciences Center, New Orleans, LA70112, USA
| | - Yucel Aydin
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, LA70112, USA
| | - Kyle E Widmer
- Southeast Louisiana Veterans Health Care System, New Orleans, LA70119, USA
| | - Leela Nayak
- Southeast Louisiana Veterans Health Care System, New Orleans, LA70119, USA
| |
Collapse
|
3
|
Morozov VA, Lagaye S. Hepatitis C virus: Morphogenesis, infection and therapy. World J Hepatol 2018; 10:186-212. [PMID: 29527256 PMCID: PMC5838439 DOI: 10.4254/wjh.v10.i2.186] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/11/2018] [Accepted: 02/07/2018] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) is a major cause of liver diseases including liver cirrhosis and hepatocellular carcinoma. Approximately 3% of the world population is infected with HCV. Thus, HCV infection is considered a public healthy challenge. It is worth mentioning, that the HCV prevalence is dependent on the countries with infection rates around 20% in high endemic countries. The review summarizes recent data on HCV molecular biology, the physiopathology of infection (immune-mediated liver damage, liver fibrosis and lipid metabolism), virus diagnostic and treatment. In addition, currently available in vitro, ex vivo and animal models to study the virus life cycle, virus pathogenesis and therapy are described. Understanding of both host and viral factors may in the future lead to creation of new approaches in generation of an efficient therapeutic vaccine.
Collapse
Affiliation(s)
- Vladimir Alexei Morozov
- Center for HIV and Retrovirology, Department of Infectious Diseases, Robert Koch Institute, Berlin 13353, Germany
| | - Sylvie Lagaye
- Department of Immunology, Institut Pasteur, INSERM U1223, Paris 75015, France
| |
Collapse
|
4
|
Vausselin T, Calland N, Belouzard S, Descamps V, Douam F, Helle F, François C, Lavillette D, Duverlie G, Wahid A, Fénéant L, Cocquerel L, Guérardel Y, Wychowski C, Biot C, Dubuisson J. The antimalarial ferroquine is an inhibitor of hepatitis C virus. Hepatology 2013; 58:86-97. [PMID: 23348596 PMCID: PMC7165689 DOI: 10.1002/hep.26273] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 11/20/2012] [Indexed: 12/15/2022]
Abstract
UNLABELLED Hepatitis C virus (HCV) is a major cause of chronic liver disease. Despite recent success in improving anti-HCV therapy, additional progress is still needed to develop cheaper and interferon (IFN)-free treatments. Here, we report that ferroquine (FQ), an antimalarial ferrocenic analog of chloroquine, is a novel inhibitor of HCV. FQ potently inhibited HCV infection of hepatoma cell lines by affecting an early step of the viral life cycle. The antiviral activity of FQ on HCV entry was confirmed with pseudoparticles expressing HCV envelope glycoproteins E1 and E2 from six different genotypes. In addition to its effect on HCV entry, FQ also inhibited HCV RNA replication, albeit at a higher concentration. We also showed that FQ has no effect on viral assembly and virion secretion. Using a binding assay at 4°C, we showed that FQ does not prevent attachment of the virus to the cell surface. Furthermore, virus internalization was not affected by FQ, whereas the fusion process was impaired in the presence of FQ as shown in a cell-cell fusion assay. Finally, virus with resistance to FQ was selected by sequential passage in the presence of the drug, and resistance was shown to be conferred by a single mutation in E1 glycoprotein (S327A). By inhibiting cell-free virus transmission using a neutralizing antibody, we also showed that FQ inhibits HCV cell-to-cell spread between neighboring cells. Combinations of FQ with IFN, or an inhibitor of HCV NS3/4A protease, also resulted in additive to synergistic activity. CONCLUSION FQ is a novel, interesting anti-HCV molecule that could be used in combination with other direct-acting antivirals.
Collapse
Affiliation(s)
- Thibaut Vausselin
- Institut Pasteur de Lille, Center for Infection and Immunity of Lille, Lille, France; CNRS UMR8204, Lille, France; INSERM U1019, Lille, France; and Université Lille Nord de France, Lille, France
| | - Noémie Calland
- Institut Pasteur de Lille, Center for Infection and Immunity of Lille, Lille, France; CNRS UMR8204, Lille, France; INSERM U1019, Lille, France; and Université Lille Nord de France, Lille, France
| | - Sandrine Belouzard
- Institut Pasteur de Lille, Center for Infection and Immunity of Lille, Lille, France; CNRS UMR8204, Lille, France; INSERM U1019, Lille, France; and Université Lille Nord de France, Lille, France
| | - Véronique Descamps
- Laboratoire de Virologie EA4294, Centre Hospitalier Universitaire d'Amiens, Université de Picardie Jules Verne, Amiens, France
| | - Florian Douam
- INSERM, U758, Human Virology Laboratory, Lyon, France,Ecole Normale Supérieure de Lyon, Lyon, France,Université de Lyon, UCB‐Lyon1, Lyon, France
| | - François Helle
- Laboratoire de Virologie EA4294, Centre Hospitalier Universitaire d'Amiens, Université de Picardie Jules Verne, Amiens, France
| | - Catherine François
- Laboratoire de Virologie EA4294, Centre Hospitalier Universitaire d'Amiens, Université de Picardie Jules Verne, Amiens, France
| | - Dimitri Lavillette
- INSERM, U758, Human Virology Laboratory, Lyon, France,Ecole Normale Supérieure de Lyon, Lyon, France,Université de Lyon, UCB‐Lyon1, Lyon, France
| | - Gilles Duverlie
- Laboratoire de Virologie EA4294, Centre Hospitalier Universitaire d'Amiens, Université de Picardie Jules Verne, Amiens, France
| | - Ahmed Wahid
- Institut Pasteur de Lille, Center for Infection and Immunity of Lille, Lille, France; CNRS UMR8204, Lille, France; INSERM U1019, Lille, France; and Université Lille Nord de France, Lille, France,Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Lucie Fénéant
- Institut Pasteur de Lille, Center for Infection and Immunity of Lille, Lille, France; CNRS UMR8204, Lille, France; INSERM U1019, Lille, France; and Université Lille Nord de France, Lille, France
| | - Laurence Cocquerel
- Institut Pasteur de Lille, Center for Infection and Immunity of Lille, Lille, France; CNRS UMR8204, Lille, France; INSERM U1019, Lille, France; and Université Lille Nord de France, Lille, France
| | - Yann Guérardel
- Université Lille Nord de France, Université Lille1, CNRS UMR8576, Villeneuve d'Ascq, France
| | - Czeslaw Wychowski
- Institut Pasteur de Lille, Center for Infection and Immunity of Lille, Lille, France; CNRS UMR8204, Lille, France; INSERM U1019, Lille, France; and Université Lille Nord de France, Lille, France
| | - Christophe Biot
- Université Lille Nord de France, Université Lille1, CNRS UMR8576, Villeneuve d'Ascq, France
| | - Jean Dubuisson
- Institut Pasteur de Lille, Center for Infection and Immunity of Lille, Lille, France; CNRS UMR8204, Lille, France; INSERM U1019, Lille, France; and Université Lille Nord de France, Lille, France
| |
Collapse
|