1
|
Guan Y, Tanwar UK, Sobieszczuk-Nowicka E, Floryszak-Wieczorek J, Arasimowicz-Jelonek M. Comparative genomic analysis of the aldehyde dehydrogenase gene superfamily in Arabidopsis thaliana - searching for the functional key to hypoxia tolerance. FRONTIERS IN PLANT SCIENCE 2022; 13:1000024. [PMID: 36466248 PMCID: PMC9714362 DOI: 10.3389/fpls.2022.1000024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/25/2022] [Indexed: 06/17/2023]
Abstract
Flooding entails different stressful conditions leading to low oxygen availability for respiration and as a result plants experience hypoxia. Stress imposed by hypoxia affects cellular metabolism, including the formation of toxic metabolites that dramatically reduce crop productivity. Aldehyde dehydrogenases (ALDHs) are a group of enzymes participating in various aspects of plant growth, development and stress responses. Although we have knowledge concerning the multiple functionalities of ALDHs in tolerance to various stresses, the engagement of ALDH in plant metabolism adjustment to hypoxia is poorly recognized. Therefore, we explored the ALDH gene superfamily in the model plant Arabidopsis thaliana. Genome-wide analyses revealed that 16 AtALDH genes are organized into ten families and distributed irregularly across Arabidopsis 5 chromosomes. According to evolutionary relationship studies from different plant species, the ALDH gene superfamily is highly conserved. AtALDH2 and ALDH3 are the most numerous families in plants, while ALDH18 was found to be the most distantly related. The analysis of cis-acting elements in promoters of AtALDHs indicated that AtALDHs participate in responses to light, phytohormones and abiotic stresses. Expression profile analysis derived from qRT-PCR showed the AtALDH2B7, AtALDH3H1 and AtALDH5F1 genes as the most responsive to hypoxia stress. In addition, the expression of AtALDH18B1, AtALDH18B2, AtALDH2B4, and AtALDH10A8 was highly altered during the post-hypoxia-reoxygenation phase. Taken together, we provide comprehensive functional information on the ALDH gene superfamily in Arabidopsis during hypoxia stress and highlight ALDHs as a functional element of hypoxic systemic responses. These findings might help develop a framework for application in the genetic improvement of crop plants.
Collapse
Affiliation(s)
- Yufeng Guan
- Department of Plant Ecophysiology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Umesh Kumar Tanwar
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Ewa Sobieszczuk-Nowicka
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | | | | |
Collapse
|
2
|
Hou Q, Zhang T, Zhao W, Wang L, Lu L, Qi Y, Bartels D. Genetic background and cis-organization regulate ALDH7B4 gene expression in Eutrema salsugineum: a promoter analysis case study. PLANTA 2022; 255:52. [PMID: 35091839 DOI: 10.1007/s00425-022-03836-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
ALDH7B4 promoter analysis in A. thaliana and E. salsugineum reveals that both genetic background and promoter architecture contribute to gene expression in response to stress in different species. Many genes are differentially regulated in a comparison of salinity-sensitive and salinity-tolerant plant species. The aldehyde dehydrogenase 7B4 (ALDH7B4) gene is turgor-responsive in A. thaliana and encodes a highly conserved detoxification enzyme in plants. This study compared the ALDH7B4 gene in A. thaliana (salinity-sensitive) and in the salinity-tolerant close relative Eutrema salsugineum. EsALDH7B4 in E. salsugineum is the ortholog of AtALDH7B4 and the expression is also salinity, drought, and wound responsive. However, E. salsugineum requires higher salinity stress to induce the EsALDH7B4 transcriptional response. The GUS expression driven either by the promoter AtALDH7B4 or EsALDH7B4 was induced under 300 mM NaCl treatment in A. thaliana while 600 mM NaCl treatment was required in E. salsugineum, suggesting that the genetic background plays a crucial role in regulation of gene expression. Promoter sequences of ALDH7B4 are less conserved than the protein coding region. A series of EsALDH7B4 promoter deletion fragments were fused to the GUS reporter gene and promoter activity was determined in A. thaliana. The promoter region that contains two conserved ACGT-containing motifs was identified to be essential for stress induction. Furthermore, a 38 bp "TC" rich motif in the EsALDH7B4 promoter, absent from the AtALDH7B4 promoter, negatively affects EsALDH7B4 expression. A MYB-like transcription factor was identified to bind the "TC" motif and to repress the EsALDH7B4 promoter activity. This study reveals that genetic background and cis-acting elements coordinately regulate gene expression.
Collapse
Affiliation(s)
- Quancan Hou
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Graduate School, Research Center of Biology and Agriculture, University of Science and Technology Beijing (USTB), Beijing, 100024, China.
- Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing, 100192, China.
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Kirschallee 1, 53115, Bonn, Germany.
| | - Tianye Zhang
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Graduate School, Research Center of Biology and Agriculture, University of Science and Technology Beijing (USTB), Beijing, 100024, China
| | - Wei Zhao
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Graduate School, Research Center of Biology and Agriculture, University of Science and Technology Beijing (USTB), Beijing, 100024, China
| | - Linlin Wang
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Graduate School, Research Center of Biology and Agriculture, University of Science and Technology Beijing (USTB), Beijing, 100024, China
| | - Lu Lu
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Graduate School, Research Center of Biology and Agriculture, University of Science and Technology Beijing (USTB), Beijing, 100024, China
| | - Yuchen Qi
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Graduate School, Research Center of Biology and Agriculture, University of Science and Technology Beijing (USTB), Beijing, 100024, China
| | - Dorothea Bartels
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Kirschallee 1, 53115, Bonn, Germany.
| |
Collapse
|
3
|
Mentana A, Camele I, Mang SM, De Benedetto GE, Frisullo S, Centonze D. Volatolomics approach by HS-SPME-GC-MS and multivariate analysis to discriminate olive tree varieties infected by Xylella fastidiosa. PHYTOCHEMICAL ANALYSIS : PCA 2019; 30:623-634. [PMID: 31020714 DOI: 10.1002/pca.2835] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/18/2019] [Accepted: 03/21/2019] [Indexed: 06/09/2023]
Abstract
INTRODUCTION Xylella fastidiosa (Xf) is a pathogenic bacterium that causes diseases in olive trees. Therefore, analytical methods for both the characterisation of the host/pathogen interaction and infection monitoring are needed. Volatile organic compounds (VOCs) are emitted by plants relate to their physiological state, therefore VOCs monitoring can assist in detecting stress or infection states before visible signs are present. OBJECTIVE In this work, the headspace-solid phase microextraction-gaschromatography-mass spectrometry (HS-SPME-GC-MS) technique was used for the first time to highlight VOCs differences between healthy and Xf-infected olive trees. METHODOLOGY VOCs from olive tree twig samples were extracted and analysed by HS-SPME-GC-MS, and hence identified by comparing the experimental linear retention indexes with the reference values and by MS data obtained from NIST library. Data were processed by principal component analysis (PCA) and analysis of variance (ANOVA). RESULTS The HS-SPME step was optimised in terms of adsorbent phase and extraction time. HS-SPME-GC-MS technique was applied to the extraction and analysis of VOCs of healthy and Xf-infected olive trees. More than 100 compounds were identified and the differences between samples were evidenced by the multivariate analysis approach. The results showed the marked presence of methyl esters in Xf-infected samples, suggesting their probable involvement in the mechanism of diffusible signal factor. CONCLUSION The proposed approach represents an easy and solvent-free method to evaluate the presence of Xf in olive trees, and to evidence volatiles produced by host/pathogen interactions that could be involved in the defensive mechanism of the olive tree and/or in the infective action of Xf.
Collapse
Affiliation(s)
- Annalisa Mentana
- Dipartimento di Scienze Agrarie, degli Alimenti e dell'Ambiente, Università degli Studi di Foggia, Via Napoli, Foggia, Italy
| | - Ippolito Camele
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Via dell'Ateneo Lucano, Potenza, Italy
| | - Stefania M Mang
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Via dell'Ateneo Lucano, Potenza, Italy
| | | | - Salvatore Frisullo
- Dipartimento di Scienze Agrarie, degli Alimenti e dell'Ambiente, Università degli Studi di Foggia, Via Napoli, Foggia, Italy
| | - Diego Centonze
- Dipartimento di Scienze Agrarie, degli Alimenti e dell'Ambiente, Università degli Studi di Foggia, Via Napoli, Foggia, Italy
| |
Collapse
|
4
|
Wang J, Islam F, Li L, Long M, Yang C, Jin X, Ali B, Mao B, Zhou W. Complementary RNA-Sequencing Based Transcriptomics and iTRAQ Proteomics Reveal the Mechanism of the Alleviation of Quinclorac Stress by Salicylic Acid in Oryza sativa ssp. japonica. Int J Mol Sci 2017; 18:ijms18091975. [PMID: 28906478 PMCID: PMC5618624 DOI: 10.3390/ijms18091975] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 09/08/2017] [Accepted: 09/12/2017] [Indexed: 12/16/2022] Open
Abstract
To uncover the alleviation mechanism of quinclorac stress by salicylic acid (SA), leaf samples of Oryza sativa ssp. Japonica under quinclorac stress with and without SA pre-treatment were analyzed for transcriptional and proteomic profiling to determine the differentially expressed genes (DEGs) and proteins (DEPs), respectively. Results showed that quinclorac stress altered the expression of 2207 DEGs (1427 up-regulated, 780 down-regulated) and 147 DEPs (98 down-regulated, 49 up-regulated). These genes and proteins were enriched in glutathione (GSH) metabolism, porphyrin and chlorophyll metabolism, the biosynthesis of secondary metabolites, glyoxylate and dicarboxylate metabolism, and so on. It also influenced apetala2- ethylene-responsive element binding protein (AP2-EREBP) family, myeloblastosis (MYB) family and WRKY family transcription factors. After SA pre-treatment, 697 genes and 124 proteins were differentially expressed. Pathway analysis showed similar enrichments in GSH, glyoxylate and dicarboxylate metabolism. Transcription factors were distributed in basic helix-loop-helix (bHLH), MYB, Tify and WRKY families. Quantitative real-time PCR results revealed that quinclorac stress induced the expression of glutathion reductase (GR) genes (OsGR2, OsGR3), which was further pronounced by SA pre-treatment. Quinclorac stress further mediated the accumulation of acetaldehyde in rice, while SA enhanced the expression of OsALDH2B5 and OsALDH7 to accelerate the metabolism of herbicide quinclorac for the protection of rice. Correlation analysis between transcriptome and proteomics demonstrated that, under quinclorac stress, correlated proteins/genes were mainly involved in the inhibition of intermediate steps in the biosynthesis of chlorophyll. Other interesting proteins/genes and pathways regulated by herbicide quinclorac and modulated by SA pre-treatment were also discussed, based on the transcriptome and proteomics results.
Collapse
Affiliation(s)
- Jian Wang
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China.
| | - Faisal Islam
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China.
| | - Lan Li
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China.
| | - Meijuan Long
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China.
| | - Chong Yang
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China.
| | - Xiaoli Jin
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China.
| | - Basharat Ali
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China.
- Institute of Crop Science and Resource Conservation (INRES), Abiotic Stress Tolerance in Crops, University of Bonn, 53115 Bonn, Germany.
| | - Bizeng Mao
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | - Weijun Zhou
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
5
|
Kolawole AO, Agaba RJ, Oluwole MO. Spectroscopic characterisation of interaction of ferulic acid with aldehyde dehydrogenase (ALDH). Int J Biol Macromol 2017; 98:247-255. [PMID: 28104374 DOI: 10.1016/j.ijbiomac.2017.01.046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 12/31/2016] [Accepted: 01/10/2017] [Indexed: 11/28/2022]
Abstract
Interaction of a pharmacological important phenolic, ferulic acid, with Aldehyde dehydrogenase (ALDH) at the simulative pH condition, was studied using spectroscopic approach. Ferulic acid caused a decrease in the fluorescence intensity formed from ALDH-ferulic acid complex resulting in mixed inhibition of ALDH activity (IC50=30.65μM). The intrinsic quenching was dynamic and induced altered conformation of ALDH and made the protein less compact but might not unfold it. ALDH has two binding sites for ferulic acid at saturating concentrations having association constant of 1.35×103Lmol-1 and a dissociation constant of 9.7×107Lmol-1at 25°C indicating ALDH-ferulic acid complex formation is more favourable than its dissociation. The interaction was not spontaneous and endothermic and suggests the involvement of hydrophobic interactions with a FRET binding distance of 4.49nm. Change in pH near and far from isoelectric points of ferulic acid did not affect the bonding interaction. Using trehalose as viscosogen, the result from Stoke-Einstein hypothesis showed that ferulic acid-ALDH binding and dissociation equilibrium was diffusion controlled. These results clearly suggest the unique binding properties and lipophilicity influence of ferulic acid.
Collapse
Affiliation(s)
- Ayodele O Kolawole
- Department of Biochemistry, The Federal University of Technology, Akure, Nigeria.
| | - Ruth J Agaba
- Department of Biochemistry, The Federal University of Technology, Akure, Nigeria
| | - Matthew O Oluwole
- Department of Biochemistry, The Federal University of Technology, Akure, Nigeria
| |
Collapse
|
6
|
Missihoun TD, Hou Q, Mertens D, Bartels D. Sequence and functional analyses of the aldehyde dehydrogenase 7B4 gene promoter in Arabidopsis thaliana and selected Brassicaceae: regulation patterns in response to wounding and osmotic stress. PLANTA 2014; 239:1281-98. [PMID: 24619504 DOI: 10.1007/s00425-014-2051-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 02/20/2014] [Indexed: 05/11/2023]
Abstract
Aldehyde dehydrogenases metabolise a wide range of aliphatic and aromatic aldehydes, which become cytotoxic at high levels. Family 7 aldehyde dehydrogenase genes, often described as antiquitins or turgor-responsive genes in plants, are broadly conserved across all domains. Despite the high conservation of the plant ALDH7 proteins and their importance in stress responses, their regulation has not been investigated. Here, we compared ALDH7 genes of different Brassicaceae and found that, in contrast to the gene organisation and protein coding sequences, similarities in the promoter sequences were limited to the first few hundred nucleotides upstream of the translation start codon. The function of this region was studied by isolating the core promoter of the Arabidopsis thaliana ALDH7B4 gene, taken as model. The promoter was found to be responsive to wounding in addition to salt and dehydration stress. Cis-acting elements involved in stress responsiveness were analysed and two conserved ACGT-containing motifs proximal to the translation start codon were found to be essential for the responsiveness to osmotic stress in leaves and in seeds. The integrity of an upstream ACGT motif and a dehydration-responsive element/C-repeat-low temperature-responsive element was found to be necessary for ALDH7B4 expression in seeds and induction by salt, dehydration and ABA in leaves. The comparison of the gene expression in selected Arabidopsis mutants demonstrated that osmotic stress-induced ALDH7B4 expression in leaves and seeds involves both ABA- and lipid-signalling components.
Collapse
Affiliation(s)
- Tagnon D Missihoun
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| | | | | | | |
Collapse
|
7
|
Singh S, Brocker C, Koppaka V, Ying C, Jackson B, Matsumoto A, Thompson DC, Vasiliou V. Aldehyde dehydrogenases in cellular responses to oxidative/electrophilic stress. Free Radic Biol Med 2013; 56:89-101. [PMID: 23195683 PMCID: PMC3631350 DOI: 10.1016/j.freeradbiomed.2012.11.010] [Citation(s) in RCA: 429] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Revised: 11/12/2012] [Accepted: 11/13/2012] [Indexed: 01/02/2023]
Abstract
Reactive oxygen species (ROS) are continuously generated within living systems and the inability to manage ROS load leads to elevated oxidative stress and cell damage. Oxidative stress is coupled to the oxidative degradation of lipid membranes, also known as lipid peroxidation. This process generates over 200 types of aldehydes, many of which are highly reactive and toxic. Aldehyde dehydrogenases (ALDHs) metabolize endogenous and exogenous aldehydes and thereby mitigate oxidative/electrophilic stress in prokaryotic and eukaryotic organisms. ALDHs are found throughout the evolutionary gamut, from single-celled organisms to complex multicellular species. Not surprisingly, many ALDHs in evolutionarily distant, and seemingly unrelated, species perform similar functions, including protection against a variety of environmental stressors such as dehydration and ultraviolet radiation. The ability to act as an "aldehyde scavenger" during lipid peroxidation is another ostensibly universal ALDH function found across species. Upregulation of ALDHs is a stress response in bacteria (environmental and chemical stress), plants (dehydration, salinity, and oxidative stress), yeast (ethanol exposure and oxidative stress), Caenorhabditis elegans (lipid peroxidation), and mammals (oxidative stress and lipid peroxidation). Recent studies have also identified ALDH activity as an important feature of cancer stem cells. In these cells, ALDH expression helps abrogate oxidative stress and imparts resistance against chemotherapeutic agents such as oxazaphosphorine, taxane, and platinum drugs. The ALDH superfamily represents a fundamentally important class of enzymes that contributes significantly to the management of electrophilic/oxidative stress within living systems. Mutations in various ALDHs are associated with a variety of pathological conditions in humans, highlighting the fundamental importance of these enzymes in physiological and pathological processes.
Collapse
Affiliation(s)
- Surendra Singh
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Chad Brocker
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Vindhya Koppaka
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Chen Ying
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Brian Jackson
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Akiko Matsumoto
- Department of Social Medicine, Saga University School of Medicine, Saga 849-8501, Japan
| | - David C. Thompson
- Department of Clinical Pharmacy, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Vasilis Vasiliou
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
8
|
Shen Y, Zhang Y, Yang C, Lan Y, Liu L, Liu S, Chen Z, Ren G, Wan J. Mutation of OsALDH7 causes a yellow-colored endosperm associated with accumulation of oryzamutaic acid A in rice. PLANTA 2012; 235:433-441. [PMID: 21960163 DOI: 10.1007/s00425-011-1477-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2011] [Accepted: 06/24/2011] [Indexed: 05/31/2023]
Abstract
Aldehyde dehydrogenase proteins consist of a superfamily and the family 7 (ALDH7) is a typical group with highly conserved proteins across species. It catalyzes oxidation of α-aminoadipic semialdehyde (AASA) in lysine degradation, participates in protection against hyperosmotic stress, and detoxifies aldehydes in human; however, its function in plants has been much less documented. Here we reported a mutant with yellow-colored endosperm in rice, and showed that the yellow endosperm was caused by mutation of OsALDH7. OsALDH7 is expressed in all tissues detected, with the highest level in mature seeds. We found that oryzamutaic acid A accumulated during late seed development and after a year-long storage in the colored endosperm, whereas it was undetectable in the wild type endosperm. Moreover, lysine degradation was enhanced in yeast over-expressing OsALDH7 and as a result, content of lysine, glutamate and saccharopine was changed, suggesting a role of OsALDH7 in lysine catabolism.
Collapse
Affiliation(s)
- Yi Shen
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Evolutionary and expression study of the aldehyde dehydrogenase (ALDH) gene superfamily in rice (Oryza sativa). Gene 2009; 431:86-94. [DOI: 10.1016/j.gene.2008.11.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Revised: 11/03/2008] [Accepted: 11/07/2008] [Indexed: 11/22/2022]
|