1
|
Bezus B, Esquivel JCC, Cavalitto S, Cavello I. Novel Antarctic Endo-Polygalacturonase for Pectin Extraction and Vegetal Tissue Maceration at Mild Temperatures. Appl Biochem Biotechnol 2025; 197:1090-1111. [PMID: 39352451 DOI: 10.1007/s12010-024-05069-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2024] [Indexed: 02/13/2025]
Abstract
The aim of the present work was to partially purify and characterize an Antarctic polygalacturonase and to determine the enzyme's potential in pectin extraction and vegetal maceration at 20 °C. Polygalacturonase was purified by chromatography to obtain an enzymatic preparation of specific activity 30.3 U.mg-1. Optimal conditions for the polygalacturonase activity were 45 °C and pH 5.0-6.0, and the activation energy for the reaction was 41.8 kJ.mol-1. Of the enzyme activity, 100% was retained after 3 h at 40 °C. The enzyme was remarkably stable for an hour over a wide range of pH (2.0-12.0). Polygalacturonase activity was slightly reduced in the presence of Ca+2, Fe+3, K+, Mn+2, and Zn+2, whereas Hg+2 reduced the activity by 60%, suggesting a thiol-dependent catalysis. The apparent molecular weight of the enzyme was 33 kDa. The kinetic constants evaluated against polygalacturonic acid were 0.17 mg.ml-1 (Km), 480 s-1 (Kcat), and 7.9 µmol.mg-1.min-1 (Vmax). The enzyme was active against different pectic substrates. Thin-layer chromatography revealed an endo-mechanism of action. Polygalacturonase digested lime pomace to aid the extraction of high-methoxylated pectin at 20 °C and increased the vegetal maceration of Capsicum annuum by 24% over the control values.
Collapse
Affiliation(s)
- Brenda Bezus
- Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI, UNLP, CCT-La PlataCONICET), Calle 47 y 115, B1900ASH, La Plata, Provincia de Buenos Aires, Argentina
| | - Juan Carlos Contreras Esquivel
- Laboratory of Applied Glycobiotechnology, Academic Group of Food Science and Technology, School of Chemistry, Universidad Autonoma de Coahuila, Unidad Saltillo, 2528, Saltillo, Coahuila, Mexico
| | - Sebastián Cavalitto
- Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI, UNLP, CCT-La PlataCONICET), Calle 47 y 115, B1900ASH, La Plata, Provincia de Buenos Aires, Argentina
| | - Ivana Cavello
- Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI, UNLP, CCT-La PlataCONICET), Calle 47 y 115, B1900ASH, La Plata, Provincia de Buenos Aires, Argentina.
| |
Collapse
|
2
|
Wang X, Hu R, Zhang Y, Tian L, Liu S, Huang Z, Wang L, Lu Y, Wang L, Wang Y, Wu Y, Cong Y, Yang G. Mechanistic analysis of thermal stability in a novel thermophilic polygalacturonase MlPG28B derived from the marine fungus Mucor lusitanicus. Int J Biol Macromol 2024; 280:136007. [PMID: 39326595 DOI: 10.1016/j.ijbiomac.2024.136007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 09/23/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
In this study, heterologous MlPG28B expression was obtained by cloning the Mucor lusitanicus gene screened from a marine environment. The enzyme activity of MlPG28B was maximum at 60 °C, 30 % of the enzyme activity was retained after incubation at 100 °C for 30 min, and enzyme activity was still present after 60 min incubation, one of the best thermostable polygalacturonases characterized until now. The high-purity oligosaccharide standards (DP2-DP7) were prepared with polygalacturonic acid as a substrate. Kinetic parameters showed that MlPG28B at the optimum temperature has a low Km value (3055 ± 1104 mg/L), indicating high substrate affinity. Sequence alignment analysis inferred key residues Cys276, Cys284, Lys107, and Gln237 for MlPG28B thermal stability. Molecular docking and molecular dynamics simulation results indicated that MlPG28B has flexible T1 and T3 loops conducive to substrate recognition, binding, and catalysis and forms a hydrogen bond to the substrate by a highly conserved residue Asn161 in the active-site cleft. Based on site-directed mutation results, the five residues are key in determining MlPG28B thermal stability. Therefore, MlPG28B is a promising candidate for industrial enzymes in feed preparation.
Collapse
Affiliation(s)
- Xin Wang
- College of Fisheries and Life Science, National Demonstration Center for Experimental Aquaculture Education (Dalian Ocean University), Ministry of Education, Dalian 116023, China; Dalian Key Laboratory of Breeding, Reproduction and Aquaculture of Crustaceans, Dalian 116023, China; Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian 116023, China
| | - Ruitong Hu
- College of Fisheries and Life Science, National Demonstration Center for Experimental Aquaculture Education (Dalian Ocean University), Ministry of Education, Dalian 116023, China; Dalian Key Laboratory of Breeding, Reproduction and Aquaculture of Crustaceans, Dalian 116023, China; Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian 116023, China
| | - Yu Zhang
- College of Fisheries and Life Science, National Demonstration Center for Experimental Aquaculture Education (Dalian Ocean University), Ministry of Education, Dalian 116023, China; Dalian Key Laboratory of Breeding, Reproduction and Aquaculture of Crustaceans, Dalian 116023, China; Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian 116023, China
| | - Linfang Tian
- College of Fisheries and Life Science, National Demonstration Center for Experimental Aquaculture Education (Dalian Ocean University), Ministry of Education, Dalian 116023, China; Dalian Key Laboratory of Breeding, Reproduction and Aquaculture of Crustaceans, Dalian 116023, China; Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian 116023, China
| | - Siyi Liu
- College of Fisheries and Life Science, National Demonstration Center for Experimental Aquaculture Education (Dalian Ocean University), Ministry of Education, Dalian 116023, China; Dalian Key Laboratory of Breeding, Reproduction and Aquaculture of Crustaceans, Dalian 116023, China; Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian 116023, China
| | - Zhe Huang
- College of Fisheries and Life Science, National Demonstration Center for Experimental Aquaculture Education (Dalian Ocean University), Ministry of Education, Dalian 116023, China; Dalian Key Laboratory of Breeding, Reproduction and Aquaculture of Crustaceans, Dalian 116023, China; Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian 116023, China
| | - Lianshun Wang
- College of Fisheries and Life Science, National Demonstration Center for Experimental Aquaculture Education (Dalian Ocean University), Ministry of Education, Dalian 116023, China; Dalian Key Laboratory of Breeding, Reproduction and Aquaculture of Crustaceans, Dalian 116023, China; Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian 116023, China
| | - Yanan Lu
- College of Fisheries and Life Science, National Demonstration Center for Experimental Aquaculture Education (Dalian Ocean University), Ministry of Education, Dalian 116023, China; Dalian Key Laboratory of Breeding, Reproduction and Aquaculture of Crustaceans, Dalian 116023, China; Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian 116023, China
| | - Li Wang
- College of Fisheries and Life Science, National Demonstration Center for Experimental Aquaculture Education (Dalian Ocean University), Ministry of Education, Dalian 116023, China; Dalian Key Laboratory of Breeding, Reproduction and Aquaculture of Crustaceans, Dalian 116023, China; Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian 116023, China
| | - Yuan Wang
- College of Fisheries and Life Science, National Demonstration Center for Experimental Aquaculture Education (Dalian Ocean University), Ministry of Education, Dalian 116023, China; Dalian Key Laboratory of Breeding, Reproduction and Aquaculture of Crustaceans, Dalian 116023, China; Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian 116023, China
| | - Yuntian Wu
- Agricultural Service Center, Huanren Manchu Autonomous County, Benxi 117200, China.
| | - Yuting Cong
- College of Fisheries and Life Science, National Demonstration Center for Experimental Aquaculture Education (Dalian Ocean University), Ministry of Education, Dalian 116023, China; Dalian Key Laboratory of Breeding, Reproduction and Aquaculture of Crustaceans, Dalian 116023, China; Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian 116023, China.
| | - Guojun Yang
- College of Fisheries and Life Science, National Demonstration Center for Experimental Aquaculture Education (Dalian Ocean University), Ministry of Education, Dalian 116023, China; Dalian Key Laboratory of Breeding, Reproduction and Aquaculture of Crustaceans, Dalian 116023, China; Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian 116023, China.
| |
Collapse
|
3
|
Dwivedi S, Yadav K, Gupta S, Tanveer A, Yadav S, Yadav D. Fungal pectinases: an insight into production, innovations and applications. World J Microbiol Biotechnol 2023; 39:305. [PMID: 37691054 DOI: 10.1007/s11274-023-03741-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/25/2023] [Indexed: 09/12/2023]
Abstract
The fungal system holds morphological plasticity and metabolic versatility which makes it unique. Fungal habitat ranges from the Arctic region to the fertile mainland, including tropical rainforests, and temperate deserts. They possess a wide range of lifestyles behaving as saprophytic, parasitic, opportunistic, and obligate symbionts. These eukaryotic microbes can survive any living condition and adapt to behave as extremophiles, mesophiles, thermophiles, or even psychrophile organisms. This behaviour has been exploited to yield microbial enzymes which can survive in extreme environments. The cost-effective production, stable catalytic behaviour and ease of genetic manipulation make them prominent sources of several industrially important enzymes. Pectinases are a class of pectin-degrading enzymes that show different mechanisms and substrate specificities to release end products. The pectinase family of enzymes is produced by microbial sources such as bacteria, fungi, actinomycetes, plants, and animals. Fungal pectinases having high specificity for natural sources and higher stabilities and catalytic activities make them promising green catalysts for industrial applications. Pectinases from different microbial sources have been investigated for their industrial applications. However, their relevance in the food and textile industries is remarkable and has been extensively studied. The focus of this review is to provide comprehensive information on the current findings on fungal pectinases targeting diverse sources of fungal strains, their production by fermentation techniques, and a summary of purification strategies. Studies on pectinases regarding innovations comprising bioreactor-based production, immobilization of pectinases, in silico and expression studies, directed evolution, and omics-driven approaches specifically by fungal microbiota have been summarized.
Collapse
Affiliation(s)
- Shruti Dwivedi
- Department of Biotechnology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, Uttar Pradesh, 273009, India
| | - Kanchan Yadav
- Department of Biotechnology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, Uttar Pradesh, 273009, India
| | - Supriya Gupta
- Department of Biotechnology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, Uttar Pradesh, 273009, India
| | - Aiman Tanveer
- Department of Biotechnology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, Uttar Pradesh, 273009, India
| | - Sangeeta Yadav
- Department of Biotechnology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, Uttar Pradesh, 273009, India
| | - Dinesh Yadav
- Department of Biotechnology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, Uttar Pradesh, 273009, India.
| |
Collapse
|
4
|
Media Optimization by Response Surface Methodology for the Enhanced Production of Acidic Extracellular Pectinase by the Indigenously Isolated Novel Strain Aspergillus cervinus ARS2 Using Solid-State Fermentation. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8100485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pectinolytic enzymes are related enzymes that hydrolyze pectic substances. Pectinolytic enzymes are of great interest in industrial applications for softening fruits, extracting and clarifying juices, extracting olive oil, retting textile fibers, preparing gel, and isolating protoplasts. The current work presents acidic extracellular pectinase production using low-cost agro-industrial waste with the indigenously isolated novel strain Aspergillus cervinus. Two fungal isolates, ARS2 and ARS8, with maximum pectinase activity, 41.88 ± 1.57 IU/mL and 39.27 ± 1.14 IU/mL, respectively, were screened out of 27 isolates from decayed fruit peels (orange, banana, and lemon) and soil containing decomposed vegetables. The isolate ARS2, identified as Aspergillus cervinus by molecular characterization, showed the highest pectinase activity of 43.05 ± 1.38IU/mL during screening and was further used for media component screening and optimization studies. To understand their effect on pectinase activity, one-factor-at-a-time (OFAT) studies were conducted on carbon sources, nitrogen sources, and mineral salts. The OFAT results showed the highest pectinase activity for orange peel (carbon source) at 44.51 ± 1.33 IU/mL, peptone (nitrogen source) at 45.05 ± 1.04 IU/mL, and NaH2PO4 (mineral salts) at 43.21 ± 1.12 IU/mL. The most significant media components screened by the Plackett–Burman (PB) design based on the p-value, Pareto chart, and main effect plot, were orange peel (p < 0.001), peptone (p < 0.001), NaH2PO4 (p < 0.001), and KH2PO4 (p < 0.001), which were further optimized using Response Surface Methodology (RSM) and Central Composite Design (CCD). The optimization results for the media components showed a maximum pectinase activity of 105.65 ± 0.31 IU/mL for 10.63 g orange peel, 3.96 g/L peptone, 2.07 g/L KH2PO4, and 2.10 g/L NaH2PO4. Thus, it was discovered that the indigenously isolated novel strain Aspergillus cervinus ARS2 was able to successfully produce a significant amount of pectinase using agro-industrial waste. Therefore, it can be considered for the large-scale optimized production of pectinase to meet industrial demands.
Collapse
|
5
|
Bhattacharyya R, Mukhopadhyay D, Nagarakshita VK, Bhattacharya S, Das A. Thermostable and organic solvent-tolerant acid pectinase from Aspergillus terreus FP6: purification, characterization and evaluation of its phytopigment extraction potential. 3 Biotech 2021; 11:487. [PMID: 34790511 DOI: 10.1007/s13205-021-03033-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/15/2021] [Indexed: 10/19/2022] Open
Abstract
The present study discusses the purification, characterization and application of pectinase from Aspergillus terreus FP6 in fruit pigment extraction. By the four-step purification involving precipitation, dialysis, ion-exchange chromatography, gel filtration chromatography, a 20.85-fold purification of the enzyme to homogeneity was achieved. The apparent molecular mass of the pectinase was 47 kDa, as found by sodium dodecyl sulphate-polyacrylamide gel electrophoresis. The optimum activity of the enzyme was recorded at pH 6.0 and 50 °C. The enzyme retained 80.3% and 79.1% residual activity, respectively at pH 6.0 and 50 °C for 90 min. The pectinase was best functional in the presence of toluene and retained its activity for 30 min. Cu2+ and Co2+ acted as enzyme activators, while Ca2+, β-mercaptoethanol, dimethyl sulfoxide and ethylenediaminetetraacetic acid proved to be the inhibitors. The K m and V max values of the pectinase with pectin as substrate were 0.002 mM and 27.39 U/mL, respectively thus indicating the high enzyme affinity towards the substrate. After 30-min treatment of the grape skin with the partially purified enzyme, microscopic observation revealed that a short time of the enzymatic treatment resulted in substantial loss of pigment and shrinkage of the grape skin cells thereby highlighting the high efficiency of the pectinase. The current study implies that the A. terreus FP6 pectinase may be applied as a bio-agent in the food and beverage industries and has the potential to replace harmful solvents by promoting a greener approach to extract plant pigments.
Collapse
|
6
|
Li C, Ju J, Xie Y, Yu H, Guo Y, Yao W, Qian H. Effects of interactions between polygalacturonase and pesticide residues during enzymatic hydrolysis on the yield of apple juice. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
7
|
Cellulases, Hemicellulases, and Pectinases: Applications in the Food and Beverage Industry. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02678-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
8
|
Karataş E, Tülek A, Çakar MM, Tamtürk F, Aktaş F, Binay B. From secretion in Pichia pastoris to application in apple juice processing: Exo-polygalacturonase from Sporothrix schenckii 1099-18. Protein Pept Lett 2021; 28:817-830. [PMID: 33413052 DOI: 10.2174/1871530321666210106110400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Polygalacturonases are a group of enzymes under pectinolytic enzymes related to enzymes that hydrolyse pectic substances. Polygalacturonases have been used in various industrial applications such as fruit juice clarification, retting of plant fibers, wastewater treatment drinks fermentation, and oil extraction. OBJECTIVES The study was evaluated at the heterologous expression, purification, biochemical characterization, computational modeling, and performance in apple juice clarification of a new exo-polygalacturonase from Sporothrix schenckii 1099-18 (SsExo-PG) in Pichia pastoris. METHODS Recombinant DNA technology was used in this study. Two different pPIC9K plasmids were constructed with native signal sequence-ssexo-pg and alpha signal sequence-ssexo-pg separately. Protein expression and purification performed after plasmids transformed into the Pichia pastoris. Biochemical and structural analyses were performed by using pure SsExo-PG. RESULTS The purification of SsExo-PG was achieved using a Ni-NTA chromatography system. The enzyme was found to have a molecular mass of approximately 52 kDa. SsExo-PG presented as stable at a wide range of temperature and pH values, and to be more storage stable than other commercial pectinolytic enzyme mixtures. Structural analysis revealed that the catalytic residues of SsExo-PG are somewhat similar to other Exo-PGs. The KM and kcat values for the degradation of polygalacturonic acid (PGA) by the purified enzyme were found to be 0.5868 µM and 179 s-1, respectively. Cu2+ was found to enhance SsExo-PG activity while Ag2+ and Fe2+ almost completely inhibited enzyme activity. The enzyme reduced turbidity up to 80% thus enhanced the clarification of apple juice. SsExo-PG showed promising performance when compared with other commercial pectinolytic enzyme mixtures. CONCLUSION The clarification potential of SsExo-PG was revealed by comparing it with commercial pectinolytic enzymes. The following parameters of the process of apple juice clarification processes showed that SsExo-PG is highly stable and has a novel performance.
Collapse
Affiliation(s)
- Ersin Karataş
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze 41400, Kocaeli. Turkey
| | - Ahmet Tülek
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze 41400, Kocaeli. Turkey
| | - Mehmet Mervan Çakar
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze 41400, Kocaeli. Turkey
| | - Faruk Tamtürk
- Döhler Food & Beverage Ingredients, 70100 Merkez, Karaman. Turkey
| | - Fatih Aktaş
- Department of Environment Engineering, Duzce University, Konuralp 81100, Düzce. Turkey
| | - Barış Binay
- Department of Bioengineering, Gebze Technical University, Gebze 41400, Kocaeli. Turkey
| |
Collapse
|
9
|
Production, thermodynamic characterization, and fruit juice quality improvement characteristics of an Exo-polygalacturonase from Penicillium janczewskii. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140379. [DOI: 10.1016/j.bbapap.2020.140379] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/28/2020] [Accepted: 01/31/2020] [Indexed: 01/06/2023]
|
10
|
Ladeira Ázar RI, da Luz Morales M, Piccolo Maitan-Alfenas G, Falkoski DL, Ferreira Alfenas R, Guimarães VM. Apple juice clarification by a purified polygalacturonase from Calonectria pteridis. FOOD AND BIOPRODUCTS PROCESSING 2020. [DOI: 10.1016/j.fbp.2019.11.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
11
|
Mansoldo FRP, Neves Junior A, Cardoso VDS, Rosa MDSS, Vermelho AB. Evaluation of Kluyveromyces marxianus endo-polygalacturonase activity through ATR-FTIR. Analyst 2019; 144:4111-4120. [PMID: 31172988 DOI: 10.1039/c9an00265k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The endo-polygalacturonase enzyme (endoPG: EC 3.2.1.15) plays an important role in the fruit juice and wine industries, so the development of new tools for the quantitative and qualitative analysis of its enzymatic action is necessary. In this work, we report the development of a simple, fast and practical method that did not use any chemical reagent to identify and evaluate the action of the endoPG enzyme, produced by the yeast Kluyveromyces marxianus CCT3172, using attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy combined with principal component analysis-linear discriminant analysis (PCA-LDA). This method evaluated the action of the endoPG enzyme on the polygalacturonic acid (PGA) substrate at 5 different times (0, 10, 15, 20 and 30 minutes), and at each time interval the samples were analyzed by ATR-FTIR. It was demonstrated that there was clear segregation between the samples that were and that were not subjected to the action of the endoPG enzyme, and it was also possible to distinguish the samples that were subjected to different incubation times with the enzyme. Through PCA-LDA it was possible to obtain wavelengths that are biomarkers for this enzymatic reaction and the observed changes as a function of hydrolysis duration were found to be in agreement with the breakdown of the glycosidic chain (1011 cm-1-CH-O- CH stretching) of PGA and release of oligosaccharides (1078 cm-1 C-OH elongation). The activity of the endoPG enzyme and the release of galacturonic acid were verified by the dinitrosalicylic acid (DNS) method in all samples. The efficacy of an automatic classifier using a principal component analysis-linear discriminant classifier (PCA-LDC) was evaluated to diagnose the action of the endoPG enzyme. The results showed an accuracy of 100% for the identification of the endoPG enzyme action and from 91.67% to 100% for classification according to the hydrolysis duration in which PGA was exposed to endoPG. The present study indicates that this methodology may be a new approach for the qualitative evaluation of the endoPG enzyme with the potential to be used in laboratories and industries.
Collapse
Affiliation(s)
- Felipe Raposo Passos Mansoldo
- BIOINOVAR - Biocatalysis, Bioproducts and Bioenergy, Paulo de Góes Institute of Microbiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.
| | | | | | | | | |
Collapse
|
12
|
Patidar MK, Nighojkar S, Kumar A, Nighojkar A. Pectinolytic enzymes-solid state fermentation, assay methods and applications in fruit juice industries: a review. 3 Biotech 2018; 8:199. [PMID: 29581931 DOI: 10.1007/s13205-018-1220-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 03/16/2018] [Indexed: 12/11/2022] Open
Abstract
A plethora of solid substrates, cultivation conditions and enzyme assay methods have been used for efficient production and estimation of polygalacturonase and pectin methylesterase enzymes. Recent developments in industrial biotechnology offer several opportunities for the utilization of low cost agro-industrial waste in Solid State Fermentation (SSF) for the pectinolytic enzyme production using fungi. Fruit waste mainly citrus fruit waste alone and along with other agro-industrial waste has been explored in SSF for enzyme production. Agro-industrial waste, due to the economic advantage of low procuring cost has been employed in SSF bioreactors for pectinolytic enzyme production. Acidic pectinases produced by fungi are utilized especially in food industries for clarification of fruit juices. This review focuses on the recent developments in SSF processes utilizing agro-industrial residues for polygalacturonase and pectin methylesterase production, their various assay methods and applications in fruit juice industries.
Collapse
Affiliation(s)
- Mukesh Kumar Patidar
- Maharaja Ranjit Singh College of Professional Sciences, Hemkunt Campus, Khandwa Road, Indore, 452001 India
| | - Sadhana Nighojkar
- Mata Gujri College of Professional Studies, A.B. Road, Indore, 452001 India
| | - Anil Kumar
- 3School of Biotechnology, Devi Ahilya University, Khandwa Road, Indore, 452001 India
| | - Anand Nighojkar
- Maharaja Ranjit Singh College of Professional Sciences, Hemkunt Campus, Khandwa Road, Indore, 452001 India
| |
Collapse
|