1
|
Reginald K, Chew FT. Current practices and future trends in cockroach allergen immunotherapy. Mol Immunol 2023; 161:11-24. [PMID: 37480600 DOI: 10.1016/j.molimm.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 07/02/2023] [Accepted: 07/05/2023] [Indexed: 07/24/2023]
Abstract
PURPOSE OF REVIEW This review evaluates the current modes of allergen-specific immunotherapy for cockroach allergens, in terms of clinical outcomes and explores future trends in the research and development needed for a more targeted cockroach immunotherapy approach with the best efficacy and minimum adverse effects. SUMMARY Cockroach allergy is an important risk factor for allergic rhinitis in the tropics, that disproportionately affects children and young adults and those living in poor socio-economic environments. Immunotherapy would provide long-lasting improvement in quality of life, with reduced medication intake. However, the present treatment regime is long and has a risk of adverse effects. In addition, cockroach does not seem to have an immuno-dominant allergen, that has been traditionally used to treat allergies from other sources. Future trends of cockroach immunotherapy involve precision diagnosis, to correctly identify the offending allergen. Next, precision immunotherapy with standardized allergens, which have been processed in a way that maintains an immunological response without allergic reactions. This approach can be coupled with modern adjuvants and delivery systems that promote a Th1/Treg environment, thereby modulating the immune response away from the allergenic response.
Collapse
Affiliation(s)
- Kavita Reginald
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway 47500, Selangor, Malaysia.
| | - Fook Tim Chew
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 117543, Singapore
| |
Collapse
|
2
|
Yadav S, Singh S, Mandal P, Tripathi A. Immunotherapies in the treatment of immunoglobulin E‑mediated allergy: Challenges and scope for innovation (Review). Int J Mol Med 2022; 50:95. [PMID: 35616144 DOI: 10.3892/ijmm.2022.5151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/28/2022] [Indexed: 11/05/2022] Open
Abstract
Immunoglobulin E (IgE)‑mediated allergy or hypersensitivity reactions are generally defined as an unwanted severe symptomatic immunological reaction that occurs due to shattered or untrained peripheral tolerance of the immune system. Allergen‑specific immunotherapy (AIT) is the only therapeutic strategy that can provide a longer‑lasting symptomatic and clinical break from medications in IgE‑mediated allergy. Immunotherapies against allergic diseases comprise a successive increasing dose of allergen, which helps in developing the immune tolerance against the allergen. AITs exerttheirspecial effectiveness directly or indirectly by modulating the regulator and effector components of the immune system. The number of success stories of AIT is still limited and it canoccasionallyhave a severe treatment‑associated adverse effect on patients. Therefore, the formulation used for AIT should be appropriate and effective. The present review describes the chronological evolution of AIT, and provides a comparative account of the merits and demerits of different AITs by keeping in focus the critical guiding factors, such as sustained allergen tolerance, duration of AIT, probability of mild to severe allergic reactions and dose of allergen required to effectuate an effective AIT. The mechanisms by which regulatory T cells suppress allergen‑specific effector T cells and how loss of natural tolerance against innocuous proteins induces allergy are reviewed. The present review highlights the major AIT bottlenecks and the importantregulatory requirements for standardized AIT formulations. Furthermore, the present reviewcalls attention to the problem of 'polyallergy', which is still a major challenge for AIT and the emerging concept of 'component‑resolved diagnosis' (CRD) to address the issue. Finally, a prospective strategy for upgrading CRD to the next dimension is provided, and a potential technology for delivering thoroughly standardized AIT with minimal risk is discussed.
Collapse
Affiliation(s)
- Sarika Yadav
- Systems Toxicology and Health Risk Assessment Group, CSIR‑Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh 226001, India
| | - Saurabh Singh
- Systems Toxicology and Health Risk Assessment Group, CSIR‑Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh 226001, India
| | - Payal Mandal
- Food, Drugs and Chemical Toxicology Group, CSIR‑Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh 226001, India
| | - Anurag Tripathi
- Systems Toxicology and Health Risk Assessment Group, CSIR‑Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh 226001, India
| |
Collapse
|
3
|
Ridolo E, Incorvaia C, Heffler E, Cavaliere C, Paoletti G, Canonica GW. The Present and Future of Allergen Immunotherapy in Personalized Medicine. J Pers Med 2022; 12:jpm12050774. [PMID: 35629196 PMCID: PMC9143661 DOI: 10.3390/jpm12050774] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 12/13/2022] Open
Abstract
Allergic diseases are particularly suitable for personalized medicine, because they meet the needs for therapeutic success, which include a known molecular mechanism of the disease, a diagnostic tool for that disease and a treatment that blocks this mechanism. A range of tools is available for personalized allergy diagnosis, including molecular diagnostics, treatable traits and omics (i.e., proteomics, epigenomics, metabolomics, transcriptomics and breathomics), to predict patient response to therapies, detect biomarkers and mediators and assess disease control status. Such tools enhance allergen immunotherapy. Higher diagnostic accuracy results in a significant increase (based on a greater performance achieved with personalized treatment) in efficacy, further increasing the known and unique characteristics of a treatment designed to work on allergy causes.
Collapse
Affiliation(s)
- Erminia Ridolo
- Allergy and Clinical Immunology, Medicine and Surgery Department, University of Parma, 43121 Parma, Italy;
- Correspondence:
| | - Cristoforo Incorvaia
- Allergy and Clinical Immunology, Medicine and Surgery Department, University of Parma, 43121 Parma, Italy;
| | - Enrico Heffler
- IRCCS Humanitas Research Hospital, 20089 Milan, Italy; (E.H.); (G.P.); (G.W.C.)
- Department of Biomedical Sciences, Humanitas University, 20089 Milan, Italy
| | - Carlo Cavaliere
- Department of Sense Organs, Sapienza University, 00185 Rome, Italy;
| | - Giovanni Paoletti
- IRCCS Humanitas Research Hospital, 20089 Milan, Italy; (E.H.); (G.P.); (G.W.C.)
- Department of Biomedical Sciences, Humanitas University, 20089 Milan, Italy
| | - Giorgio Walter Canonica
- IRCCS Humanitas Research Hospital, 20089 Milan, Italy; (E.H.); (G.P.); (G.W.C.)
- Department of Biomedical Sciences, Humanitas University, 20089 Milan, Italy
| |
Collapse
|
4
|
Boonpiyathad T, Lao-Araya M, Chiewchalermsri C, Sangkanjanavanich S, Morita H. Allergic Rhinitis: What Do We Know About Allergen-Specific Immunotherapy? FRONTIERS IN ALLERGY 2021; 2:747323. [PMID: 35387059 PMCID: PMC8974870 DOI: 10.3389/falgy.2021.747323] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/30/2021] [Indexed: 01/23/2023] Open
Abstract
Allergic rhinitis (AR) is an IgE-mediated disease that is characterized by Th2 joint inflammation. Allergen-specific immunotherapy (AIT) is indicated for AR when symptoms remain uncontrolled despite medication and allergen avoidance. AIT is considered to have been effective if it alleviated allergic symptoms, decreased medication use, improved the quality of life even after treatment cessation, and prevented the progression of AR to asthma and the onset of new sensitization. AIT can be administered subcutaneously or sublingually, and novel routes are still being developed, such as intra-lymphatically and epicutaneously. AIT aims at inducing allergen tolerance through modification of innate and adaptive immunologic responses. The main mechanism of AIT is control of type 2 inflammatory cells through induction of various functional regulatory cells such as regulatory T cells (Tregs), follicular T cells (Tfr), B cells (Bregs), dendritic cells (DCregs), innate lymphoid cells (IL-10+ ILCs), and natural killer cells (NKregs). However, AIT has a number of disadvantages: the long treatment period required to achieve greater efficacy, high cost, systemic allergic reactions, and the absence of a biomarker for predicting treatment responders. Currently, adjunctive therapies, vaccine adjuvants, and novel vaccine technologies are being studied to overcome the problems associated with AIT. This review presents an updated overview of AIT, with a special focus on AR.
Collapse
Affiliation(s)
- Tadech Boonpiyathad
- Department of Medicine, Phramongkutklao Hospital, Bangkok, Thailand
- *Correspondence: Tadech Boonpiyathad
| | - Mongkol Lao-Araya
- Faculty of Medicine, Department of Pediatrics, Chiang Mai University, Chiang Mai, Thailand
| | - Chirawat Chiewchalermsri
- Department of Medicine, Panyananthaphikkhu Chonprathan Medical Center, Srinakharinwirot University, Nonthaburi, Thailand
| | - Sasipa Sangkanjanavanich
- Faculty of Medicine Ramathibodi Hospital, Department of Medicine, Mahidol University, Bangkok, Thailand
| | - Hideaki Morita
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
- Allergy Center, National Center for Child Health and Development, Tokyo, Japan
| |
Collapse
|
5
|
Gomord V, Stordeur V, Fitchette AC, Fixman ED, Tropper G, Garnier L, Desgagnes R, Viel S, Couillard J, Beauverger G, Trepout S, Ward BJ, van Ree R, Faye L, Vézina LP. Design, production and immunomodulatory potency of a novel allergen bioparticle. PLoS One 2020; 15:e0242867. [PMID: 33259521 PMCID: PMC7707610 DOI: 10.1371/journal.pone.0242867] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/10/2020] [Indexed: 02/08/2023] Open
Abstract
Allergen immunotherapy (AIT) is the only disease-modifying treatment with evidence for sustained efficacy. However, it is poorly developed compared to symptomatic drugs. The main reasons come from treatment duration implying monthly injections during 3 to 5 years or daily sublingual use, and the risk of allergic side-effects. To become a more attractive alternative to lifelong symptomatic drug use, improvements to AIT are needed. Among the most promising new immunotherapy strategies is the use of bioparticles for the presentation of target antigen to the immune system as they can elicit strong T cell and B cell immune responses. Virus-like particles (VLPs) are a specific class of bioparticles in which the structural and immunogenic constituents are from viral origin. However, VLPs are ill-suited for use in AIT as their antigenicity is linked to structure. Recently, synthetic biology has been used to produce artificial modular bioparticles, in which supramolecular assemblies are made of elements from heterogeneous biological sources promoting the design and use of in vivo-assembling enveloped bioparticles for viral and non-viral antigens presentation. We have used a coiled-coil hybrid assembly for the design of an enveloped bioparticle (eBP) that present trimers of the Der p 2 allergen at its surface, This bioparticle was produced as recombinant and in vivo assembled eBPs in plant. This allergen biotherapeutic was used to demonstrate i) the capacity of plants to produce synthetic supramolecular allergen bioparticles, and ii) the immunomodulatory potential of naturally-assembled allergen bioparticles. Our results show that allergens exposed on eBPs induced a very strong IgG response consisting predominantly of IgG2a in favor of the TH1 response. Finally, our results demonstrate that rDer p 2 present on the surface of BPs show a very limited potential to stimulate the basophil degranulation of patient allergic to this allergen which is predictive of a high safety potential.
Collapse
Affiliation(s)
- Véronique Gomord
- ANGANY Innovation, Val de Reuil, France
- ANGANY Inc, Québec, Québec, Canada
| | | | | | - Elizabeth D. Fixman
- McGill University Health Centre, Research Institute (RI MUHC), Montreal, Quebec, Canada
| | | | - Lorna Garnier
- Service d’Immunologie Biologique, Hospices Civils de Lyon, Hôpital Lyon Sud, Pierre-Bénite, France
| | | | - Sébastien Viel
- Service d’Immunologie Biologique, Hospices Civils de Lyon, Hôpital Lyon Sud, Pierre-Bénite, France
| | | | | | - Sylvain Trepout
- IR2 Inserm, Plateforme de microscopie électronique, INSERM US43/CNRS UMS2016, Institut Curie, Orsay, France
| | - Brian J. Ward
- McGill University Health Centre, Research Institute (RI MUHC), Montreal, Quebec, Canada
| | - Ronald van Ree
- Department of Experimental Immunology, Molecular and Translational Allergy, Amsterdam, Netherlands
| | - Loic Faye
- ANGANY Innovation, Val de Reuil, France
| | | |
Collapse
|
6
|
Jensen‐Jarolim E, Bachmann MF, Bonini S, Jacobsen L, Jutel M, Klimek L, Mahler V, Mösges R, Moingeon P, O´Hehir RE, Palomares O, Pfaar O, Renz H, Rhyner C, Roth‐Walter F, Rudenko M, Savolainen J, Schmidt‐Weber CB, Traidl‐Hoffmann C, Kündig T. State-of-the-art in marketed adjuvants and formulations in Allergen Immunotherapy: A position paper of the European Academy of Allergy and Clinical Immunology (EAACI). Allergy 2020; 75:746-760. [PMID: 31774179 DOI: 10.1111/all.14134] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/07/2019] [Accepted: 11/10/2019] [Indexed: 02/06/2023]
Abstract
Since the introduction of allergen immunotherapy (AIT) over 100 years ago, focus has been on standardization of allergen extracts, with reliable molecular composition of allergens receiving the highest attention. While adjuvants play a major role in European AIT, they have been less well studied. In this Position Paper, we summarize current unmet needs of adjuvants in AIT citing current evidence. Four adjuvants are used in products marketed in Europe: aluminium hydroxide (Al(OH)3 ) is the most frequently used adjuvant, with microcrystalline tyrosine (MCT), monophosphoryl lipid A (MPLA) and calcium phosphate (CaP) used less frequently. Recent studies on humans, and using mouse models, have characterized in part the mechanisms of action of adjuvants on pre-existing immune responses. AIT differs from prophylactic vaccines that provoke immunity to infectious agents, as in allergy the patient is presensitized to the antigen. The intended mode of action of adjuvants is to simultaneously enhance the immunogenicity of the allergen, while precipitating the allergen at the injection site to reduce the risk of anaphylaxis. Contrasting immune effects are seen with different adjuvants. Aluminium hydroxide initially boosts Th2 responses, while the other adjuvants utilized in AIT redirect the Th2 immune response towards Th1 immunity. After varying lengths of time, each of the adjuvants supports tolerance. Further studies of the mechanisms of action of adjuvants may advise shorter treatment periods than the current three-to-five-year regimens, enhancing patient adherence. Improved lead compounds from the adjuvant pipeline are under development and are explored for their capacity to fill this unmet need.
Collapse
Affiliation(s)
- Erika Jensen‐Jarolim
- Institute of Pathophysiology & Allergy Research Center of Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
- The Interuniversity Messerli Research Institute University of Veterinary Medicine Vienna Medical University of Vienna University of Vienna Vienna Austria
| | - Martin F. Bachmann
- Institute of Immunology Inselspital University of Berne Bern Switzerland
| | - Sergio Bonini
- Institute of Translational Pharmacology Italian National Research Council Rome Italy
| | - Lars Jacobsen
- ALC, Allergy Learning & Consulting Copenhagen Denmark
| | - Marek Jutel
- Department of Clinical Immunology Wroclaw Medical University Wrocław Poland
- ALL‐MED Medical Research Institute Wroclaw Poland
| | - Ludger Klimek
- Center of Rhinology and Allergology Wiesbaden Germany
| | - Vera Mahler
- Division of Allergology Paul‐Ehrlich‐Institut Federal Institute for Vaccines and Biomedicines Langen Germany
| | - Ralph Mösges
- CRI‐Clinical Research International Ltd Hamburg Germany
- Institute of Medical Statistics and Bioinformatics University of Cologne Cologne Germany
| | - Philippe Moingeon
- Center for Therapeutic Innovation – Immuno‐Inflammatory Disease Servier Suresnes France
| | - Robyn E. O´Hehir
- Department of Respiratory Medicine, Allergy and Clinical Immunology (Research) Central Clinical School Monash University and Alfred Hospital Melbourne Vic. Australia
| | - Oscar Palomares
- Department of Biochemistry and Molecular Biology Chemistry School Complutense University of Madrid Madrid Spain
| | - Oliver Pfaar
- Department of Otorhinolaryngology, Head and Neck Surgery Section of Rhinology and Allergy University Hospital MarburgPhilipps‐Universität Marburg Marburg Germany
| | - Harald Renz
- Institute of Laboratory Medicine Universities of Giessen and Marburg Lung Center (UGMLC) German Center for Lung Research (DZL) Philipps Universität Marburg Marburg Germany
| | - Claudio Rhyner
- SIAF – Swiss Institute of Allergy and Asthma Research Davos Switzerland
| | - Franziska Roth‐Walter
- The Interuniversity Messerli Research Institute University of Veterinary Medicine Vienna Medical University of Vienna University of Vienna Vienna Austria
| | | | - Johannes Savolainen
- Department of Pulmonary Diseases and Clinical Allergology University of Turku and Turku University Hospital Turku Finland
| | - Carsten B. Schmidt‐Weber
- Center of Allergy and Environment (ZAUM) German Center of Lung Research (DZL) and Helmholtz I&I Initiative Technical University, and Helmholtz Center Munich Munich Germany
| | - Claudia Traidl‐Hoffmann
- Institute of Environmental Medicine (IEM) Technical University Munich and Helmholtz Center Munich Munich Germany
| | - Thomas Kündig
- Department of Dermatology University Hospital Zurich Zurich Switzerland
| |
Collapse
|
7
|
Xiong L, Lin J, Luo Y, Chen W, Dai J. The Efficacy and Safety of Epicutaneous Immunotherapy for Allergic Diseases: A Systematic Review and Meta-Analysis. Int Arch Allergy Immunol 2019; 181:170-182. [PMID: 31801149 DOI: 10.1159/000504366] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 10/23/2019] [Indexed: 03/20/2024] Open
Abstract
OBJECTIVES To systematically review the effect and safety of epicutaneous immunotherapy (EPIT) for allergic diseases. METHODS We searched PubMed, EMBASE, Cochrane Central Register of Controlled Trials, China National Knowledge Infrastructure, CQ VIP Database, Wanfang Data, and international trial register from their inception to July 29, 2019, without language restrictions, for randomized controlled trials (RCTs) that compared EPIT versus no EPIT for allergen-triggered allergic reactions. We assessed certainty of evidence by the GRADE approach. RESULTS Ten RCTs with 1,085 participants (aged from 10 months to 65 years) comparing EPIT with placebo for peanut, cow milk, or grass-pollen allergy met the eligibility criteria. A substantial benefit in terms of desensitization in EPIT group was more likely for peanut or cow milk protein allergy (risk ratio [RR] 2.34, 95% CI 1.69-3.23; I2 = 0%; high certainty evidence). EPIT increased local-treatment-related adverse events (L-TRAE; RR 1.56, 95% CI 1.03-2.36; I2 = 82%; moderate certainty evidence). But there were no significantly increased risk of any TRAEs (low certainty evidence) or systemic-TRAEs (S-TRAEs; very low certainty evidence) in EPIT group. The incidence rate of serious AEs, the use of rescue medications, and anaphylactic reactions stratified by organ systems including skin and mucosa, eyes and upper respiratory, lower respiratory, and gastrointestinal system in EPIT group were similar to placebo group. In subgroup analysis, desensitization of EPIT was significantly effective in peanut allergy (RR 2.29, 95% CI 1.64-3.21; I2 = 0%) and children <12 years (RR 2.85, 95% CI 1.92-4.24; I2 = 0%) with high certainty evidence. Only epicutaneous grass-pollen immunotherapy significantly increased the risk of S-TRAE (RR 4.65, 95% CI 1.10-19.64; I2 = 0%). CONCLUSION The systematic review suggests that EPIT might induce desensitization in peanut allergy and an increased risk of local AEs. These findings should be interpreted with caution owing to the limited study and heterogeneity. More data in the older (children ≥12 years and adults) and other allergic diseases are needed.
Collapse
Affiliation(s)
- Limei Xiong
- Department of Respiratory, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Jilei Lin
- Department of Respiratory, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yin Luo
- Department of Gastroenterology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Wencong Chen
- Department of Respiratory, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Jihong Dai
- Department of Respiratory, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China,
| |
Collapse
|
8
|
Głobińska A, Boonpiyathad T, Satitsuksanoa P, Kleuskens M, van de Veen W, Sokolowska M, Akdis M. Mechanisms of allergen-specific immunotherapy: Diverse mechanisms of immune tolerance to allergens. Ann Allergy Asthma Immunol 2018; 121:306-312. [PMID: 29966703 DOI: 10.1016/j.anai.2018.06.026] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 06/23/2018] [Accepted: 06/25/2018] [Indexed: 12/21/2022]
Abstract
OBJECTIVE The aim of this review is to provide an overview of the current knowledge on the mechanisms of allergen immunotherapy based on the recent publications and clinical trials. DATA SOURCES PubMed literature review. STUDY SELECTIONS In this review, we focus on diverse mechanisms of AIT and provide an insight into alternative routes of administration. Additionally, we review and discuss the most recent studies investigating potential biomarkers and highlight their role in clinical settings. RESULTS Successful allergen-specific immunotherapy (AIT) induces the reinstatement of tolerance toward allergens and represents a disease-modifying treatment. In the last decades, substantial progress in understanding the mechanisms of AIT has been achieved. Establishment of long-term clinical tolerance to allergens engages a complex network of interactions, modulating the functions of basophils, mast cells, allergen-specific regulatory T and B cells, and production of specific antibodies. The reduction of symptoms and clinical improvement is achieved by skewing the immune response away from allergic inflammation. CONCLUSION Although the complex nature of AIT mechanisms is becoming more clear, the need to discover reliable biomarkers to define patients likely to respond to the treatment is emerging.
Collapse
Affiliation(s)
- Anna Głobińska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Obere, Davos, Switzerland
| | - Tadech Boonpiyathad
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Obere, Davos, Switzerland
| | - Pattraporn Satitsuksanoa
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Obere, Davos, Switzerland
| | - Mirelle Kleuskens
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Obere, Davos, Switzerland; Wageningen University and Research, Cell Biology and Immunology, Wageningen, Netherlands
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Obere, Davos, Switzerland
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Obere, Davos, Switzerland
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Obere, Davos, Switzerland.
| |
Collapse
|
9
|
Starostzik C. [Not Available]. MMW Fortschr Med 2018; 160:22. [PMID: 29464639 DOI: 10.1007/s15006-018-0180-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
|
10
|
Khor SS, Morino R, Nakazono K, Kamitsuji S, Akita M, Kawajiri M, Yamasaki T, Kami A, Hoshi Y, Tada A, Ishikawa K, Hine M, Kobayashi M, Kurume N, Kamatani N, Tokunaga K, Johnson TA. Genome-wide association study of self-reported food reactions in Japanese identifies shrimp and peach specific loci in the HLA-DR/DQ gene region. Sci Rep 2018; 8:1069. [PMID: 29348432 PMCID: PMC5773682 DOI: 10.1038/s41598-017-18241-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 12/07/2017] [Indexed: 12/20/2022] Open
Abstract
Food allergy is an increasingly important health problem in the world. Several genome-wide association studies (GWAS) focused on European ancestry samples have identified food allergy-specific loci in the HLA class II region. We conducted GWAS of self-reported reactivity with common foods using the data from 11011 Japanese women and identified shrimp and peach allergy-specific loci in the HLA-DR/DQ gene region tagged by rs74995702 (P = 6.30 × 10−17, OR = 1.91) and rs28359884 (P = 2.3 × 10−12, OR = 1.80), respectively. After HLA imputation using a Japanese population-specific reference, the most strongly associated haplotype was HLA-DRB1*04:05-HLA-DQB1*04:01 for shrimp allergy (P = 3.92 × 10−19, OR = 1.99) and HLA-DRB1*09:01-HLA-DQB1*03:03 for peach allergy (P = 1.15 × 10−7, OR = 1.68). Additionally, both allergies’ associated variants were eQTLs for several HLA genes, with HLA-DQA2 the single eQTL gene shared between the two traits. Our study suggests that allergy to certain foods may be related to genetic differences that tag both HLA alleles having particular epitope binding specificities as well as variants modulating expression of particular HLA genes. Investigating this further could increase our understanding of food allergy aetiology and potentially lead to better therapeutic strategies for allergen immunotherapies.
Collapse
Affiliation(s)
- Seik-Soon Khor
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Ryoko Morino
- EverGene Ltd., Shinjuku-ku, Tokyo, 163-1435, Japan
| | | | | | | | | | - Tatsuya Yamasaki
- Life Science Group, Healthcare Division, Department of Healthcare Business, MTI Ltd., Shinjuku-ku, Tokyo, 163-1435, Japan
| | - Azusa Kami
- EverGene Ltd., Shinjuku-ku, Tokyo, 163-1435, Japan
| | - Yuria Hoshi
- Life Science Group, Healthcare Division, Department of Healthcare Business, MTI Ltd., Shinjuku-ku, Tokyo, 163-1435, Japan
| | - Asami Tada
- EverGene Ltd., Shinjuku-ku, Tokyo, 163-1435, Japan
| | | | - Maaya Hine
- LunaLuna Division, Department of Healthcare Business, MTI Ltd., Shinjuku-ku, Tokyo, 163-1435, Japan
| | - Miki Kobayashi
- LunaLuna Division, Department of Healthcare Business, MTI Ltd., Shinjuku-ku, Tokyo, 163-1435, Japan
| | - Nami Kurume
- LunaLuna Division, Department of Healthcare Business, MTI Ltd., Shinjuku-ku, Tokyo, 163-1435, Japan
| | | | - Katsushi Tokunaga
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | | |
Collapse
|
11
|
Long-term effects of allergen-specific subcutaneous immunotherapy for house dust mite induced allergic rhinitis. The Journal of Laryngology & Otology 2017; 131:997-1001. [DOI: 10.1017/s0022215117002110] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
AbstractBackground:Allergic rhinitis is strongly associated with the presence of house dust mites. This study investigated the long-term effects of allergen-specific immunotherapy. Allergen-specific immunotherapy was applied over three years. The study was based on a 10-year follow up of patients with allergic rhinitis.Methods:The study was conducted between 2001 and 2015. Skin prick test results and symptom scores were evaluated before (26 patients) and after 3 years (20 patients) of allergen-specific immunotherapy (using data from a previously published study), and 10 years after allergen-specific immunotherapy had ended (20 of 26 patients).Results:The symptom scores before allergen-specific immunotherapy were significantly higher than those obtained after 3 years of allergen-specific immunotherapy and 10 years after allergen-specific immunotherapy (p < 0.0175). There were no significant differences between the scores obtained at 3 years and 10 years after allergen-specific immunotherapy (p > 0.0175).Conclusion:Subcutaneous immunotherapy is an effective treatment for house dust mite induced allergic rhinitis.
Collapse
|
12
|
Lee JT. Paradigm Shifts in the Medical and Surgical Management of Rhinologic and Allergic Disease. Am J Rhinol Allergy 2016. [DOI: 10.1177/194589241603000601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Lee JT. Paradigm shifts in the medical and surgical management of rhinologic and allergic disease. Am J Rhinol Allergy 2016; 30:377-378. [PMID: 28124645 PMCID: PMC5108837 DOI: 10.2500/ajra.2016.30.4398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|