1
|
Hoeg ER, Serafin S, Lange B. Keep It Clean: The Current State of Hygiene and Disinfection Research and Practices for Immersive Virtual Reality Experiences. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2025; 31:3035-3044. [PMID: 40053643 DOI: 10.1109/tvcg.2025.3549130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2025]
Abstract
The interest and dissemination of Virtual Reality (VR) is still expanding across multiple domains. While VR has the capacity to revolutionize many different industries and fields, the recent Covid-19 pandemic has also increased awareness of hygiene and safety associated with VR usage. Despite the growing commercial availability of both VR headsets and preventive and disinfection solutions, confirmatory studies required to validate both the efficacy and safety of the different solutions are severely lacking. This paper presents the findings of a survey aimed at gathering information about current hygiene practices in various domains, along with the perception of research availability. Cleaning methods varied among respondents (n=42), but most popular methods consisted of several consecutive solutions. Respondents primarily used anti-bacterial or alcohol disinfection wipes (81%), permanent face covers (leather/silicone) (43%), disposable cover/mask (26%), and UVC light disinfection (26%). 65% of the respondents stated that the Covid-19 pandemic made them change their practices. A majority of respondents remarked that there was a scarcity of research, yet, most respondents were fairly or completely confident that their cleaning protocols were sufficient, despite remarking that it was sometimes not adhered to. The efficacy of VR hygiene solutions and practices remains largely understudied despite the urgent need to establish validated and efficacious cleaning protocols and practices. Current solutions and practices primarily focuses on the inside of the headset, although the outside of the headset may be far more exposed to contaminants through e.g. hand-contact. Further research is needed to define and evaluate context-dependent risk-assessments as well as suitable cleaning protocols for VR-headsets.
Collapse
|
2
|
Sakudo A, Furusaki K, Onishi R, Onodera T, Yoshikawa Y. A Review of CAC-717, a Disinfectant Containing Calcium Hydrogen Carbonate Mesoscopic Crystals. Microorganisms 2025; 13:507. [PMID: 40142400 PMCID: PMC11946018 DOI: 10.3390/microorganisms13030507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/21/2025] [Accepted: 02/21/2025] [Indexed: 03/28/2025] Open
Abstract
Recent studies on utilizing biological functions of natural substances that mimic the mesoscopic structures (nanoparticles of about 50 to 500 nm) found in plant growth points and coral skeletons have been reported. After the calcium hydrogen carbonate contained in materials derived from plants and coral are separated, the crystals of the mesoscopic structure can be reformed by applying a high voltage under a specific set of conditions. A suspension of these mesoscopic crystals in water (CAC-717) can be used as an effective disinfectant. CAC-717 exhibits universal virucidal activity against both enveloped and non-enveloped viruses as well as bactericidal and anti-prion activity. Moreover, in comparison to sodium hypochlorite, the potency of CAC-717 as a disinfectant is less susceptible to organic substances such as albumin. The disinfection activity of CAC-717 is maintained for at least 6 years and 4 months after storage at room temperature. CAC-717 is non-irritating and harmless to humans and animals, making it a promising biosafe disinfectant. This review explores the disinfection activity of CAC-717 as well as the potential and future uses of this material.
Collapse
Affiliation(s)
- Akikazu Sakudo
- School of Veterinary Medicine, Okayama University of Science, Imabari 794-8555, Ehime, Japan;
| | - Koichi Furusaki
- Mineral Activation Technical Research Center, Omuta 836-0041, Fukuoka, Japan
| | - Rumiko Onishi
- Santa Mineral Co., Ltd., Minato-ku 105-0013, Tokyo, Japan
| | - Takashi Onodera
- Environmental Science for Sustainable Development, The University of Tokyo, Bunkyo-ku 113-8657, Tokyo, Japan;
- Research Center for Food Safety, The University of Tokyo, Bunkyo-ku 113-8657, Tokyo, Japan
| | - Yasuhiro Yoshikawa
- School of Veterinary Medicine, Okayama University of Science, Imabari 794-8555, Ehime, Japan;
- Environmental Science for Sustainable Development, The University of Tokyo, Bunkyo-ku 113-8657, Tokyo, Japan;
- Institute of Environmental Microbiology, Kyowa Kako Co., Ltd., Machida 194-0035, Tokyo, Japan
| |
Collapse
|
3
|
Huang J, Adams J, Pettigrew C, Fraser A, Jiang X. Efficacy of photoClO2 against two human norovirus surrogates and Clostridioides difficile endospores on stainless steel and nylon carpet. J Appl Microbiol 2024; 135:lxae294. [PMID: 39580360 DOI: 10.1093/jambio/lxae294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/12/2024] [Accepted: 11/22/2024] [Indexed: 11/25/2024]
Abstract
AIMS Determine efficacy of an aqueous photocatalytic disinfection system, photoClO2, against two human norovirus surrogates [feline calicivirus (FCV) and Tulane virus (TuV)] and Clostridioides difficile endospores on stainless steel and nylon carpet. METHODS AND RESULTS The photoClO2 system was first optimized with 1% sodium chlorite (NaClO2) and 10 ppm Eosin Y to produce 60.64 ppm ClO2/min in a 4.5 × 4.5 cm2 area. It was then tested against FCV, TuV, and C. difficile endospores on stainless steel and nylon carpet with two different backings. On stainless steel, photoClO2 achieved a > 5 log10 plaque-forming unit (PFU) reduction of FCV in 45 min, >3 log10 median tissue culture infectious dose (TCID50) reduction of TuV in 60 min, and 1.3 log10 colony-forming unit (CFU) reduction of C. difficile endospores in 120 min. Under indoor lighting conditions, photoClO2 achieved a 4.3 log10 PFU reduction of FCV and 1.4 log10 TCID50 reduction of TuV on stainless steel after 120 min. Further, photoClO2 achieved a 2.9 log10 PFU reduction of FCV and 2.5 log10 TCID50 reduction of TuV on nylon carpet with waterproof backing in 60 min, which was higher than carpet with water-permeable backing (1.3 log10 PFU and 1.1 log10 TCID50 reduction, respectively). CONCLUSION ClO2 production rate of the photoClO2 system was influenced by light distribution, while disinfection efficacy was affected by light intensity, surface characteristics, and target microorganisms. PhotoClO2 was efficacious in inactivating both human norovirus surrogates on stainless steel and nylon carpet. Efficacy against C. difficile endospores was limited.
Collapse
Affiliation(s)
- Jinge Huang
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC 29634, United States
| | - Jacob Adams
- Noxsano, Inc., Cincinnati, OH 45212, United States
| | | | - Angela Fraser
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC 29634, United States
| | - Xiuping Jiang
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC 29634, United States
| |
Collapse
|
4
|
Shithi KN, Saha A, Haque MN, Hossain I, Nooruzzaman M, Begum JA, Parvin R, Chowdhury EH. Use of ash filtrate as an alternative to chemical disinfectant and its antimicrobial efficacy. J Adv Vet Anim Res 2024; 11:1007-1016. [PMID: 40013298 PMCID: PMC11855415 DOI: 10.5455/javar.2024.k851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 12/12/2024] [Accepted: 12/15/2024] [Indexed: 02/28/2025] Open
Abstract
Objective The study aims to prepare the ash filtrate (AF) from household ashes using an in-house-designed handmade filtration system and to observe the antimicrobial efficacy and sanitizing effects. Materials and Methods Household ashes from various plant sources were collected, and AF was prepared through a handmade filtration system after adding water. The pH of stock AF was measured, and 20%, 40%, 60%, and 80% AF solutions were prepared by adding distilled water in appropriate proportions to obtain a wide range of pH values. The antimicrobial efficacy of AF against Salmonella spp. in vitro, Newcastle disease virus (NDV), and low pathogenic avian influenza virus (LPAIV) H9N2 in ovo were analyzed. Contaminated eggs were individually sprayed or dipped with AF to detect the bacterial load on the eggshell surface. Further experimental use of AF as an egg sanitizer in routine biosecurity operations in broiler sheds was also evaluated. Results The prepared AF showed high alkalinity; pH varied from 10.7 to 8.20 and contained a higher amount of K, Na, and Cl. The alkaline AF and its dilution gradually inhibited Salmonella growth and showed gradual pH-dependent antibacterial efficacy. Similarly, AF and its dilution showed a gradual decrease in viral titer against the LPAIV (H9N2); however, antiviral activity against the velogenic strain of NDV was quite steady. Applying AF as an egg sanitizer also reduced the bacterial loads significantly on the eggshell surface compared to untreated eggs. Moreover, AF having pH 10.5 experimentally used in routine sanitization practices of a boiler shed resulted in low bird mortality (10/210), higher body weight gain, and a low feed conversion ratio compared to the untreated control flock. Conclusion The higher alkalinity of the AF is responsible for the antimicrobial activity of commercial disinfectants. Consequently, we can use AF as a low-cost, effective, natural antimicrobial agent to replace chemical disinfectants.
Collapse
Affiliation(s)
- Khairun Nahar Shithi
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
- Bangladesh Livestock Research Institute, Savar, Bangladesh
| | - Ananna Saha
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | | | - Ismail Hossain
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Mohammed Nooruzzaman
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Jahan Ara Begum
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Rokshana Parvin
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Emdadul Haque Chowdhury
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| |
Collapse
|
5
|
Zhang R, Lu M, Yu H, Liu T, Cui Z, Yang Y, Zhou M, Lu Y, Tian H, Tian L, Han L, Hou Z. Evaluation of the efficacy of disinfectants and disinfection methods against Ascaris suum eggs. Vet Parasitol 2024; 332:110333. [PMID: 39437589 DOI: 10.1016/j.vetpar.2024.110333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 10/15/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
Ascaris is highly adaptable, allowing its offspring to thrive in various conditions and posing significant health risks widely among animal populations. Most studies regarding the efficacy of disinfectants against Ascaris eggs in animal houses have been limited and lack a systematic and comprehensive evaluation. Currently, Ascaris suum is one of the most extensively studied helminths in the context of parasitology. Here, 8 disinfectants, UV radiation and quicklime were used to treat A. suum eggs, which were subsequently incubated at a room temperature of 22-25ºC for 15 days. The inactivation rate of A. suum eggs (expressed as a percentage) was measured to assess the efficacy of disinfectants, UV radiation, and quicklime in inactivating A. suum eggs. The results indicated that 1 %-10 % povidone iodine, 5 %-25 % ammonia solution, 0.5-2 % chlorine dioxide, 75 % ethanol and formalin in long-term (15 days), as well as the 5 % and 10 % povidone iodine, 25 % ammonia solution and UV irradiation in short-term (30-120 min) completely inhibited the normal development of A. suum eggs up to L2 stage. In conclusion, 75 % ethanol, povidone iodine, chlorine dioxide, ammonia solution, formalin, and UV irradiation are effective in inactivating A. suum eggs for dual disinfection of parasites and microorganisms. Among them, povidone iodine and UV irradiation are relatively efficient and environmentally friendly disinfection methods, and chlorine dioxide, a relatively harmless and broad-spectrum disinfectant, is an alternative choice for A. suum eggs elimination.
Collapse
Affiliation(s)
- Ruisi Zhang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Maolin Lu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Hongyan Yu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Tianlu Liu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Zhiying Cui
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Yuling Yang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Mengchao Zhou
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Yaxian Lu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Hang Tian
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Lihong Tian
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China.
| | - Lei Han
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China.
| | - Zhijun Hou
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
6
|
Schicklin C, Rauter G, Cattin PC, Eugster M, Braissant O. Method to Generate Chlorine Dioxide Gas In Situ for Sterilization of Automated Incubators. Pathogens 2024; 13:1024. [PMID: 39599577 PMCID: PMC11597574 DOI: 10.3390/pathogens13111024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024] Open
Abstract
Pharmaceutical preclinical tests using cell cultures are nowadays commonly automated. Incubator microbial contaminations impact such tests. Chlorine dioxide (ClO2) is widely used in aqueous solutions. However, a gaseous form, such as chlorine dioxide gas (gClO2), can effectively access unreachable spaces, such as closed cell culture incubators. Steam sterilization requires a temperature rise to at least 121 °C, thus limiting the possibility of automation elements for sensors and actuators. gClO2 sterilization is an ambient-temperature sterilization method. This article aims to demonstrate that gClO2 generated from solid powder tablets is efficient for sterilizing incubators and can be automated. We selected (i) Bacillus subtilis strain, (ii) Saccharomyces cerevisiae, and (iii) T7 phages as representatives for (i) bacteria, (ii) fungi, and (iii) viruses for each domain to evaluate the sterilization efficiency. This study demonstrated that gClO2 can be generated inside the incubator from a solid powder tablet without specific equipment and can effectively fight biological proxies in 15 min. After 30 sterilization cycles, the actuators and sensors mounted inside the incubator were still operating. Our proposed sterilization method seems to be generally applicable for automated in situ sterilization of incubators and medical robots.
Collapse
Affiliation(s)
- Cédric Schicklin
- Bio-Inspired RObots for MEDicine-Laboratory, Department of Biomedical Engineering, University of Basel, 4123 Allschwil, Switzerland; (C.S.)
| | - Georg Rauter
- Bio-Inspired RObots for MEDicine-Laboratory, Department of Biomedical Engineering, University of Basel, 4123 Allschwil, Switzerland; (C.S.)
| | - Philippe Claude Cattin
- Center for medical Image Analysis & Navigation, Department of Biomedical Engineering, University of Basel, 4123 Allschwil, Switzerland;
| | - Manuela Eugster
- Bio-Inspired RObots for MEDicine-Laboratory, Department of Biomedical Engineering, University of Basel, 4123 Allschwil, Switzerland; (C.S.)
- Neuro Robotics Group, ARTORG Center, University of Bern, 3008 Bern, Switzerland
- Department of Neurosurgery, Inselspital, Bern University Hospital, 3008 Bern, Switzerland
| | - Olivier Braissant
- Biological Calorimetry Lab, Department of Biomedical Engineering, University of Basel, 4123 Allschwil, Switzerland
| |
Collapse
|
7
|
Van Blair J, Lacombe A, Harvey BL, Wu VCH. Chlorine dioxide is a broad-spectrum disinfectant against Shiga toxin-producing Escherichia coli and Listeria monocytogenes in agricultural water. Front Microbiol 2024; 15:1469615. [PMID: 39526135 PMCID: PMC11543455 DOI: 10.3389/fmicb.2024.1469615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024] Open
Abstract
Agricultural water is commonly treated with chlorine-based disinfectants, which are impacted by water quality. Understanding how water quality influences disinfectants such as chlorine dioxide (ClO2) against pathogenic bacteria is important for creating efficacious sanitation regimens. In this study, the minimum inhibitory concentration (MIC) of ClO2 needed to achieve a 3-Log reduction against Shiga toxin-producing Escherichia coli (STEC) and Listeria monocytogenes was compared across agricultural water samples. Sterile ddH2O served as a control to compare with environmental samples from Salinas Valley, CA, and laboratory standards. To test different dosages and water qualities, stock ClO2 was diluted in 24-well plates with target concentrations of 10, 5, 2.5, and 1.25 mg/L. Well plates were inoculated with pathogens and treated with sanitizer for 5 min. Following treatment, surviving pathogens were enumerated using viable cell counts. The results demonstrate that groundwater samples had the highest water quality of the environmental samples and required the lowest concentration of disinfectant to achieve 3-Log reduction against both bacteria, with MIC between 1.4 and 2.0 mg/L. Open-source samples had lower water quality and required a higher concentration of ClO2 for 3-Log reduction, with MIC between 2.8 and 5.8 mg/L for both pathogens. There was no correlation between pH, turbidity, or conductivity/TDS and reduction for either STEC or L. monocytogenes, suggesting no individual water metric was driving reduction. A lower dosage was required to achieve 3-Log reduction against STEC, while L. monocytogenes required greater concentrations to achieve the same level of reduction. Overall, these results help guide growers in using ClO2 as a broad-spectrum disinfectant and demonstrate its efficacy in reaching 3-Log reduction across agricultural water samples.
Collapse
Affiliation(s)
| | | | | | - Vivian C. H. Wu
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Albany, CA, United States
| |
Collapse
|
8
|
Jiang Y, Qiao Y, Jin R, Jia M, Liu J, He Z, Liu Z. Application of chlorine dioxide and its disinfection mechanism. Arch Microbiol 2024; 206:400. [PMID: 39256286 DOI: 10.1007/s00203-024-04137-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/22/2024] [Accepted: 09/08/2024] [Indexed: 09/12/2024]
Abstract
Chlorine dioxide (ClO2) is a strong oxidizing agent and an efficient disinfectant. Due to its broad-spectrum bactericidal properties, good inactivation effect on the vast majority of bacteria and pathogenic microorganisms, low resistance to drugs, and low generation of halogenated by-products, chlorine dioxide is widely used in fields such as water purification, food safety, medical and public health, and living environment. This review introduced the properties and application status of chlorine dioxide, compared the action mode, advantages and disadvantages of various disinfectants. The mechanism of chlorine dioxide inactivating bacteria, fungi and viruses were reviewed. The lethal target of chlorine dioxide to bacteria and fungi is to destroy the structure of cell membrane, change the permeability of cell membrane, and make intracellular substances flow out, leading to their death. The lethal targets for viruses are the destruction of viral protein capsids and the degradation of RNA fragments. The purpose of this review is to provide more scientific guidance for the application of chlorine dioxide disinfectants.
Collapse
Affiliation(s)
- Yu Jiang
- School of Environment and Safety Engineering, North University of China, Taiyuan, 030051, Shanxi, P.R. China
| | - Yina Qiao
- School of Environment and Safety Engineering, North University of China, Taiyuan, 030051, Shanxi, P.R. China.
| | - Riya Jin
- School of Environment and Safety Engineering, North University of China, Taiyuan, 030051, Shanxi, P.R. China.
| | - Mengye Jia
- School of Environment and Safety Engineering, North University of China, Taiyuan, 030051, Shanxi, P.R. China
| | - Jiaoqin Liu
- School of Environment and Safety Engineering, North University of China, Taiyuan, 030051, Shanxi, P.R. China
| | - Zengdi He
- School of Environment and Safety Engineering, North University of China, Taiyuan, 030051, Shanxi, P.R. China
| | - Zhaoguo Liu
- School of Environment and Safety Engineering, North University of China, Taiyuan, 030051, Shanxi, P.R. China
| |
Collapse
|
9
|
Jeong C, Kim HJ. YabJ from Staphylococcus aureus entraps chlorides within its pocket. Biochem Biophys Res Commun 2024; 710:149892. [PMID: 38581951 DOI: 10.1016/j.bbrc.2024.149892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
Chlorination is a potent disinfectant against various microorganisms, including bacteria and viruses, by inducing protein modifications and functional changes. Chlorine, in the form of sodium hypochlorite, stands out as the predominant sanitizer choice due to its cost-effectiveness and powerful antimicrobial properties. Upon exposure to chlorination, proteins undergo modifications, with amino acids experiencing alterations through the attachment of chloride or oxygen atoms. These modifications lead to shifts in protein function and the modulation of downstream signaling pathways, ultimately resulting in a bactericidal effect. However, certain survival proteins, such as chaperones or transcription factors, aid organisms in overcoming harsh chlorination conditions. The expression of YabJ, a highly conserved protein from Staphylococcus aureus, is regulated by a stress-activated sigma factor called sigma B (σB). This research revealed that S. aureus YabJ maintains its structural integrity even under intense chlorination conditions and harbors sodium hypochlorite molecules within its surface pocket. Notably, the pocket of S. aureus YabJ is primarily composed of amino acids less susceptible to chlorination-induced damage, rendering it resistant to such effects. This study elucidates how S. aureus YabJ evades the detrimental effects of chlorination and highlights its role in sequestering sodium hypochlorite within its structure. Consequently, this process enhances resilience and facilitates adaptation to challenging environmental conditions.
Collapse
Affiliation(s)
- Cheolwoo Jeong
- College of Pharmacy, Woosuk University, Wanju, 55338, Republic of Korea
| | - Hyo Jung Kim
- College of Pharmacy, Woosuk University, Wanju, 55338, Republic of Korea.
| |
Collapse
|
10
|
McCarlie SJ, du Preez LL, Hernandez JC, Boucher CE, Bragg RR. Transcriptomic signature of bacteria exposed to benzalkonium chloride. Res Microbiol 2024; 175:104151. [PMID: 37952705 DOI: 10.1016/j.resmic.2023.104151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/14/2023]
Abstract
The COVID-19 pandemic has highlighted our reliance on biocides, the increasing prevalence of resistance to biocides is a risk to public health. Bacterial exposure to the biocide, benzalkonium chloride (BAC), resulted in a unique transcriptomic profile, characterised by both a short and long-term response. Differential gene expression was observed in four main areas: motility, membrane composition, proteostasis, and the stress response. A metabolism shift to protect the proteome and the stress response were prioritised suggesting these are main resistance mechanisms. Whereas "well-established" mechanisms, such as biofilm formation, were not found to be differentially expressed after exposure to BAC.
Collapse
Affiliation(s)
- Samantha J McCarlie
- Department of Microbiology and Biochemistry, University of the Free State, South Africa
| | - Louis L du Preez
- Research & HPC: ICT Services, University of the Free State, South Africa
| | | | - Charlotte E Boucher
- Department of Microbiology and Biochemistry, University of the Free State, South Africa
| | - Robert R Bragg
- Department of Microbiology and Biochemistry, University of the Free State, South Africa.
| |
Collapse
|
11
|
Widdifield CM, Zakeri F. Can simple 'molecular' corrections outperform projector augmented-wave density functional theory in the prediction of 35 Cl electric field gradient tensor parameters for chlorine-containing crystalline systems? MAGNETIC RESONANCE IN CHEMISTRY : MRC 2024; 62:156-168. [PMID: 37950622 DOI: 10.1002/mrc.5408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 11/13/2023]
Abstract
Many-body expansion (MBE) fragment approaches have been applied to accurately compute nuclear magnetic resonance (NMR) parameters in crystalline systems. Recent examples demonstrate that electric field gradient (EFG) tensor parameters can be accurately calculated for 14 N and 17 O. A key additional development is the simple molecular correction (SMC) approach, which uses two one-body fragment (i.e., isolated molecule) calculations to adjust NMR parameter values established using 'benchmark' projector augmented-wave (PAW) density functional theory (DFT) values. Here, we apply a SMC using the hybrid PBE0 exchange-correlation (XC) functional to see if this can improve the accuracy of calculated 35 Cl EFG tensor parameters. We selected eight organic and two inorganic crystal structures and considered 15 chlorine sites. We find that this SMC improves the accuracy of computed values for both the 35 Cl quadrupolar coupling constant (CQ ) and the asymmetry parameter ( η Q ) by approximately 30% compared with benchmark PAW DFT values. We also assessed a SMC that offers local improvements not only in terms of the quality of the XC functional but simultaneously in the quality of the description of relativistic effects via the inclusion of spin-orbit effects. As the inorganic systems considered contain heavy atoms bonded to the chlorine atoms, we find further improvements in the accuracy of calculated 35 Cl EFG tensor parameters when both a hybrid functional and spin-orbit effects are included in the SMC. On the contrary, for chlorine-containing organics, the inclusion of spin-orbit relativistic effects using a SMC does not improve the accuracy of computed 35 Cl EFG tensor parameters.
Collapse
Affiliation(s)
- Cory M Widdifield
- Department of Chemistry and Biochemistry, University of Regina, Regina, Saskatchewan, Canada
| | - Fatemeh Zakeri
- Department of Chemistry and Biochemistry, University of Regina, Regina, Saskatchewan, Canada
| |
Collapse
|
12
|
Kim Y, Choi PJ, Jang A. Effect of NaOCl and ClO 2 on seawater desalination using reverse osmosis with cartridge filtration as the pretreatment during the algal bloom. CHEMOSPHERE 2024; 349:140944. [PMID: 38096989 DOI: 10.1016/j.chemosphere.2023.140944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/05/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023]
Abstract
Increased seawater temperature leads to harmful algal blooms (HABs), which releases toxic materials and extracellular polymeric substances (EPS) that are harmful to both humans and the environment. Reverse osmosis (RO) with cartridge filter (CF) as the pretreatment process is often used for desalination process. However, the EPS causes severe fouling on the CF, and RO membrane. Disinfectants, such as NaOCl and ClO2, are commonly used to remove biofouling, because they can oxidize and kill microorganisms. Therefore, our study aims to utilize NaOCl and ClO2 during the CF-RO process to minimize the algal growth within the system and minimize the fouling induced by EPS. Results from this study show that CF can remove more than 50% of protein and 14% of polysaccharides but is not effective in removing toxins. However, with disinfectants, toxic materials were completely oxidized. Improved removal of EPS with CF improved overall performance. The flux reduction in RO process without disinfection was over 60%, however, the flux decline was about 44% and 10% with NaOCl and ClO2, respectively. Both disinfectants were found to be effective, however use of ClO2 is recommended because it is less damaging the membrane, yet more effective in enhancing the performance.
Collapse
Affiliation(s)
- Youjin Kim
- Department of Global Smart City, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea.
| | - Paula Jungwon Choi
- Department of Global Smart City, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea.
| | - Am Jang
- Department of Global Smart City, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea.
| |
Collapse
|
13
|
Helou M, Mahdi A, Abou Fayad A, Sleiman A, Matar GM, Zoghbi S, Madani T, Husni R. Antimicrobial effects of chlorine dioxide in a hospital setting. Sci Rep 2023; 13:22866. [PMID: 38129523 PMCID: PMC10739700 DOI: 10.1038/s41598-023-49997-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
Chlorine dioxide is a powerful disinfectant with strong antibacterial properties. We conducted a study at different sites of the Lebanese American University Medical Center-Rizk Hospital to determine the efficacy of the ECOM air mask in decreasing the particle load. Air cultures were obtained from three different locations, namely the patients' elevator, visitors' elevator and mobile clinic and the number of colonies grown on each type of agar was determined. We also measured particle counts at the three sites both at baseline and after placement of the ECOM air mask. After 7 days of ECOM air mask use, the numbers of colonies grown on all types of media was decreased by 20-100% versus the baseline values. The counts of particles of different diameters (0.3, 0.5 and 5 µm) were decreased at all three sampled sites. This study highlighted the efficacy of the ECOM air mask. The utility of the gaseous form of ClO2 as an antiseptic in the hospital setting appears promising.
Collapse
Affiliation(s)
- Mariana Helou
- Division of Emergency, Department of Internal Medicine, School of Medicine, Lebanese American University, Beirut, Lebanon
| | - Ahmad Mahdi
- Division of Infectious Diseases, Department of Internal Medicine, School of Medicine, Lebanese American University, Beirut, Lebanon
| | - Antoine Abou Fayad
- Center for Infectious Diseases Research, American University of Beirut, Beirut, Lebanon
| | - Ahmad Sleiman
- Center for Infectious Diseases Research, American University of Beirut, Beirut, Lebanon
| | - Ghassan M Matar
- Center for Infectious Diseases Research, American University of Beirut, Beirut, Lebanon
| | - Sanaa Zoghbi
- Infection Control Program, Lebanese American University Medical Center, Beirut, Lebanon
| | - Tarek Madani
- Infection Control Program, Lebanese American University Medical Center, Beirut, Lebanon
| | - Rola Husni
- Division of Infectious Diseases, Department of Internal Medicine, School of Medicine, Lebanese American University, Beirut, Lebanon.
- Lebanese American University-Rizk Hospital, Beirut, Lebanon.
| |
Collapse
|
14
|
Hu Z, Tian X, Lai R, Ji C, Li X. Airborne transmission of common swine viruses. Porcine Health Manag 2023; 9:50. [PMID: 37908005 PMCID: PMC10619269 DOI: 10.1186/s40813-023-00346-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/25/2023] [Indexed: 11/02/2023] Open
Abstract
The transmission of viral aerosols poses a vulnerable aspect in the biosecurity measures aimed at preventing and controlling swine virus in pig production. Consequently, comprehending and mitigating the spread of aerosols holds paramount significance for the overall well-being of pig populations. This paper offers a comprehensive review of transmission characteristics, influential factors and preventive strategies of common swine viral aerosols. Firstly, certain viruses such as foot-and-mouth disease virus (FMDV), porcine reproductive and respiratory syndrome virus (PRRSV), influenza A viruses (IAV), porcine epidemic diarrhea virus (PEDV) and pseudorabies virus (PRV) have the potential to be transmitted over long distances (exceeding 150 m) through aerosols, thereby posing a substantial risk primarily to inter-farm transmission. Additionally, other viruses like classical swine fever virus (CSFV) and African swine fever virus (ASFV) can be transmitted over short distances (ranging from 0 to 150 m) through aerosols, posing a threat primarily to intra-farm transmission. Secondly, various significant factors, including aerosol particle sizes, viral strains, the host sensitivity to viruses, weather conditions, geographical conditions, as well as environmental conditions, exert a considerable influence on the transmission of viral aerosols. Researches on these factors serve as a foundation for the development of strategies to combat viral aerosol transmission in pig farms. Finally, we propose several preventive and control strategies that can be implemented in pig farms, primarily encompassing the implementation of early warning models, viral aerosol detection, and air pretreatment. This comprehensive review aims to provide a valuable reference for the formulation of efficient measures targeted at mitigating the transmission of viral aerosols among swine populations.
Collapse
Affiliation(s)
- Zhiqiang Hu
- Shandong Engineering Laboratory of Pig and Poultry Healthy Breeding and Disease Diagnosis Technology, Xiajin New Hope Liuhe Agriculture and Animal Husbandry Co., Ltd, Xiajin Economic Development Zone, Qingwo Venture Park, Dezhou, 253200, Shandong Province, People's Republic of China
- Shandong New Hope Liuhe Co., Ltd, No. 592-26 Jiushui East Road Laoshan District, Qingdao, 266100, Shandong, People's Republic of China
- Shandong New Hope Liuhe Agriculture and Animal Husbandry Technology Co., Ltd (NHLH Academy of Swine Research), 6596 Dongfanghong East Road, Yuanqiao Town, Dezhou, 253000, Shandong, People's Republic of China
- China Agriculture Research System-Yangling Comprehensive Test Station, Intersection of Changqing Road and Park Road 1, Yangling District, Xianyang, People's Republic of China
| | - Xiaogang Tian
- Shandong Engineering Laboratory of Pig and Poultry Healthy Breeding and Disease Diagnosis Technology, Xiajin New Hope Liuhe Agriculture and Animal Husbandry Co., Ltd, Xiajin Economic Development Zone, Qingwo Venture Park, Dezhou, 253200, Shandong Province, People's Republic of China
- Shandong New Hope Liuhe Co., Ltd, No. 592-26 Jiushui East Road Laoshan District, Qingdao, 266100, Shandong, People's Republic of China
- Shandong New Hope Liuhe Agriculture and Animal Husbandry Technology Co., Ltd (NHLH Academy of Swine Research), 6596 Dongfanghong East Road, Yuanqiao Town, Dezhou, 253000, Shandong, People's Republic of China
| | - Ranran Lai
- Shandong Engineering Laboratory of Pig and Poultry Healthy Breeding and Disease Diagnosis Technology, Xiajin New Hope Liuhe Agriculture and Animal Husbandry Co., Ltd, Xiajin Economic Development Zone, Qingwo Venture Park, Dezhou, 253200, Shandong Province, People's Republic of China
- Shandong New Hope Liuhe Co., Ltd, No. 592-26 Jiushui East Road Laoshan District, Qingdao, 266100, Shandong, People's Republic of China
- Shandong New Hope Liuhe Agriculture and Animal Husbandry Technology Co., Ltd (NHLH Academy of Swine Research), 6596 Dongfanghong East Road, Yuanqiao Town, Dezhou, 253000, Shandong, People's Republic of China
| | - Chongxing Ji
- Key Laboratory of Feed and Livestock and Poultry Products Quality and Safety Control, Ministry of Agriculture and Rural Affairs, New Hope Liuhe Co., Ltd, 316 Jinshi Road, Chengdu, 610100, Sichuan, People's Republic of China
- Shandong New Hope Liuhe Co., Ltd, No. 592-26 Jiushui East Road Laoshan District, Qingdao, 266100, Shandong, People's Republic of China
| | - Xiaowen Li
- Shandong Engineering Laboratory of Pig and Poultry Healthy Breeding and Disease Diagnosis Technology, Xiajin New Hope Liuhe Agriculture and Animal Husbandry Co., Ltd, Xiajin Economic Development Zone, Qingwo Venture Park, Dezhou, 253200, Shandong Province, People's Republic of China.
- Key Laboratory of Feed and Livestock and Poultry Products Quality and Safety Control, Ministry of Agriculture and Rural Affairs, New Hope Liuhe Co., Ltd, 316 Jinshi Road, Chengdu, 610100, Sichuan, People's Republic of China.
- Shandong New Hope Liuhe Co., Ltd, No. 592-26 Jiushui East Road Laoshan District, Qingdao, 266100, Shandong, People's Republic of China.
- Shandong New Hope Liuhe Agriculture and Animal Husbandry Technology Co., Ltd (NHLH Academy of Swine Research), 6596 Dongfanghong East Road, Yuanqiao Town, Dezhou, 253000, Shandong, People's Republic of China.
- China Agriculture Research System-Yangling Comprehensive Test Station, Intersection of Changqing Road and Park Road 1, Yangling District, Xianyang, People's Republic of China.
| |
Collapse
|
15
|
Giraldo Isaza L, Mortha G, Marlin N, Molton F, Duboc C. ClO 2-Mediated Oxidation of the TEMPO Radical: Fundamental Considerations of the Catalytic System for the Oxidation of Cellulose Fibers. Molecules 2023; 28:6631. [PMID: 37764407 PMCID: PMC10535468 DOI: 10.3390/molecules28186631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
The reaction mechanism of ClO2-mediated TEMPO oxidation was investigated by EPR spectroscopy and UV-Vis spectroscopy in the context of an alternative TEMPO sequence for cellulose fiber oxidation. Without the presence of a cellulosic substrate, a reversibility between TEMPO and its oxidation product, TEMPO+, was displayed, with an effect of the pH and reagent molar ratios. The involvement of HOCl and Cl-, formed as byproducts in the oxidation mechanism, was also evidenced. Trapping HOCl partly inhibits the reaction, whereas adding methylglucoside, a cellulose model compound, inhibits the reversibility of the reaction to TEMPO.
Collapse
Affiliation(s)
- Laura Giraldo Isaza
- Institute of Engineering, University Grenoble Alpes, CNRS, Grenoble INP, LGP2, F-38000 Grenoble, France
| | - Gérard Mortha
- Institute of Engineering, University Grenoble Alpes, CNRS, Grenoble INP, LGP2, F-38000 Grenoble, France
| | - Nathalie Marlin
- Institute of Engineering, University Grenoble Alpes, CNRS, Grenoble INP, LGP2, F-38000 Grenoble, France
| | - Florian Molton
- Department of Molecular Chemistry, University Grenoble Alpes, CNRS, DCM, F-38000 Grenoble, France
| | - Carole Duboc
- Department of Molecular Chemistry, University Grenoble Alpes, CNRS, DCM, F-38000 Grenoble, France
| |
Collapse
|
16
|
HAKIM H, KADOTA C, HASAN MA, MIYAOKA Y, KABIR MH, SHOHAM D, MURAKAMI H, TAKEHARA K. Evaluation of antimicrobial efficacies of chlorine dioxide gas released into the air towards pathogens present on the surfaces of inanimate objects. J Vet Med Sci 2023; 85:950-955. [PMID: 37482423 PMCID: PMC10539825 DOI: 10.1292/jvms.23-0205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/10/2023] [Indexed: 07/25/2023] Open
Abstract
The efficacy of ClO2 gas, as surface disinfectant at around 1,000 ppb against avian orthoavulaviruses type 1 (AOAV-1), infectious bronchitis virus (IBV), Escherichia coli (EC), and Salmonella Enteritidis (SE) was evaluated at the required level (≥99.9% reduction) on various surfaces. Exposing the surfaces to ClO2 gas for 1 hr reduced AOAV-1, except for rayon sheets which required 3 hr. However, 1 hr of exposure did not effectively reduced IBV titer. In the case of EC, glass plates and plastic carriers needed 1 hr of exposure, while rayon sheets required 2 hr. SE on rayon sheets required 1 hr exposure, but on the other tested surfaces showed inadequate reduction. Overall, ClO2 gas is an effective disinfectant for poultry farms.
Collapse
Affiliation(s)
- Hakimullah HAKIM
- Laboratory of Animal Health, Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo,
Japan
| | - Chisaki KADOTA
- Laboratory of Animal Health, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Md. Amirul HASAN
- Laboratory of Animal Health, Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo,
Japan
| | - Yu MIYAOKA
- Laboratory of Animal Health, Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo,
Japan
| | - Md. Humayun KABIR
- Laboratory of Animal Health, Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo,
Japan
| | - Dany SHOHAM
- Bar-Ilan University, Begin-Sadat Center for Strategic Studies, Ramat Gan, Israel
| | - Harumi MURAKAMI
- Laboratory of Animal Health, Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo,
Japan
- Laboratory of Animal Health, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Kazuaki TAKEHARA
- Laboratory of Animal Health, Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo,
Japan
- Laboratory of Animal Health, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| |
Collapse
|
17
|
Krömker V, Rota N, Locatelli C, Gusmara C, Marinoni A, Molteni D, Schmenger A, Erk RE, Moroni P. Randomized noninferiority field trial evaluating a postmilking teat dip for the prevention of naturally occurring intramammary infections. J Dairy Sci 2023; 106:6342-6352. [PMID: 37479581 DOI: 10.3168/jds.2022-22732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 03/01/2023] [Indexed: 07/23/2023]
Abstract
The aim of this study was to perform a positive-controlled field study under natural exposure conditions to test the efficacy of a newly developed chlorine dioxide-based postmilking teat disinfectant (experimental product, EX) for noninferiority compared with an already established chlorine dioxide-based teat disinfectant (positive control product, PC). After blocking by parity, approximately 200 Holstein cows in early to mid-lactation stages from a dairy farm near Padua, Italy, were randomly assigned to one of 2 groups. Over a 13-wk period between September and December 2021, the teats of cows were dipped with the EX or the PC after each milking. Milk samples were collected from individual quarters of enrolled cows for 13 wk to determine infection status. Teat condition was assessed at wk 1, 5, and 9. Mixed logistic regression was used to analyze the effect of treatment on the incidence of new intramammary infections. For the noninferiority analysis, the upper limit of the 95% confidence interval for the difference in new intramammary infection (NIMI) rate between the 2 treatments (EX - PC) had to be to the left of the critical value d (0.035) to conclude that EX was noninferior to PC in terms of the risk of NIMI. The results showed that the incidence of new infections in the quarters treated with EX (3.1%) was not different from that in the udder quarters treated with PC (2.6%). No overall difference was found between the treatments in terms of teat condition. As the upper limit of the 95% confidence interval of the NIMI rate difference was smaller than the predefined noninferiority limit, we concluded that the EX was noninferior compared with the PC.
Collapse
Affiliation(s)
- V Krömker
- Department of Veterinary and Animal Sciences, Section for Production, Nutrition and Health, Copenhagen University, 1870 Frederiksberg C, Denmark.
| | - N Rota
- Agribovis S. r. l., Meda, 20821, Italy
| | - C Locatelli
- Università degli Studi di Milano, Dipartimento di Medicina Veterinaria e Scienze Animali, 26900, Lodi, Italy; Laboratorio di Malattie Infettive degli Animali-MiLab, University of Milan, 26900, Lodi, Italy
| | - C Gusmara
- Università degli Studi di Milano, Dipartimento di Medicina Veterinaria e Scienze Animali, 26900, Lodi, Italy; Laboratorio di Malattie Infettive degli Animali-MiLab, University of Milan, 26900, Lodi, Italy
| | - A Marinoni
- Università degli Studi di Milano, Dipartimento di Medicina Veterinaria e Scienze Animali, 26900, Lodi, Italy
| | - D Molteni
- Università degli Studi di Milano, Dipartimento di Medicina Veterinaria e Scienze Animali, 26900, Lodi, Italy
| | - A Schmenger
- Steinbeis Research Center for Dairy Science, 32278 Kirchlengern, Germany
| | | | - P Moroni
- Università degli Studi di Milano, Dipartimento di Medicina Veterinaria e Scienze Animali, 26900, Lodi, Italy; Laboratorio di Malattie Infettive degli Animali-MiLab, University of Milan, 26900, Lodi, Italy; Quality Milk Production Services, Animal Health Diagnostic Center, Cornell University, Ithaca, NY 14853
| |
Collapse
|
18
|
Blacksell SD, Dhawan S, Kusumoto M, Le KK, Summermatter K, O'Keefe J, Kozlovac J, Almuhairi SS, Sendow I, Scheel CM, Ahumibe A, Masuku ZM, Bennett AM, Kojima K, Harper DR, Hamilton K. The Biosafety Research Road Map: The Search for Evidence to Support Practices in the Laboratory-Zoonotic Avian Influenza and Mycobacterium tuberculosis. APPLIED BIOSAFETY 2023; 28:135-151. [PMID: 37736423 PMCID: PMC10510692 DOI: 10.1089/apb.2022.0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Introduction The Biosafety Research Road Map reviewed the scientific literature on a viral respiratory pathogen, avian influenza virus, and a bacterial respiratory pathogen, Mycobacterium tuberculosis. This project aims at identifying gaps in the data required to conduct evidence-based biorisk assessments, as described in Blacksell et al. One significant gap is the need for definitive data on M. tuberculosis sample aerosolization to guide the selection of engineering controls for diagnostic procedures. Methods The literature search focused on five areas: routes of inoculation/modes of transmission, infectious dose, laboratory-acquired infections, containment releases, and disinfection and decontamination methods. Results The available data regarding biosafety knowledge gaps and existing evidence have been collated and presented in Tables 1 and 2. The guidance sources on the appropriate use of biosafety cabinets for specific procedures with M. tuberculosis require clarification. Detecting vulnerabilities in the biorisk assessment for respiratory pathogens is essential to improve and develop laboratory biosafety in local and national systems.
Collapse
Affiliation(s)
- Stuart D. Blacksell
- Mahidol-Oxford Tropical Research Medicine Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Nuffield Department of Medicine Research Building, University of Oxford, Oxford, United Kingdom
| | - Sandhya Dhawan
- Mahidol-Oxford Tropical Research Medicine Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Marina Kusumoto
- Mahidol-Oxford Tropical Research Medicine Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Kim Khanh Le
- Mahidol-Oxford Tropical Research Medicine Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | - Joseph O'Keefe
- Ministry for Primary Industries, Wellington, New Zealand
| | - Joseph Kozlovac
- United States Department of Agriculture, Agricultural Research Service, Beltsville, Maryland, USA
| | | | - Indrawati Sendow
- Research Center for Veterinary Science, National Research and Innovation Agency, Indonesia
| | - Christina M. Scheel
- WHO Collaborating Center for Biosafety and Biosecurity, Office of the Associate Director for Laboratory Science, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Anthony Ahumibe
- Nigeria Centre for Disease Control and Prevention, Abuja, Nigeria
| | - Zibusiso M. Masuku
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | | | - Kazunobu Kojima
- Department of Epidemic and Pandemic Preparedness and Prevention, World Health Organization (WHO), Geneva, Switzerland
| | - David R. Harper
- The Royal Institute of International Affairs, London, United Kingdom
| | - Keith Hamilton
- World Organisation for Animal Health (OIE), Paris, France
| |
Collapse
|
19
|
He R, Zeng Y, Zhao S, Zhang J, He P, Liu J. Use of citric acid-activated chlorine dioxide to control Ulva prolifera. MARINE POLLUTION BULLETIN 2023; 194:115357. [PMID: 37579597 DOI: 10.1016/j.marpolbul.2023.115357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/22/2023] [Accepted: 07/29/2023] [Indexed: 08/16/2023]
Abstract
Since 2007, green tides have occurred almost every year in the Yellow Sea, and a method to prevent them and to control levels of attached Ulva prolifera is urgently needed. In this study, we measured the effects of different concentrations of citric acid-activated chlorine dioxide solution (0, 50, 100, 150, 200, and 250 mg/L of chlorine dioxide) on the morphology (macrostructure and microstructure), chlorophyll a content, chlorophyll b content, carotenoid content, and chlorophyll fluorescence parameters (Fv/Fm, Y (II), NPQ, and ETRmax) of U. prolifera. Micropropagules in the treatment filtrate were cultured to determine whether the solution reduced the number of micropropagules released during the treatment process. The results showed that citric acid-activated chlorine dioxide at the appropriate concentration can be applied to remove U. prolifera from Neopyropia cultivation rafts. Because U. prolifera and its micropropagules died in the 250 mg/L chlorine dioxide group, we recommend that the appropriate concentration of chlorine dioxide for removing green macroalgae is ≥250 mg/L. Our results provide a scientific basis for convenient collection of accurate data for the U. prolifera prevention trial organized by the Ministry of Natural Resources of the People's Republic of China.
Collapse
Affiliation(s)
- Ruyan He
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Yinqing Zeng
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Shuang Zhao
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Jianheng Zhang
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China.
| | - Peimin He
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China.
| | - Jinlin Liu
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China; Ocean Institute, Northwestern Polytechnical University, Taicang 215400, China; North China Sea Environmental Monitoring Center, State Oceanic Administration, Qingdao 266033, China.
| |
Collapse
|
20
|
Mazzio E, Barnes A, Badisa R, Fierros-Romero G, Williams H, Council S, Soliman K. Functional immune boosters; the herb or its dead microbiome? Antigenic TLR4 agonist MAMPs found in 65 medicinal roots and algae's. J Funct Foods 2023; 107:105687. [PMID: 37654434 PMCID: PMC10469438 DOI: 10.1016/j.jff.2023.105687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023] Open
Abstract
Background Humans have been consuming medicinal plants (as herbs/ spices) to combat illness for centuries while ascribing beneficial effects predominantly to the plant/phytochemical constituents, without recognizing the power of obligatory resident microorganism' communities (MOCs) (live/dead bacteria, fungus, yeast, molds etc.) which remain after industrial microbial reduction methods. Very little is known about the taxonomic identity of residual antigenic microbial associated molecular patterns (MAMPs) debris in our botanical over the counter (OTC) products, which if present would be recognized as foreign (non-self) antigenic matter by host pattern recognition receptors (PRRs) provoking a host immune response; this the basis of vaccine adjuvants. As of today, only few research groups have removed the herbal MAMP biomass from herbs, all suggesting that immune activation may not be from the plant but rather its microbial biomass; a hypothesis we corroborate. Purpose The purpose of this work was to conduct a high through put screening (HTPS) of over 2500 natural plants, OTC botanical supplements and phytochemicals to elucidate those with pro-inflammatory; toll like receptor 4 (TLR4) activating properties in macrophages. Study Design The HTPS was conducted on RAW 264.7 cells vs. lipopolysaccharide (LPS) E. coli 0111:B4, testing iNOS / nitric oxide production ( NO 2 - ) as a perimeter endpoint. The data show not a single drug/chemical/ phytochemical and approximately 98 % of botanicals to be immune idle (not effective) with only 65 pro-inflammatory (hits) in a potency range of LPS. Method validation studies eliminated the possibility of false artifact or contamination, and results were cross verified through multiple vendors/ manufacturers/lot numbers by botanical species. Lead botanicals were evaluated for plant concentration of LPS, 1,3:1,6-β-glucan, 1,3:1,4-β-D-glucan and α-glucans; where the former paralleled strength in vitro. LPS was then removed from plants using high-capacity endotoxin poly lysine columns, where bioactivity of LPS null "plant" extracts were lost. The stability of E.Coli 0111:B4 in an acid stomach mimetic model was confirmed. Last, we conducted a reverse culture on aerobic plate counts (APCs) from select hits, with subsequent isolation of gram-negative bacteria (MacConkey agar). Cultures were 1) heat destroyed (retested/ confirming bioactivity) and 2) subject to taxonomical identification by genetic sequencing 18S, ITS1, 5.8 s, ITS2 28S, and 16S. Conclusion The data show significant gram negative MAMP biomass dominance in A) roots (e.g. echinacea, yucca, burdock, stinging nettle, sarsaparilla, hydrangea, poke, madder, calamus, rhaponticum, pleurisy, aconite etc.) and B) oceanic plants / algae's (e.g. bladderwrack, chlorella, spirulina, kelp, and "OTC Seamoss-blends" (irish moss, bladderwrack, burdock root etc), as well as other random herbs (eg. corn silk, cleavers, watercress, cardamom seed, tribulus, duckweed, puffball, hordeum and pollen). The results show a dominance of gram negative microbes (e.g. Klebsilla aerogenes, Pantoae agglomerans, Cronobacter sakazakii), fungus (Glomeracaea, Ascomycota, Irpex lacteus, Aureobasidium pullulans, Fibroporia albicans, Chlorociboria clavula, Aspergillus_sp JUC-2), with black walnut hull, echinacea and burdock root also containing gram positive microbial strains (Fontibacillus, Paenibacillus, Enterococcus gallinarum, Bromate-reducing bacterium B6 and various strains of Clostridium). Conclusion This work brings attention to the existence of a functional immune bioactive herbal microbiome, independent from the plant. There is need to further this avenue of research, which should be carried out with consideration as to both positive or negative consequences arising from daily consumption of botanicals highly laden with bioactive MAMPS.
Collapse
Affiliation(s)
- E. Mazzio
- Florida Agricultural and Mechanical University, College of Pharmacy and Pharmaceutical Sciences, Tallahassee, FL 32307, United States
| | - A. Barnes
- Florida Agricultural and Mechanical University, College of Pharmacy and Pharmaceutical Sciences, Tallahassee, FL 32307, United States
| | - R. Badisa
- Florida Agricultural and Mechanical University, College of Pharmacy and Pharmaceutical Sciences, Tallahassee, FL 32307, United States
| | - G. Fierros-Romero
- Florida Agricultural and Mechanical University, School of Environment, Tallahassee, FL 32307, United States
| | - H. Williams
- Florida Agricultural and Mechanical University, School of Environment, Tallahassee, FL 32307, United States
| | - S. Council
- John Gnabre Science Research Institute, Baltimore, MD 21224, United States
| | - K.F.A. Soliman
- Florida Agricultural and Mechanical University, College of Pharmacy and Pharmaceutical Sciences, Tallahassee, FL 32307, United States
| |
Collapse
|
21
|
Mazzio E, Barnes A, Badisa R, Council S, Soliman KFA. Plants against cancer: the immune-boosting herbal microbiome: not of the plant, but in the plant. Basic concepts, introduction, and future resource for vaccine adjuvant discovery. Front Oncol 2023; 13:1180084. [PMID: 37588095 PMCID: PMC10426289 DOI: 10.3389/fonc.2023.1180084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 05/30/2023] [Indexed: 08/18/2023] Open
Abstract
The presence of microorganism communities (MOCs) comprised of bacteria, fungi, archaea, algae, protozoa, viruses, and the like, are ubiquitous in all living tissue, including plant and animal. MOCs play a significant role in establishing innate and acquired immunity, thereby influencing susceptibility and resistance to disease. This understanding has fostered substantial advancements in several fields such as agriculture, food science/safety, and the development of vaccines/adjuvants, which rely on administering inactivated-attenuated MOC pathogens. Historical evidence dating back to the 1800s, including reports by Drs Busch, Coley, and Fehleisen, suggested that acute febrile infection in response to "specific microbes" could trigger spontaneous tumor remission in humans. This discovery led to the purposeful administration of the same attenuated strains, known as "Coley's toxin," marking the onset of the first microbial (pathogen) associated molecular pattern (MAMPs or PAMPs)-based tumor immunotherapy, used clinically for over four decades. Today, these same MAMPS are consumed orally by billions of consumers around the globe, through "specific" mediums (immune boosting "herbal supplements") as carriers of highly concentrated MOCs accrued in roots, barks, hulls, sea algae, and seeds. The American Herbal Products Association (AHPA) mandates microbial reduction in botanical product processing but does not necessitate the removal of dead MAMP laden microbial debris, which we ingest. Moreover, while existing research has focused on the immune-modulating role of plant phytochemicals, the actual immune-boosting properties might instead reside solely in the plant's MOC MAMP laden biomass. This assertion is logical, considering that antigenic immune-provoking epitopes, not phytochemicals, are known to stimulate immune response. This review explores a neglected area of research regarding the immune-boosting effects of the herbal microbiome - a presence which is indirectly corroborated by various peripheral fields of study and poses a fundamental question: Given that food safety focuses on the elimination of harmful pathogens and crop science acknowledges the existence of plant microbiomes, what precisely are the immune effects of ingesting MAMPs of diverse structural composition and concentration, and where are these distributed in our botanicals? We will discuss the topic of concentrated edible MAMPs as acid and thermally stable motifs found in specific herbs and how these would activate cognate pattern recognition receptors (PPRs) in the upper gut-associated lymphoid tissue (GALT), including Peyer's patches and the lamina propria, to boost antibody titers, CD8+ and CD4+ T cells, NK activity, hematopoiesis, and facilitating M2 to M1 macrophage phenotype transition in a similar manner as vaccines. This new knowledge could pave the way for developing bioreactor-grown/heat-inactivated MOC therapies to boost human immunity against infections and improve tumor surveillance.
Collapse
Affiliation(s)
- Elizabeth Mazzio
- Divison of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A & M University, Tallahassee, FL, United States
| | - Andrew Barnes
- Divison of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A & M University, Tallahassee, FL, United States
| | - Ramesh Badisa
- Divison of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A & M University, Tallahassee, FL, United States
| | - Stevie Council
- John Gnabre Science Research Institute, Baltimore, MD, United States
| | - Karam F. A. Soliman
- Divison of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A & M University, Tallahassee, FL, United States
| |
Collapse
|
22
|
Guruprasad Reddy P, Hu T, Reches M, Domb AJ. Antimicrobial dichloroisocyanurate-salts for controlled release of chlorine. Org Biomol Chem 2023. [PMID: 37335547 DOI: 10.1039/d3ob00755c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Sodium dichloroisocyanurate (Na-DCC), a disinfectant known for rapid decomposition in water, loses its effectiveness with complete release of free available chlorine (FAC) in under an hour. To overcome this, a series of chlorine rich transition metal complexes/tetrabutylammonium (TBA) salts of DCC, including 2Na[Cu(DCC)4], 2Na[Fe(DCC)4], 2Na[Co(DCC)4]·6H2O, 2Na[Ni(DCC)4]·6H2O, and TBA[DCC]·4H2O have been developed for extended chlorine release studies. The DCC-salts are synthesized based on the metathesis reaction process and are characterized using IR, NMR, CHN analyses, TGA,DSC, and Lovi bond colorimeter. The DCC-salts displayed poor water solubility and low decomposition chlorine release profile compared to Na-DCC. The water solubility of DCC-salts was reduced by a factor of 5.37 to 2500 compared to Na-DCC. The decomposition release of FAC from DCC-salts has been studied over time in comparison to Na-DCC in distilled water using a Lovi-bond colorimeter. DCC-salts displayed controlled FAC release profiles that varied from 1-13 days depending on the type of metal/TBA unit in them, whereas the parent Na-DCC displayed complete FAC release in about 0.91 h. For a proof of concept, the controlled release of metal from one of the DCC-metal complex salts, i.e., copper from the Cu-DCC is also investigated with a function of time in distilled water at RT. The 100% release of copper from Cu-DCC was identified over a period of 10 days. In addition, the applicability of DCC-salts as excellent antiviral agents against the bacteriophage T4 and antibacterial agents against Erwinia, Pseudomonas aeruginosa PA014 (Gram-negative), and Staphylococcus epidermidis (Gram-positive) compared to Na-DCC has been demonstrated.
Collapse
Affiliation(s)
- Pulikanti Guruprasad Reddy
- The Alex Grass Center for Drug Design and Synthesis and Center for Cannabis Research and the Institute of Drug Research, School of Pharmacy-Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel.
| | - Tan Hu
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Meital Reches
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Abraham J Domb
- The Alex Grass Center for Drug Design and Synthesis and Center for Cannabis Research and the Institute of Drug Research, School of Pharmacy-Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel.
| |
Collapse
|
23
|
Liu H, Zhang J, Liu J, Cao G, Xu F, Li X. Bactericidal Mechanisms of Chlorine Dioxide against Beta-Hemolytic Streptococcus CMCC 32210. Curr Issues Mol Biol 2023; 45:5132-5144. [PMID: 37367075 PMCID: PMC10297388 DOI: 10.3390/cimb45060326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/28/2023] Open
Abstract
Chlorine dioxide is a globally recognized green and efficient disinfectant. This study aims to investigate the bactericidal mechanism of chlorine dioxide using beta-hemolytic Streptococcus (BHS) CMCC 32210 as a representative strain. BHS was exposed to chlorine dioxide, the minimum bactericidal concentration (MBC) values of chlorine dioxide against BHS were determined by the checkerboard method in preparation for subsequent tests. Cell morphology was observed using electron microscopy. Protein content leakage, adenosine triphosphatase (ATPase) activity, and lipid peroxidation were determined by kits, and DNA damage was determined using agar gel electrophoresis. The concentration of chlorine dioxide during disinfection showed a linear relationship with the concentration of BHS. Scanning electron microscopy (SEM) results showed that chlorine dioxide caused significant damage to the cell walls of BHS at a concentration of 50 mg/L, but had no significant effect on Streptococcus exposed to different exposure times. Furthermore, the extracellular protein concentration increased with increasing chlorine dioxide concentration, while the total protein content remained unchanged. The activities of Na+/K+-ATPase and Ca2+/Mg2+-ATPase decreased with increasing chlorine dioxide concentration. Chlorine dioxide treatment led to significant lipid peroxidation and DNA degradation in BHS. Leakage of intracellular components indicated that chlorine dioxide damaged the cell membrane of BHS. Chlorine dioxide exposure resulted in oxidative damage to lipids and proteins, which negatively impacted the cell wall and membrane of Streptococcus. This caused increased permeability and inactivation of key enzymes (Na+/K+-ATPase and Ca2+/Mg2+-ATPase) involved in respiratory metabolism, ultimately leading to DNA degradation and bacterial death due to either content leakage or metabolic failure.
Collapse
Affiliation(s)
- Huan Liu
- National Feed Drug Reference Laboratories, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jingju Zhang
- National Feed Drug Reference Laboratories, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jing Liu
- National Feed Drug Reference Laboratories, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guangjie Cao
- National Feed Drug Reference Laboratories, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fei Xu
- National Feed Drug Reference Laboratories, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Xiubo Li
- National Feed Drug Reference Laboratories, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| |
Collapse
|
24
|
Ali F, Lestari DL, Putri MD, Azmi KN. The effectiveness of chlorine dioxide gas in portable personal disinfectants to inhibit bacterial growth. JOURNAL OF WATER AND HEALTH 2023; 21:537-546. [PMID: 37254903 PMCID: wh_2023_191 DOI: 10.2166/wh.2023.191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Disinfectants, especially air disinfectants, are necessary to prevent the potential spread of pathogens (bacteria and viruses) in the pandemic era and minimize the spread of pathogens. Some of the commercial disinfectant products that are often used generally contain chlorine dioxide (ClO2) gas. This study tested the effectiveness of two different commercial disinfectants, a liquid stick disinfectant and a powder disinfection card, to carry out the disinfection of pathogenic bacteria in the environment. These two disinfectants were used as a medium for releasing chlorine dioxide gas which has a much stronger bactericidal effect. In the form of liquid stick, ClO2 is more effective in the disinfection process rather than in the form of powder. The effectiveness of the liquid disinfectant in inhibiting the growth of pathogenic bacteria is influenced by the temperature and the area of the open space covered. Considering that the release from both disinfectants used is very small (0.002 ppmv/h), it takes a small area to ensure that the disinfection process runs effectively.
Collapse
Affiliation(s)
- Firdaus Ali
- Environmental Engineering Study Program, Department of Civil Engineering, Faculty of Engineering, Universitas Indonesia, Kampus UI Depok 16424, Depok City, Indonesia E-mail:
| | - Dwi Lintang Lestari
- Indonesia Water Institute, Rukan Tanjung Barat Indah No. F02, South Jakarta 12530, Indonesia
| | - Marsya Dyasthi Putri
- Indonesia Water Institute, Rukan Tanjung Barat Indah No. F02, South Jakarta 12530, Indonesia
| | - Khalidah Nurul Azmi
- Indonesia Water Institute, Rukan Tanjung Barat Indah No. F02, South Jakarta 12530, Indonesia
| |
Collapse
|
25
|
Qi S, Zhang J, Luan X, Li J, He Z, Long J, Xu M, Li P, Chen Z, Wei J, Yan J. Chlorine Dioxide Reprograms Rhizosphere Microbial Communities to Enrich Interactions with Tobacco ( Nicotiana tabacum). Pol J Microbiol 2023; 72:47-60. [PMID: 36929894 DOI: 10.33073/pjm-2023-009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/10/2023] [Indexed: 03/18/2023] Open
Abstract
For decades chlorine dioxide has been used in water disinfection with excellent results. As the scope of application expands, chlorine dioxide has the potential for soil disinfection. We used amplicon sequencing and gas chromatography-mass spectrometry to compare the changes of four mixed rhizosphere microbial community samples and 12 tobacco leaf volatile samples four months after the flood irrigation with chlorine dioxide in different concentrations (0, 2, 4, 8 mg/l). Phenotypic data of 60 tobacco plants were also collected. The effects of chlorine dioxide on rhizosphere microorganisms were positively correlated with dose gradients. Bacteria responded more strongly in both community structure and metabolic pathways than fungi. Five new bacterial phyla (Firmicutes, Bacteroidota, Myxococcota, Patescibacteria, Verrucomicroboata) appeared in chlorine dioxide treatment groups, while the fungal community only appeared as one new fungal phylum (Basidomycota). Alterations in 271 predicted metabolic bacterial pathways were found. However, in the fungal community were only 10 alternations. The correlations between leaf volatile compounds and rhizosphere microorganisms under the influence of chlorine dioxide treatment could be observed based on network results. However, natural connectivity had already been declining rapidly when less than 20% of the network's nodes were removed. Therefore, the microbe-metabolite network is not stable. It might be why chlorine dioxide treatments did not significantly affect tobacco quality (p = 0.754) and phenotype (p = 0.867). As a comprehensive investigation of chlorine dioxide in agriculture, this study proves the effectiveness and safety of chlorine dioxide soil disinfection and widens the application range of chlorine dioxide.
Collapse
Affiliation(s)
- Shi Qi
- 1Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key Laboratory of Eco-Circular Agriculture; Guangdong Engineering Research Centre for Modern Eco-Agriculture; College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Jili Zhang
- 2China Tobacco Guangxi Industrial Company Limited, Nanning, China
| | - Xinbo Luan
- 1Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key Laboratory of Eco-Circular Agriculture; Guangdong Engineering Research Centre for Modern Eco-Agriculture; College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Junlin Li
- 3Guangxi Tobacco Baise Industrial Company Limited, Baise, China
| | - Zikang He
- 1Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key Laboratory of Eco-Circular Agriculture; Guangdong Engineering Research Centre for Modern Eco-Agriculture; College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Junru Long
- 1Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key Laboratory of Eco-Circular Agriculture; Guangdong Engineering Research Centre for Modern Eco-Agriculture; College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Mengyun Xu
- 1Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key Laboratory of Eco-Circular Agriculture; Guangdong Engineering Research Centre for Modern Eco-Agriculture; College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Ping Li
- 1Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key Laboratory of Eco-Circular Agriculture; Guangdong Engineering Research Centre for Modern Eco-Agriculture; College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Zepeng Chen
- 4China Tobacco Guangdong Industrial Company Limited, Guangzhou, China
| | - Jianyu Wei
- 2China Tobacco Guangxi Industrial Company Limited, Nanning, China
| | - Jian Yan
- 1Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key Laboratory of Eco-Circular Agriculture; Guangdong Engineering Research Centre for Modern Eco-Agriculture; College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| |
Collapse
|