1
|
Dzięgelewska-Sokołowska Ż, Majewska A, Prostek A, Gajewska M. Adipocyte-Derived Paracrine Factors Regulate the In Vitro Development of Bovine Mammary Epithelial Cells. Int J Mol Sci 2023; 24:13348. [PMID: 37686154 PMCID: PMC10487751 DOI: 10.3390/ijms241713348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/24/2023] [Accepted: 08/26/2023] [Indexed: 09/10/2023] Open
Abstract
The mammary gland is composed of epithelial tissue forming ducts and lobules, and the stroma, composed of adipocytes, connective tissue, and other cell types. The stromal microenvironment regulates mammary gland development by paracrine and cell-cell interactions. In the present study, primary cultures of bovine mammary epithelial cells (bMEC) and bovine adipose-derived stem cells (bASC) subjected to adipogenic differentiation were used to investigate the influence of paracrine factors secreted by preadipocytes and adipocytes on bMEC development. Four types of conditioned media (CM) were collected from undifferentiated preadipocytes (preA) and adipocytes on days: 8, 12, 14 of differentiation. Next, bMEC were cultured for 24 h in CM and cell viability, apoptosis, migratory activity, ability to form spheroids on Matrigel, and secretory activity (alpha S1-casein concentration) were evaluated. CM derived from fully differentiated adipocytes (12 d and 14 d) significantly decreased the number of apoptotic cells in bMEC population and increased the size of spheroids formed by bMEC on Matrigel. CM collected from preadipocytes significantly enhanced bMEC's migration, and stimulated bMEC to produce alpha S1-casein, but only in the presence of prolactin. These results confirm that preadipocytes and adipocytes are important components of the stroma, providing paracrine factors that actively regulate the development of bovine mammary epithelium.
Collapse
Affiliation(s)
| | | | | | - Małgorzata Gajewska
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159b, 02-776 Warsaw, Poland; (Ż.D.-S.); (A.M.); (A.P.)
| |
Collapse
|
2
|
Prohaska A, Jirikowski GF, Oehring H, El Emam Dief A, Sivukhina EV. Light and electron microscopic studies on the influence of stress on prolactin-immunoreactivity in rat anterior pituitary lobe. Anat Histol Embryol 2022; 51:786-792. [PMID: 36030501 DOI: 10.1111/ahe.12857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 08/18/2022] [Indexed: 12/24/2022]
Abstract
An increasing number of evidence suggests an important role of prolactin in the modulation of stress response. However, the mechanisms of its action on the HPA axis are not yet understood. Glucocorticoids, liberated from adrenal cortex due to hormonal signals from pituitary corticotrophs are known to play a key role in systemic stress response. Previously we found evidence that corticosteroid-binding globulin (CBG) is involved in rapid, membrane-mediated actions of adrenal steroids. Here we studied qualitatively immunostainings for prolactin and CBG in pituitaries of male rats that had been subjected to osmotic challenge. We also examined late pregnant, parturient and early lactating rats, assuming that parturition represents a strong physiological stress. We employed double immunofluorescencent staining of semithin sections and immunoelectron microscopy. In stressed males we found increased prolactin immunofluorescence associated with membranes while in controls this staining was predominantly cytoplasmatic. CBG immunofluorescence was found in almost all prolactin cells of stressed males while such double staining was only occasionally observed in controls. Similar observations were made in females: While parturient rats showed intense membrane associated double staining for both antigens, late pregnant and early lactating animals showed patterns similar to that of male controls. Immunoelectron microscopy revealed increased exocytosis of prolactin containing vesicles in lactating rats. CBG was localized on cell membranes and additionally within prolactin vesicles. Our observations suggest prolactin liberation from pituitary lactotrophs along with CBG upon systemic stress response. Membrane effects of glucocorticoids mediated by CBG may be linked to stimulus secretion of prolactin.
Collapse
Affiliation(s)
- Antje Prohaska
- Institute of Anatomy, University Hospital Jena, Jena, Germany
| | | | - Hartmut Oehring
- Institute of Anatomy, University Hospital Jena, Jena, Germany
| | - Abeer El Emam Dief
- Department of Medical Physiology, University of Alexandria, Alexandria, Egypt
| | | |
Collapse
|
3
|
Tian W, Qi H, Wang Z, Qiao S, Wang P, Dong J, Wang H. Hormone supply to the pituitary gland: A comprehensive investigation of female‑related tumors (Review). Int J Mol Med 2022; 50:122. [PMID: 35946461 PMCID: PMC9387558 DOI: 10.3892/ijmm.2022.5178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/06/2022] [Indexed: 11/16/2022] Open
Abstract
The hypothalamus acts on the pituitary gland after signal integration, thus regulating various physiological functions of the body. The pituitary gland includes the adenohypophysis and neurohypophysis, which differ in structure and function. The hypothalamus-hypophysis axis controls the secretion of adenohypophyseal hormones through the pituitary portal vein system. Thyroid-stimulating hormone, adrenocorticotropic hormone, gonadotropin, growth hormone (GH), and prolactin (PRL) are secreted by the adenohypophysis and regulate the functions of the body in physiological and pathological conditions. The aim of this review was to summarize the functions of female-associated hormones (GH, PRL, luteinizing hormone, and follicle-stimulating hormone) in tumors. Their pathophysiology was described and the mechanisms underlying female hormone-related diseases were investigated.
Collapse
Affiliation(s)
- Wenxiu Tian
- School of Basic Medicine, Weifang Medical University, Weifang, Shandong 261000, P.R. China
| | - Huimin Qi
- School of Basic Medicine, Weifang Medical University, Weifang, Shandong 261000, P.R. China
| | - Zhimei Wang
- Jiangsu Province Hi‑Tech Key Laboratory for Biomedical Research, and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 210000, P.R. China
| | - Sen Qiao
- Department of Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, D‑66421 Homburg‑Saar, Germany
| | - Ping Wang
- School of Basic Medicine, Weifang Medical University, Weifang, Shandong 261000, P.R. China
| | - Junhong Dong
- School of Basic Medicine, Weifang Medical University, Weifang, Shandong 261000, P.R. China
| | - Hongmei Wang
- School of Medicine, Southeast University, Nanjing, Jiangsu 210000, P.R. China
| |
Collapse
|
4
|
Functional regulations between genetic alteration-driven genes and drug target genes acting as prognostic biomarkers in breast cancer. Sci Rep 2022; 12:10641. [PMID: 35739271 PMCID: PMC9226112 DOI: 10.1038/s41598-022-13835-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 05/30/2022] [Indexed: 12/19/2022] Open
Abstract
Differences in genetic molecular features including mutation, copy number alterations and DNA methylation, can explain interindividual variability in response to anti-cancer drugs in cancer patients. However, identifying genetic alteration-driven genes and characterizing their functional mechanisms in different cancer types are still major challenges for cancer studies. Here, we systematically identified functional regulations between genetic alteration-driven genes and drug target genes and their potential prognostic roles in breast cancer. We identified two mutation and copy number-driven gene pairs (PARP1-ACSL1 and PARP1-SRD5A3), three DNA methylation-driven gene pairs (PRLR-CDKN1C, PRLR-PODXL2 and PRLR-SRD5A3), six gene pairs between mutation-driven genes and drug target genes (SLC19A1-SLC47A2, SLC19A1-SRD5A3, AKR1C3-SLC19A1, ABCB1-SRD5A3, NR3C2-SRD5A3 and AKR1C3-SRD5A3), and four copy number-driven gene pairs (ADIPOR2-SRD5A3, CASP12-SRD5A3, SLC39A11-SRD5A3 and GALNT2-SRD5A3) that all served as prognostic biomarkers of breast cancer. In particular, RARP1 was found to be upregulated by simultaneous copy number amplification and gene mutation. Copy number deletion and downregulated expression of ACSL1 and upregulation of SRD5A3 both were observed in breast cancers. Moreover, copy number deletion of ACSL1 was associated with increased resistance to PARP inhibitors. PARP1-ACSL1 pair significantly correlated with poor overall survival in breast cancer owing to the suppression of the MAPK, mTOR and NF-kB signaling pathways, which induces apoptosis, autophagy and prevents inflammatory processes. Loss of SRD5A3 expression was also associated with increased sensitivity to PARP inhibitors. The PARP1-SRD5A3 pair significantly correlated with poor overall survival in breast cancer through regulating androgen receptors to induce cell proliferation. These results demonstrate that genetic alteration-driven gene pairs might serve as potential biomarkers for the prognosis of breast cancer and facilitate the identification of combination therapeutic targets for breast cancers.
Collapse
|
5
|
Sosa F, Santos JEP, Rae DO, Larson CC, Macchietto M, Abrahante JE, Amaral TF, Denicol AC, Sonstegard TS, Hansen PJ. Effects of the SLICK1 mutation in PRLR on regulation of core body temperature and global gene expression in liver in cattle. Animal 2022; 16:100523. [PMID: 35468510 DOI: 10.1016/j.animal.2022.100523] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 11/01/2022] Open
Abstract
The SLICK1 mutation in bovine PRLR (c.1382del; rs517047387) is a deletion mutation resulting in a protein with a truncated intracellular domain. Cattle carrying at least one allele have a phenotype characterized by a short hair coat (slick phenotype) and increased resistance to heat stress. Given the pleiotropic nature of prolactin, the mutation may affect other physiological characteristics. The liver is one organ that could potentially be affected because of the expression of PRLR. The mutation is a dominant allele, and heterozygous animals have a similar hair coat to that of animals homozygous for the mutation. Present objectives were to determine whether inheritance of the SLICK1 mutation affects liver gene expression and if animals homozygous for the SLICK1 allele differ from heterozygotes in liver gene expression and regulation of body temperature during heat stress. In one experiment, rectal and ruminal temperatures were less for Holstein heifers that were heterozygous for the SLICK1 allele compared with wildtype heifers. There were 71 differentially expressed genes in liver, with 13 upregulated and 58 downregulated in SLICK1 heterozygotes. Among the ontologies characteristic of differentially expressed genes were those related to immune function and fatty acid and amino acid metabolism. In a prospective cohort study conducted with adult Senepol cattle, body temperature and hepatic gene expression were compared between animals heterozygous or homozygous for the SLICK1 mutation. There were no differences in ruminal temperatures between genotypes, rectal temperature was higher in animals homozygous for the SLICK1 mutation, and there was only one gene in liver that was differentially expressed. It was concluded that inheritance of the SLICK1 allele can exert functional changes beyond those related to hair growth although changes in liver gene expression were not extensive. Results are also consistent with the SLICK1 allele being dominant because there were few differences in phenotype between animals inheriting one or two copies of the allele.
Collapse
Affiliation(s)
- Froylan Sosa
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, FL 32611-0910, USA
| | - José E P Santos
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, FL 32611-0910, USA
| | - D Owen Rae
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville 32610-0136, USA
| | - Colleen C Larson
- Okeechobee County Cooperative Extension Service, University of Florida/Institute of Food and Agricultural Sciences, Okeechobee, FL 34972, USA
| | - Marissa Macchietto
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN, USA
| | - Juan E Abrahante
- Informatics Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Thiago F Amaral
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, FL 32611-0910, USA
| | - Anna C Denicol
- Department of Animal Science, University of California Davis, Davis, CA 95616, USA
| | | | - Peter J Hansen
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, FL 32611-0910, USA.
| |
Collapse
|
6
|
Trott JF, Schennink A, Horigan KC, Lemay DG, Cohen JR, Famula TR, Dragon JA, Hovey RC. Unique Transcriptomic Changes Underlie Hormonal Interactions During Mammary Histomorphogenesis in Female Pigs. Endocrinology 2022; 163:bqab256. [PMID: 34918063 PMCID: PMC10409904 DOI: 10.1210/endocr/bqab256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Indexed: 11/19/2022]
Abstract
Successful lactation and the risk for developing breast cancer depend on growth and differentiation of the mammary gland (MG) epithelium that is regulated by ovarian steroids (17β-estradiol [E] and progesterone [P]) and pituitary-derived prolactin (PRL). Given that the MG of pigs share histomorphogenic features present in the normal human breast, we sought to define the transcriptional responses within the MG of pigs following exposure to all combinations of these hormones. Hormone-ablated female pigs were administered combinations of E, medroxyprogesterone 17-acetate (source of P), and either haloperidol (to induce PRL) or 2-bromo-α-ergocryptine. We subsequently monitored phenotypic changes in the MG including mitosis, receptors for E and P (ESR1 and PGR), level of phosphorylated STAT5 (pSTAT5), and the frequency of terminal ductal lobular unit (TDLU) subtypes; these changes were then associated with all transcriptomic changes. Estrogen altered the expression of approximately 20% of all genes that were mostly associated with mitosis, whereas PRL stimulated elements of fatty acid metabolism and an inflammatory response. Several outcomes, including increased pSTAT5, highlighted the ability of E to enhance PRL action. Regression of transcriptomic changes against several MG phenotypes revealed 1669 genes correlated with proliferation, among which 29 were E inducible. Additional gene expression signatures were associated with TDLU formation and the frequency of ESR1 or PGR. These data provide a link between the hormone-regulated genome and phenome of the MG in a species having a complex histoarchitecture like that in the human breast, and highlight an underexplored synergy between the actions of E and PRL during MG development.
Collapse
Affiliation(s)
- Josephine F Trott
- Department of Animal Science, University of California, Davis, Davis, California 95616, USA
| | - Anke Schennink
- Department of Animal Science, University of California, Davis, Davis, California 95616, USA
| | - Katherine C Horigan
- Department of Animal Science, University of Vermont, Burlington, Vermont 05405, USA
| | - Danielle G Lemay
- US Department of Agriculture ARS Western Human Nutrition Research Center, Davis, California 95616, USA
| | - Julia R Cohen
- Department of Animal Science, University of California, Davis, Davis, California 95616, USA
| | - Thomas R Famula
- Department of Animal Science, University of California, Davis, Davis, California 95616, USA
| | - Julie A Dragon
- Vermont Integrative Genomics Resource, University of Vermont, Burlington, Vermont 05405, USA
| | - Russell C Hovey
- Department of Animal Science, University of California, Davis, Davis, California 95616, USA
| |
Collapse
|
7
|
Paré P, Reales G, Paixão-Côrtes VR, Vargas-Pinilla P, Viscardi LH, Fam B, Pissinatti A, Santos FR, Bortolini MC. Molecular evolutionary insights from PRLR in mammals. Gen Comp Endocrinol 2021; 309:113791. [PMID: 33872604 DOI: 10.1016/j.ygcen.2021.113791] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/02/2021] [Accepted: 04/13/2021] [Indexed: 12/12/2022]
Abstract
Prolactin (PRL) is a pleiotropic neurohormone secreted by the mammalian pituitary gland into the blood, thus reaching many tissues and organs beyond the brain. PRL binds to its receptor, PRLR, eliciting a molecular signaling cascade. This system modulates essential mammalian behaviors and promotes notable modifications in the reproductive female tissues and organs. Here, we explore how the intracellular domain of PRLR (PRLR-ICD) modulates the expression of the PRLR gene. Despite differences in the reproductive strategies between eutherian and metatherian mammals, there is no clear distinction between PRLR-ICD functional motifs. However, we found selection signatures that showed differences between groups, with many conserved functional elements strongly maintained through purifying selection across the class Mammalia. We observed a few residues under relaxed selection, the levels of which were more pronounced in Eutheria and particularly striking in primates (Simiiformes), which could represent a pre-adaptive genetic element protected from purifying selection. Alternative, new motifs, such as YLDP (318-321) and others with residues Y283 and Y290, may already be functional. These motifs would have been co-opted in primates as part of a complex genetic repertoire related to some derived adaptive phenotypes, but these changes would have no impact on the primordial functions that characterize the mammals as a whole and that are related to the PRL-PRLR system.
Collapse
Affiliation(s)
- Pamela Paré
- Laboratório de Evolução Humana e Molecular, Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Guillermo Reales
- Laboratório de Evolução Humana e Molecular, Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK; Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Vanessa R Paixão-Côrtes
- Laboratório de Biologia Evolutiva e Genômica (LABEG), Programa de Pós-Graduação em Biodiversidade e Evolução, Instituto de Biologia, Universidade Federal da Bahia (UFBA), Salvador, BA, Brazil
| | - Pedro Vargas-Pinilla
- Laboratório de Evolução Humana e Molecular, Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Faculdade de Medicina de Ribeirão Preto, Departamento de Bioquímica e Imunologia, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Lucas Henriques Viscardi
- Laboratório de Evolução Humana e Molecular, Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Bibiana Fam
- Laboratório de Evolução Humana e Molecular, Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | | | - Fabrício R Santos
- Laboratório de Biodiversidade e Evolução Molecular, Departamento de Genética, Ecologia e Evolução da Universidade Federal de Minas Gerais (UFMG), Belo-Horizonte, MG, Brazil.
| | - Maria Cátira Bortolini
- Laboratório de Evolução Humana e Molecular, Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| |
Collapse
|
8
|
Aguayo-Cerón KA, Calzada-Mendoza CC, Méndez-Bolaina E, Romero-Nava R, Ocharan-Hernández ME. The regulatory effect of bromocriptine on cardiac hypertrophy by prolactin and D2 receptor modulation. Clin Exp Hypertens 2020; 42:675-679. [PMID: 32478610 DOI: 10.1080/10641963.2020.1772814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
BACKGROUND Bromocriptine, a dopamine agonist, used for the treatment of hyperprolactinemia, type 2 diabetes, ovarian hyper-stimulation syndrome, has also effects on the cardiac remodeling process, but the mechanism of action is unknown. The aim of this work was to determinate the effect during hypertrophic process through molecular mechanisms that include prolactin receptor (Prlr) and receptor of dopamine 2 (D2 r) expression. METHODS We used a model of cardiac hypertrophy induced by an aortocaval fistula (ACF) surgery in rats. Protein concentrations of D2 r and Prlr were determined by western blotting. The treatment consisted in water (control), captopril (50 mg/kg/day), bromocriptine (3 mg/kg/day), and ACF group (n = 6 per group). RESULTS Our results showed that bromocriptine treatment decreases the hypertrophy index. Treatment with bromocriptine increases the protein expression of Prlr and D2 r in the cardiac tissue of rats with cardiac hypertrophy. CONCLUSIONS We concluded that bromocriptine has a protective effect on cardiac hypertrophy, and due to this effect, it may modulate the expression of Prlr and D2 r, which are involved in the development of cardiac hypertrophy.
Collapse
Affiliation(s)
- Karla Aidee Aguayo-Cerón
- Sección de Estudios de Posgrado e Investigación, Escuela Superior De Medicina, Instituto Politécnico Nacional-Escuela Superior de Medicina , México City, México
| | - Claudia Camelia Calzada-Mendoza
- Sección de Estudios de Posgrado e Investigación, Escuela Superior De Medicina, Instituto Politécnico Nacional-Escuela Superior de Medicina , México City, México
| | | | - Rodrigo Romero-Nava
- Sección de Estudios de Posgrado e Investigación, Escuela Superior De Medicina, Instituto Politécnico Nacional-Escuela Superior de Medicina , México City, México.,Departamento de Farmacología, Hospital Infantil de México Federico Gómez (HIMFG) , México City, México
| | - María Esther Ocharan-Hernández
- Sección de Estudios de Posgrado e Investigación, Escuela Superior De Medicina, Instituto Politécnico Nacional-Escuela Superior de Medicina , México City, México
| |
Collapse
|
9
|
Corso MC, Cortasa SA, Schmidt AR, Proietto S, Inserra PIF, Fernández MO, Di Giorgio N, Lux-Lantos V, Vitullo AD, Dorfman VB, Halperin J. Mammary gland-specific regulation of GNRH and GNRH-receptor gene expression is likely part of a local autoregulatory system in female vizcachas (Rodentia: Chinchillidae). Gen Comp Endocrinol 2020; 296:113518. [PMID: 32474048 DOI: 10.1016/j.ygcen.2020.113518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/06/2020] [Accepted: 05/22/2020] [Indexed: 10/24/2022]
Abstract
In addition to key mammotrophic hormones such as the pituitary prolactin (PRL) and the ovarian steroids progesterone and estradiol, there are local factors that modulate the tissue dynamics of the mammary glands during pregnancy and lactation. By immunohistochemistry and RT-PCR, we found local transcription and translation of gonadotropin-releasing hormone (GNRH), GNRH receptor (GNRHR), PRL and PRL receptor (PRLR) in mammary glands of adult vizcachas during pregnancy and lactation. Both GNRH and GNRHR showed a lag between protein expression and gene transcription throughout the gestational period: while the highest transcription levels of these genes were recorded at early-pregnancy, the epithelial immunoexpressions of both showed their maximum during lactation. RIA results corroborated the presence of GNRH in mammary glands at all the analyzed stages and confirmed the maximum amount of this peptide in the lactating group. Significant amounts of GNRH were detected in milk samples as well. Conversely, PRL and PRLR shared similar protein and gene expression profiles, all exhibiting maximum values during lactation. GNRH peptide content in mammary glands of females with sulpiride-induced hyperprolactinemia (HP) was significantly lower than that of control females (CT). Although PRL mRNA levels remained unchanged, there was a marked increase in theα-lactalbumin (LALBA) transcription in mammary glands of HP- vs CT-females. These results suggest that after targeting mammary glands, PRL stimulates the expression of milk protein genes, but also, tempers the local expression of GNRH. Mammary gland-explantssupplemented with a GNRH analogue (GN-explants) had no differences in terms of PRLR orLALBA transcription levels compared to CT-explants, so the mammary PRLR signaling would not appear to be modulated by GNRH. Yet, mRNA expression levels of both GNRH and the GNRHR-downstream factor, EGR1, were significantly higher in GN-explants compared to that of CT which would point to a GNRH-positive feedback mechanism. In summary, the local coupled expression of GNRH, GNRHR and EGR1 in the mammary gland throughout pregnancy of vizcachas, the PRL-dependent mammary GNRH secretion as well as the GNRH positive feedback on its own transcription suggest an autocrine-paracrine regulatory mechanism and propose an active role for GNRH in mammary gland tissue remodeling.
Collapse
Affiliation(s)
- María Clara Corso
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina(2); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Santiago Andrés Cortasa
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina(2); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Alejandro Raúl Schmidt
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina(2); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Sofía Proietto
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina(2); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Pablo Ignacio Felipe Inserra
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina(2); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Marina Olga Fernández
- Laboratorio de Neuroendocrinología, Instituto de Biología y Medicina Experimental (IByME)-CONICET, Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Noelia Di Giorgio
- Laboratorio de Neuroendocrinología, Instituto de Biología y Medicina Experimental (IByME)-CONICET, Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Victoria Lux-Lantos
- Laboratorio de Neuroendocrinología, Instituto de Biología y Medicina Experimental (IByME)-CONICET, Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Alfredo Daniel Vitullo
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina(2); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Verónica Berta Dorfman
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina(2); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Julia Halperin
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina(2); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| |
Collapse
|
10
|
Macotela Y, Triebel J, Clapp C. Time for a New Perspective on Prolactin in Metabolism. Trends Endocrinol Metab 2020; 31:276-286. [PMID: 32044206 DOI: 10.1016/j.tem.2020.01.004] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/09/2019] [Accepted: 01/09/2020] [Indexed: 12/13/2022]
Abstract
The pituitary hormone prolactin (PRL) regulates a variety of functions beyond reproduction. The association between physiological (pregnancy) and pathological (prolactinoma) hyperprolactinemia and metabolic alterations led to the concept of this hormone being diabetogenic. However, large cohort clinical studies have recently shown that low circulating PRL levels are associated with metabolic disease and represent a risk factor for type 2 diabetes (T2D), whereas high PRL levels are beneficial. Moreover, PRL acts on the pancreas, liver, adipose tissue, and hypothalamus to maintain and promote metabolic homeostasis. By integrating basic and clinical evidence, we hypothesize that upregulation of PRL levels is a mechanism to maintain metabolic homeostasis and, thus, propose that the range of PRL levels considered physiological should be expanded to higher values.
Collapse
Affiliation(s)
- Yazmín Macotela
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, 76230 Querétaro, México.
| | - Jakob Triebel
- Institute for Clinical Chemistry, Laboratory Medicine, and Transfusion Medicine, Nuremberg General Hospital, Paracelsus Medical University, 90419 Nuremberg, Germany
| | - Carmen Clapp
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, 76230 Querétaro, México
| |
Collapse
|
11
|
Phillipps HR, Yip SH, Grattan DR. Patterns of prolactin secretion. Mol Cell Endocrinol 2020; 502:110679. [PMID: 31843563 DOI: 10.1016/j.mce.2019.110679] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/06/2019] [Accepted: 12/06/2019] [Indexed: 12/11/2022]
Abstract
Prolactin is pleotropic in nature affecting multiple tissues throughout the body. As a consequence of the broad range of functions, regulation of anterior pituitary prolactin secretion is complex and atypical as compared to other pituitary hormones. Many studies have provided insight into the complex hypothalamic-pituitary networks controlling prolactin secretion patterns in different species using a range of techniques. Here, we review prolactin secretion in both males and females; and consider the different patterns of prolactin secretion across the reproductive cycle in representative female mammals with short versus long luteal phases and in seasonal breeders. Additionally, we highlight changes in the pattern of secretion during pregnancy and lactation, and discuss the wide range of adaptive functions that prolactin may have in these important physiological states.
Collapse
Affiliation(s)
- Hollian R Phillipps
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, 9016, New Zealand
| | - Siew H Yip
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, 9016, New Zealand
| | - David R Grattan
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, 9016, New Zealand.
| |
Collapse
|
12
|
Wu Q, Dan YL, Zhao CN, Mao YM, Liu LN, Li XM, Wang DG, Pan HF. Circulating levels of prolactin are elevated in patients with rheumatoid arthritis: a meta-analysis. Postgrad Med 2018; 131:156-162. [PMID: 30571155 DOI: 10.1080/00325481.2019.1559430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Prolactin (PRL), an inflammatory hormone with cytokine properties, has long been proposed to play a crucial role in the pathogenesis of autoimmune disorders, including rheumatoid arthritis (RA). However, the circulating levels of PRL in RA were discordant among published studies. METHODS PubMed, Embase, and The Cochrane Library database were systematically searched from inception up to 30 June 2018. The available studies were obtained from the initial search in accordance with the rigorous inclusion and exclusion criteria. Relevant data from the included literatures were extracted. Methodological quality was evaluated in order to refine the final search results. All statistical analyses were conducted using software STATA version 12.0. RESULTS Of 698 articles were yielded for eligibility, a finally analysis involving 628 RA cases and 430 controls from 14 published studies were included. When compared to healthy controls, there was a significantly higher level of circulating PRL in patients with RA with a pooled SMD of 1.08 (95% CI = 0.41 to 1.74, P< 0.001), particularly in Asians, age ≥50, enzyme-linked immunosorbent assay (ELISA) group and subjects with erythrocyte sedimentation rate (ESR) ≥25 mm/h. CONCLUSIONS Our meta-analysis demonstrates a significantly higher level of circulating PRL in RA patients when compared to healthy controls, and it was associated with region, age, measurement type and ESR.
Collapse
Affiliation(s)
- Qian Wu
- a Department of Epidemiology and Biostatistics, School of Public Health , Anhui Medical University , Hefei , Anhui , China.,b Department of Causes and Interventions of Chronic Diseases , Anhui Province Key Laboratory of Major Autoimmune Diseases , Hefei , Anhui , China
| | - Yi-Lin Dan
- a Department of Epidemiology and Biostatistics, School of Public Health , Anhui Medical University , Hefei , Anhui , China.,b Department of Causes and Interventions of Chronic Diseases , Anhui Province Key Laboratory of Major Autoimmune Diseases , Hefei , Anhui , China
| | - Chan-Na Zhao
- a Department of Epidemiology and Biostatistics, School of Public Health , Anhui Medical University , Hefei , Anhui , China.,b Department of Causes and Interventions of Chronic Diseases , Anhui Province Key Laboratory of Major Autoimmune Diseases , Hefei , Anhui , China
| | - Yan-Mei Mao
- a Department of Epidemiology and Biostatistics, School of Public Health , Anhui Medical University , Hefei , Anhui , China.,b Department of Causes and Interventions of Chronic Diseases , Anhui Province Key Laboratory of Major Autoimmune Diseases , Hefei , Anhui , China
| | - Li-Na Liu
- a Department of Epidemiology and Biostatistics, School of Public Health , Anhui Medical University , Hefei , Anhui , China.,b Department of Causes and Interventions of Chronic Diseases , Anhui Province Key Laboratory of Major Autoimmune Diseases , Hefei , Anhui , China
| | - Xiao-Mei Li
- c Department of Rheumatology and Immunology , Anhui Provincial Hospital , Hefei , Anhui , China
| | - De-Guang Wang
- d Department of Nephrology , The Second Affiliated Hospital of Anhui Medical University , Hefei , Anhui , China
| | - Hai-Feng Pan
- a Department of Epidemiology and Biostatistics, School of Public Health , Anhui Medical University , Hefei , Anhui , China.,b Department of Causes and Interventions of Chronic Diseases , Anhui Province Key Laboratory of Major Autoimmune Diseases , Hefei , Anhui , China
| |
Collapse
|
13
|
Qian S, Yang Y, Li N, Cheng T, Wang X, Liu J, Li X, Desiderio DM, Zhan X. Prolactin Variants in Human Pituitaries and Pituitary Adenomas Identified With Two-Dimensional Gel Electrophoresis and Mass Spectrometry. Front Endocrinol (Lausanne) 2018; 9:468. [PMID: 30210449 PMCID: PMC6121189 DOI: 10.3389/fendo.2018.00468] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 07/30/2018] [Indexed: 12/31/2022] Open
Abstract
Human prolactin (hPRL) plays multiple roles in growth, metabolism, development, reproduction, and immunoregulation, which is an important protein synthesized in a pituitary. Two-dimensional gel electrophoresis (2DE) is an effective method in identity of protein variants for in-depth insight into functions of that protein. 2DE, 2DE-based PRL-immunoblot, mass spectrometry, and bioinformatics were used to analyze hPRL variants in human normal (control; n = 8) pituitaries and in five subtypes of pituitary adenomas [NF- (n = 3)-, FSH+ (n = 3)-, LH+ (n = 3)-, FSH+/LH+ (n = 3)-, and PRL+ (n = 3)-adenomas]. Six hPRL variants were identified with different isoelectric point (pI)-relative molecular mass (Mr ) distribution on a 2DE pattern, including variants V1 (pI 6.1; 26.0 kDa), V2 (pI 6.3; 26.4 kDa), V3 (pI 6.3; 27.9 kDa), V4 (pI 6.5; 26.1 kDa), V5 (pI 6.8; 25.9 kDa), and V6 (pI 6.7; 25.9 kDa). Compared to controls, except for variants V2-V6 in PRL-adenomas, V2 in FSH+-adenomas, and V3 in NF--adenomas, the other PRL variants were significantly downregulated in each subtype of pituitary adenomas. Moreover, the pattern of those six PRL variants was significantly different among five subtypes of pituitary adenomas relative to control pituitaries. Different hPRL variants might be involved in different types of PRL receptor-signaling pathways in a given condition. Those findings clearly revealed the existence of six hPRL variants in human pituitaries, and the pattern changes of six hPRL variants among different subtypes of pituitary adenomas, which provide novel clues to further study the functions, and mechanisms of action, of hPRL in human pituitary and in PRL-related diseases, and the potential clinical value in pituitary adenomas.
Collapse
Affiliation(s)
- Shehua Qian
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, Changsha, China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, China
| | - Yongmei Yang
- Geriatric Department of Cadre's Ward, Baoji Traditional Chinese Medicine Hospital, Baoji, China
| | - Na Li
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, Changsha, China
| | - Tingting Cheng
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, Changsha, China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaowei Wang
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, Changsha, China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, China
| | - Jianping Liu
- Bio-Analytical Chemistry Research Laboratory, Modern Analytical Testing Center, Central South University, Changsha, China
| | - Xuejun Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Dominic M. Desiderio
- The Charles B. Stout Neuroscience Mass Spectrometry Laboratory, Department of Neurology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Xianquan Zhan
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, Changsha, China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, China
- The Laboratory of Medical Genetics, Central South University, Changsha, China
| |
Collapse
|
14
|
Lee YH, Song GG. Association between circulating prolactin levels and psoriasis and its correlation with disease severity: a meta-analysis. Clin Exp Dermatol 2017; 43:27-35. [PMID: 28940303 DOI: 10.1111/ced.13228] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2017] [Indexed: 01/22/2023]
Affiliation(s)
- Y. H. Lee
- Division of Rheumatology; Department of Internal Medicine; Korea University College of Medicine; Seoul Korea
| | - G. G. Song
- Division of Rheumatology; Department of Internal Medicine; Korea University College of Medicine; Seoul Korea
| |
Collapse
|
15
|
Liu ZY, Huang J, Liu NN, Zheng M, Zhao T, Zhao BC, Wang YM, Pu JL. Molecular Mechanisms of Increased Heart Rate in Shenxianshengmai-treated Bradycardia Rabbits. Chin Med J (Engl) 2017; 130:179-186. [PMID: 28091410 PMCID: PMC5282675 DOI: 10.4103/0366-6999.197999] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Background: The molecular mechanisms of Shenxianshengmai (SXSM), a traditional Chinese medicine, on bradycardia have been incompletely understood. The study tried to investigate the gene expression profile and proteomics of bradycardia rabbits’ hearts after SXSM treatment. Methods: Twenty-four adult rabbits were randomly assigned in four groups: sham, model, model plus SXSM treatment, and sham plus SXSM treatment groups. Heart rate was recorded in all rabbits. Then, total RNA of atria and proteins of ventricle were isolated and quantified, respectively. Gene expression profiling was conducted by gene expression chip, and quantitative real-time reverse transcription-polymerase chain reaction (RT-PCR) was performed to confirm the results of gene expression chip. We used isobaric tags for elative and absolute quantitation and Western blotting to identify altered proteins after SXSM treatment. Results: There was a constant decrease in the mean heart rate (32%, from 238 ± 6 beats/min to 149 ± 12 beats/min) after six weeks in model compared with that in sham group. This effect was partially reversed by 4-week SXSM treatment. Complementary DNA microarray demonstrated that the increased acetylcholinesterase and reduced nicotinic receptor were take responsibility for the increased heart rate. In addition, proteins involved in calcium handling and signaling were affected by SXSM treatment. Real-time RT-PCR verified the results from gene chip. Results from proteomics demonstrated that SXSM enhanced oxidative phosphorylation and tricarboxylic acid (TCA) cycle in ventricular myocardium to improve ATP generation. Conclusions: Long-term SXSM stimulates sympathetic transmission by increasing the expression of acetylcholinesterase and reduces the expression of nicotinic receptor to increase heart rate. SXSM also restored the calcium handling genes and altered genes involved in signaling. In addition, SXSM improves the ATP supply of ventricular myocardium by increasing proteins involved in TCA cycle and oxidation-respiratory chain.
Collapse
Affiliation(s)
- Zhou-Ying Liu
- State Key Laboratory of Translational Cardiovascular Medicine, Fuwai Hospital and Cardiovascular Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037; Department of Pathology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | - Jian Huang
- State Key Laboratory of Translational Cardiovascular Medicine, Fuwai Hospital and Cardiovascular Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Na-Na Liu
- State Key Laboratory of Translational Cardiovascular Medicine, Fuwai Hospital and Cardiovascular Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Min Zheng
- State Key Laboratory of Translational Cardiovascular Medicine, Fuwai Hospital and Cardiovascular Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Tao Zhao
- Shandong Buchang Pharmaceutical Co. Ltd., Heze, Shandong 274003, China
| | - Bu-Chang Zhao
- Shandong Buchang Pharmaceutical Co. Ltd., Heze, Shandong 274003, China
| | - Yi-Min Wang
- Shandong Buchang Pharmaceutical Co. Ltd., Heze, Shandong 274003, China
| | - Jie-Lin Pu
- State Key Laboratory of Translational Cardiovascular Medicine, Fuwai Hospital and Cardiovascular Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| |
Collapse
|
16
|
Rios AC, Fu NY, Jamieson PR, Pal B, Whitehead L, Nicholas KR, Lindeman GJ, Visvader JE. Essential role for a novel population of binucleated mammary epithelial cells in lactation. Nat Commun 2016; 7:11400. [PMID: 27102712 PMCID: PMC4844753 DOI: 10.1038/ncomms11400] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 03/21/2016] [Indexed: 12/11/2022] Open
Abstract
The mammary gland represents a unique tissue to study organogenesis as it predominantly develops in the post-natal animal and undergoes dramatic morphogenetic changes during puberty and the reproductive cycle. The physiological function of the mammary gland is to produce milk to sustain the newborn. Here we view the lactating gland through three-dimensional confocal imaging of intact tissue. We observed that the majority of secretory alveolar cells are binucleated. These cells first arise in very late pregnancy due to failure of cytokinesis and are larger than mononucleated cells. Augmented expression of Aurora kinase-A and Polo-like kinase-1 at the lactogenic switch likely mediates the formation of binucleated cells. Our findings demonstrate an important physiological role for polyploid mammary epithelial cells in lactation, and based on their presence in five different species, suggest that binucleated cells evolved to maximize milk production and promote the survival of offspring across all mammalian species.
Collapse
Affiliation(s)
- Anne C. Rios
- Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Nai Yang Fu
- Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Paul R. Jamieson
- Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Bhupinder Pal
- Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Lachlan Whitehead
- Imaging Laboratory, Systems Biology and Personalised Medicine Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Kevin R. Nicholas
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Geoffrey J. Lindeman
- Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Familial Cancer Centre and Department of Medical Oncology, The Royal Melbourne Hospital, Parkville, Victoria 3050, Australia
- Department of Medicine, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jane E. Visvader
- Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
17
|
Wang J, Yang Z, Fu S, Liu B, Wu D, Wang W, Sun D, Wu R, Liu J. Bovine lactotroph cultures for the study of prolactin synthesis functions. In Vitro Cell Dev Biol Anim 2016; 52:296-304. [PMID: 26744030 DOI: 10.1007/s11626-015-9974-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 10/27/2015] [Indexed: 11/26/2022]
Abstract
The aim of this study was to establish a bovine anterior pituitary-derived lactotroph (BAPDL) line that expresses prolactin (PRL) in vitro to study the mechanisms of bovine PRL synthesis and secretion. Immunohistochemistry assay of PRL in the newborn calves' anterior pituitary glands showed that most lactotrophs were located within the superior border of the lateral wings of the anterior pituitary. Tissues of the superior border of the lateral wings of the anterior pituitary were dispersed and cultured in Dulbecco's modified Eagle's medium (DMEM) supplemented with 10% fetal bovine serum (FBS). The limiting dilution method was used to establish BAPDL from single cell clone. BAPDL cells constantly expressed mRNAs for PRL and pituitary-specific transcription factor 1 (Pit-1) gene and grew steadily and rapidly in the DMEM supplemented with 10% FBS. PRL immunoreactivity was present in BAPDL at passage 20. The concentration of bovine PRL in BAPDL at passage 20 culture supernatant was decreased to below 35% compared with that in BAPDL at passage 1. The effects of human epidermal growth factor (hEGF) and dopamine (DA) on the expression and secretion of PRL in BAPDL at passage 4 were also investigated. The results are consistent with those of previous studies. Thus, it can be used successfully for studying the mechanisms of stimuli regulating PRL synthesis and release.
Collapse
Affiliation(s)
- Jianfa Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Zhanqing Yang
- College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Shoupeng Fu
- College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Bingrun Liu
- College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Dianjun Wu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
- College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Wei Wang
- College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Dongbo Sun
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Rui Wu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, China.
| | - Juxiong Liu
- College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| |
Collapse
|
18
|
VanKlompenberg MK, Manjarín R, Donovan CE, Trott JF, Hovey RC. Regulation and localization of vascular endothelial growth factor within the mammary glands during the transition from late gestation to lactation. Domest Anim Endocrinol 2016; 54:37-47. [PMID: 26490114 DOI: 10.1016/j.domaniend.2015.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 09/08/2015] [Accepted: 09/16/2015] [Indexed: 10/23/2022]
Abstract
The vascular network within the developing mammary gland (MG) grows in concert with the epithelium to prepare for lactation, although the mechanisms coordinating this vascular development are unresolved. Vascular endothelial growth factor A (VEGF-A) mediates angiogenesis and vascular permeability in the MG during pregnancy and lactation, where its expression is upregulated by prolactin. Given our previous finding that late-gestational hyperprolactinemia induced by domperidone (DOM) increased subsequent milk yield from gilts, we sought to establish changes in vascular development during late gestation and lactation in the MGs of these pigs and determine whether DOM altered MG angiogenesis and the factors regulating it. Gilts received either no treatment (n = 6) or DOM (n = 6) during late gestation, then had their MG biopsied from late gestation through lactation to assess microvessel density, VEGF-A distribution and messenger RNA expression, and aquaporin (AQP) gene expression. Microvessel density in the MG was unchanged during gestation then increased between days 2 and 21 of lactation (P < 0.05). The local expression of messenger RNA for VEGF-A120, VEGF-A147, VEGF-A164, VEGF-A164b, VEGF-A188, VEGF receptors-1 and -2, and AQP1 and AQP3 all generally increased during the transition from gestation to lactation (P < 0.05). Immunostaining localized VEGF-A to the apical cytoplasm of secretory epithelial cells, consistent with a far greater concentration of VEGF-A in colostrum and/or milk vs plasma (P < 0.0001). There was no effect of DOM on any of the variables analyzed. In summary, we found that vascular development in the MG increases during lactation in first-parity gilts and that VEGF-A is a part of the mammary secretome. Although late-gestational hyperprolactinemia increases milk yield, there was no evidence that it altered vascular development.
Collapse
Affiliation(s)
- M K VanKlompenberg
- Department of Animal Science, University of California Davis, Davis, CA, USA
| | - R Manjarín
- Department of Animal Science, University of California Davis, Davis, CA, USA
| | - C E Donovan
- Department of Animal Science, University of California Davis, Davis, CA, USA
| | - J F Trott
- Department of Animal Science, University of California Davis, Davis, CA, USA
| | - R C Hovey
- Department of Animal Science, University of California Davis, Davis, CA, USA.
| |
Collapse
|
19
|
Abstract
Prolactin (PRL) released from lactotrophs of the anterior pituitary gland in response to the suckling by the offspring is the major hormonal signal responsible for stimulation of milk synthesis in the mammary glands. PRL secretion is under chronic inhibition exerted by dopamine (DA), which is released from neurons of the arcuate nucleus of the hypothalamus into the hypophyseal portal vasculature. Suckling by the young activates ascending systems that decrease the release of DA from this system, resulting in enhanced responsiveness to one or more PRL-releasing hormones, such as thyrotropin-releasing hormone. The neuropeptide oxytocin (OT), synthesized in magnocellular neurons of the hypothalamic supraoptic, paraventricular, and several accessory nuclei, is responsible for contracting the myoepithelial cells of the mammary gland to produce milk ejection. Electrophysiological recordings demonstrate that shortly before each milk ejection, the entire neurosecretory OT population fires a synchronized burst of action potentials (the milk ejection burst), resulting in release of OT from nerve terminals in the neurohypophysis. Both of these neuroendocrine systems undergo alterations in late gestation that prepare them for the secretory demands of lactation, and that reduce their responsiveness to stimuli other than suckling, especially physical stressors. The demands of milk synthesis and release produce a condition of negative energy balance in the suckled mother, and, in laboratory rodents, are accompanied by a dramatic hyperphagia. The reduction in secretion of the adipocyte hormone, leptin, a hallmark of negative energy balance, may be an important endocrine signal to hypothalamic systems that integrate lactation-associated food intake with neuroendocrine systems.
Collapse
Affiliation(s)
- William R Crowley
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah Health Sciences Center, Salt Lake City, Utah
| |
Collapse
|
20
|
Abstract
The hypothalamic control of prolactin secretion is different from other anterior pituitary hormones, in that it is predominantly inhibitory, by means of dopamine from the tuberoinfundibular dopamine neurons. In addition, prolactin does not have an endocrine target tissue, and therefore lacks the classical feedback pathway to regulate its secretion. Instead, it is regulated by short loop feedback, whereby prolactin itself acts in the brain to stimulate production of dopamine and thereby inhibit its own secretion. Finally, despite its relatively simple name, prolactin has a broad range of functions in the body, in addition to its defining role in promoting lactation. As such, the hypothalamo-prolactin axis has many characteristics that are quite distinct from other hypothalamo-pituitary systems. This review will provide a brief overview of our current understanding of the neuroendocrine control of prolactin secretion, in particular focusing on the plasticity evident in this system, which keeps prolactin secretion at low levels most of the time, but enables extended periods of hyperprolactinemia when necessary for lactation. Key prolactin functions beyond milk production will be discussed, particularly focusing on the role of prolactin in inducing adaptive responses in multiple different systems to facilitate lactation, and the consequences if prolactin action is impaired. A feature of this pleiotropic activity is that functions that may be adaptive in the lactating state might be maladaptive if prolactin levels are elevated inappropriately. Overall, my goal is to give a flavour of both the history and current state of the field of prolactin neuroendocrinology, and identify some exciting new areas of research development.
Collapse
Affiliation(s)
- David R Grattan
- Centre for Neuroendocrinology and Department of AnatomyUniversity of Otago, PO Box 913, Dunedin 9054, New ZealandMaurice Wilkins Centre for Molecular BiodiscoveryAuckland, New Zealand Centre for Neuroendocrinology and Department of AnatomyUniversity of Otago, PO Box 913, Dunedin 9054, New ZealandMaurice Wilkins Centre for Molecular BiodiscoveryAuckland, New Zealand
| |
Collapse
|
21
|
Ji Z, Dong F, Wang G, Hou L, Liu Z, Chao T, Wang J. miR-135a Targets and Regulates Prolactin Receptor Gene in Goat Mammary Epithelial Cells. DNA Cell Biol 2015; 34:534-40. [PMID: 26102062 DOI: 10.1089/dna.2015.2904] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Mammary gland development and lactation are typical traits controlled by multiple genes, hormones, and regulatory factors. Prolactin receptor (PRLR), a specific receptor of prolactin, has been reported to have important physiological functions in regulating mammogenesis and lactogenesis. However, the post-transcriptional regulation mechanisms of PRLR expression have not yet been shown in detail. In this study, the expression of miR-135a and PRLR at different development stages of Laoshan dairy goat mammary gland tissues was investigated. After overexpression and silencing expression of miR-135a in cultured primary mammary epithelial cells, the regulatory relationship between miR-135a and PRLR was examined through dual-luciferase reporter assay, and the expression of PRLR at both mRNA and protein levels was examined by real-time quantitative polymerase chain reaction (RT-qPCR) and western blot. Collectively, our results suggested that PRLR is a direct target gene of miR-135a, miR-135a is a novel regulator of PRLR, and it might play an essential role in the regulation of animal mammary gland development and lactation.
Collapse
Affiliation(s)
- Zhibin Ji
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University , Taian, China
| | - Fei Dong
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University , Taian, China
| | - Guizhi Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University , Taian, China
| | - Lei Hou
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University , Taian, China
| | - Zhaohua Liu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University , Taian, China
| | - Tianle Chao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University , Taian, China
| | - Jianmin Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University , Taian, China
| |
Collapse
|
22
|
Velázquez-Villegas LA, López-Barradas AM, Torres N, Hernández-Pando R, León-Contreras JC, Granados O, Ortíz V, Tovar AR. Prolactin and the dietary protein/carbohydrate ratio regulate the expression of SNAT2 amino acid transporter in the mammary gland during lactation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1157-64. [PMID: 25701231 DOI: 10.1016/j.bbamem.2015.02.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 01/24/2015] [Accepted: 02/10/2015] [Indexed: 12/20/2022]
Abstract
The sodium coupled neutral amino acid transporter 2 (SNAT2/SAT2/ATA2) is expressed in the mammary gland (MG) and plays an important role in the uptake of alanine and glutamine which are the most abundant amino acids transported into this tissue during lactation. Thus, the aim of this study was to assess the amount and localization of SNAT2 before delivery and during lactation in rat MG, and to evaluate whether prolactin and the dietary protein/carbohydrate ratio might influence SNAT2 expression in the MG, liver and adipose tissue during lactation. Our results showed that SNAT2 protein abundance in the MG increased during lactation and this increase was maintained along this period, while 24 h after weaning it tended to decrease. To study the effect of prolactin on SNAT2 expression, we incubated MG explants or T47D cells transfected with the SNAT2 promoter with prolactin, and we observed in both studies an increase in the SNAT2 expression or promoter activity. Consumption of a high-protein/low carbohydrate diet increased prolactin concentration, with a concomitant increase in SNAT2 expression not only in the MG during lactation, but also in the liver and adipose tissue. There was a correlation between SNAT2 expression and serum prolactin levels depending on the amount of dietary protein/carbohydrate ratio consumed. These findings suggest that prolactin actively supports lactation providing amino acids to the gland through SNAT2 for the synthesis of milk proteins.
Collapse
Affiliation(s)
- Laura A Velázquez-Villegas
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México D.F. 14000, Mexico
| | - Adriana M López-Barradas
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México D.F. 14000, Mexico
| | - Nimbe Torres
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México D.F. 14000, Mexico
| | - Rogelio Hernández-Pando
- Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México D.F. 14000, Mexico
| | - Juan Carlos León-Contreras
- Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México D.F. 14000, Mexico
| | - Omar Granados
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México D.F. 14000, Mexico
| | - Victor Ortíz
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México D.F. 14000, Mexico
| | - Armando R Tovar
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México D.F. 14000, Mexico.
| |
Collapse
|
23
|
β-Hydroxybutyric sodium salt inhibition of growth hormone and prolactin secretion via the cAMP/PKA/CREB and AMPK signaling pathways in dairy cow anterior pituitary cells. Int J Mol Sci 2015; 16:4265-80. [PMID: 25690038 PMCID: PMC4346956 DOI: 10.3390/ijms16024265] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 01/16/2015] [Accepted: 02/09/2015] [Indexed: 12/19/2022] Open
Abstract
β-hydroxybutyric acid (BHBA) regulates the synthesis and secretion of growth hormone (GH) and prolactin (PRL), but its mechanism is unknown. In this study, we detected the effects of BHBA on the activities of G protein signaling pathways, AMPK-α activity, GH, and PRL gene transcription, and GH and PRL secretion in dairy cow anterior pituitary cells (DCAPCs). The results showed that BHBA decreased intracellular cAMP levels and a subsequent reduction in protein kinase A (PKA) activity. Inhibition of PKA activity reduced cAMP response element-binding protein (CREB) phosphorylation, thereby inhibiting GH and PRL transcription and secretion. The effects of BHBA were attenuated by a specific Gαi inhibitor, pertussis toxin (PTX). In addition, intracellular BHBA uptake mediated by monocarboxylate transporter 1 (MCT1) could trigger AMPK signaling and result in the decrease in GH and PRL mRNA translation in DCAPCs cultured under low-glucose and non-glucose condition when compared with the high-glucose group. This study identifies a biochemical mechanism for the regulatory action of BHBA on GH and PRL gene transcription, translation, and secretion in DCAPCs, which may be one of the factors that regulate pituitary function during the transition period in dairy cows.
Collapse
|
24
|
Schennink A, Trott JF, Manjarin R, Lemay DG, Freking BA, Hovey RC. Comparative genomics reveals tissue-specific regulation of prolactin receptor gene expression. J Mol Endocrinol 2015; 54:1-15. [PMID: 25358647 DOI: 10.1530/jme-14-0212] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Prolactin (PRL), acting via the PRL receptor (PRLR), controls hundreds of biological processes across a range of species. Endocrine PRL elicits well-documented effects on target tissues such as the mammary glands and reproductive organs in addition to coordinating whole-body homeostasis during states such as lactation or adaptive responses to the environment. While changes in PRLR expression likely facilitates these tissue-specific responses to circulating PRL, the mechanisms regulating this regulation in non-rodent species has received limited attention. We performed a wide-scale analysis of PRLR 5' transcriptional regulation in pig tissues. Apart from the abundantly expressed and widely conserved exon 1, we identified alternative splicing of transcripts from an additional nine first exons of the porcine PRLR (pPRLR) gene. Notably, exon 1.5 transcripts were expressed most abundantly in the heart, while expression of exon 1.3-containing transcripts was greatest in the kidneys and small intestine. Expression of exon 1.3 mRNAs within the kidneys was most abundant in the renal cortex, and increased during gestation. A comparative analysis revealed a human homologue to exon 1.3, hE1N2, which was also principally transcribed in the kidneys and small intestines, and an exon hE1N3 was only expressed in the kidneys of humans. Promoter alignment revealed conserved motifs within the proximal promoter upstream of exon 1.3, including putative binding sites for hepatocyte nuclear factor-1 and Sp1. Together, these results highlight the diverse, conserved and tissue-specific regulation of PRLR expression in the targets for PRL, which may function to coordinate complex physiological states such as lactation and osmoregulation.
Collapse
Affiliation(s)
- Anke Schennink
- Department of Animal ScienceGenome CenterUniversity of California Davis, 2335 Meyer Hall, One Shields Avenue, Davis, California 95616, USABaylor College of MedicineUSDA/ARS Children's Nutrition Research Center, 1100 Bates Street, Room 9022, Houston, Texas, USAUSDAARS, U.S. Meat Animal Research Center, PO Box 166, Clay Center, Nebraska 68933, USA
| | - Josephine F Trott
- Department of Animal ScienceGenome CenterUniversity of California Davis, 2335 Meyer Hall, One Shields Avenue, Davis, California 95616, USABaylor College of MedicineUSDA/ARS Children's Nutrition Research Center, 1100 Bates Street, Room 9022, Houston, Texas, USAUSDAARS, U.S. Meat Animal Research Center, PO Box 166, Clay Center, Nebraska 68933, USA
| | - Rodrigo Manjarin
- Department of Animal ScienceGenome CenterUniversity of California Davis, 2335 Meyer Hall, One Shields Avenue, Davis, California 95616, USABaylor College of MedicineUSDA/ARS Children's Nutrition Research Center, 1100 Bates Street, Room 9022, Houston, Texas, USAUSDAARS, U.S. Meat Animal Research Center, PO Box 166, Clay Center, Nebraska 68933, USA
| | - Danielle G Lemay
- Department of Animal ScienceGenome CenterUniversity of California Davis, 2335 Meyer Hall, One Shields Avenue, Davis, California 95616, USABaylor College of MedicineUSDA/ARS Children's Nutrition Research Center, 1100 Bates Street, Room 9022, Houston, Texas, USAUSDAARS, U.S. Meat Animal Research Center, PO Box 166, Clay Center, Nebraska 68933, USA
| | - Bradley A Freking
- Department of Animal ScienceGenome CenterUniversity of California Davis, 2335 Meyer Hall, One Shields Avenue, Davis, California 95616, USABaylor College of MedicineUSDA/ARS Children's Nutrition Research Center, 1100 Bates Street, Room 9022, Houston, Texas, USAUSDAARS, U.S. Meat Animal Research Center, PO Box 166, Clay Center, Nebraska 68933, USA
| | - Russell C Hovey
- Department of Animal ScienceGenome CenterUniversity of California Davis, 2335 Meyer Hall, One Shields Avenue, Davis, California 95616, USABaylor College of MedicineUSDA/ARS Children's Nutrition Research Center, 1100 Bates Street, Room 9022, Houston, Texas, USAUSDAARS, U.S. Meat Animal Research Center, PO Box 166, Clay Center, Nebraska 68933, USA
| |
Collapse
|
25
|
Bollmann S, Bu D, Wang J, Bionaz M. Unmasking Upstream Gene Expression Regulators with miRNA-corrected mRNA Data. Bioinform Biol Insights 2015; 9:33-48. [PMID: 27279737 PMCID: PMC4886696 DOI: 10.4137/bbi.s29332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 03/28/2016] [Accepted: 03/29/2016] [Indexed: 12/05/2022] Open
Abstract
Expressed micro-RNA (miRNA) affects messenger RNA (mRNA) abundance, hindering the accuracy of upstream regulator analysis. Our objective was to provide an algorithm to correct such bias. Large mRNA and miRNA analyses were performed on RNA extracted from bovine liver and mammary tissue. Using four levels of target scores from TargetScan (all miRNA:mRNA target gene pairs or only the top 25%, 50%, or 75%). Using four levels of target scores from TargetScan (all miRNA:mRNA target gene pairs or only the top 25%, 50%, or 75%) and four levels of the magnitude of miRNA effect (ME) on mRNA expression (30%, 50%, 75%, and 83% mRNA reduction), we generated 17 different datasets (including the original dataset). For each dataset, we performed upstream regulator analysis using two bioinformatics tools. We detected an increased effect on the upstream regulator analysis with larger miRNA:mRNA pair bins and higher ME. The miRNA correction allowed identification of several upstream regulators not present in the analysis of the original dataset. Thus, the proposed algorithm improved the prediction of upstream regulators.
Collapse
Affiliation(s)
- Stephanie Bollmann
- Department of Integrative Biology, Oregon State University, Corvallis, OR, USA
| | - Dengpan Bu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- CAAS-ICRAF Joint Laboratory on Agroforestry and Sustainable Animal Husbandry, East and Central Asia, World Agroforestry Centre, Beijing, China
| | - Jiaqi Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Massimo Bionaz
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
26
|
The transcriptional responsiveness of LKB1 to STAT-mediated signaling is differentially modulated by prolactin in human breast cancer cells. BMC Cancer 2014; 14:415. [PMID: 24913037 PMCID: PMC4064823 DOI: 10.1186/1471-2407-14-415] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 05/27/2014] [Indexed: 01/31/2023] Open
Abstract
Background Liver kinase 1 (LKB1) is an important multi-tasking protein linked with metabolic signaling, also controlling polarity and cytoskeletal rearrangements in diverse cell types including cancer cells. Prolactin (PRL) and Signal transducer and activator of transcription (STAT) proteins have been associated with breast cancer progression. The current investigation examines the effect of PRL and STAT-mediated signaling on the transcriptional regulation of LKB1 expression in human breast cancer cells. Methods MDA-MB-231, MCF-7, and T47D human breast cancer cells, and CHO-K1 cells transiently expressing the PRL receptor (long form), were treated with 100 ng/ml of PRL for 24 hours. A LKB1 promoter-luciferase construct and its truncations were used to assess transcriptional changes in response to specific siRNAs or inhibitors targeting Janus activated kinase 2 (JAK2), STAT3, and STAT5A. Real-time PCR and Western blotting were applied to quantify changes in mRNA and protein levels. Electrophoretic mobility shift (EMSA) and chromatin immunoprecipitation (ChIP) assays were used to examine STAT3 and STAT5A binding to the LKB1 promoter. Results Consistent with increases in mRNA, the LKB1 promoter was up-regulated by PRL in MDA-MB-231 cells, a response that was lost upon distal promoter truncation. A putative GAS element that could provide a STAT binding site mapped to this region, and its mutation decreased PRL-responsiveness. PRL-mediated increases in promoter activity required signaling through STAT3 and STAT5A, also involving JAK2. Both STATs imparted basally repressive effects in MDA-MB-231 cells. PRL increased in vivo binding of STAT3, and more definitively, STAT5A, to the LKB1 promoter region containing the GAS site. In T47D cells, PRL down-regulated LKB1 transcriptional activity, an effect that was reversed upon culture in phenol red-free media. Interleukin 6, a cytokine activating STAT signaling in diverse cell types, also increased LKB1 mRNA levels and promoter activity in MDA-MB-231 cells. Conclusions LKB1 is differentially regulated by PRL at the level of transcription in representative human breast cancer cells. Its promoter is targeted by STAT proteins, and the cellular estrogen receptor status may affect PRL-responsiveness. The hormonal and possibly cytokine-mediated control of LKB1 expression is particularly relevant in aggressive breast cancer cells, potentially promoting survival under energetically unfavorable conditions.
Collapse
|
27
|
Trott JF, Freking BA, Hovey RC. Variation in the coding and 3′ untranslated regions of the porcine prolactin receptor short form modifies protein expression and function. Anim Genet 2013; 45:74-86. [DOI: 10.1111/age.12100] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2013] [Indexed: 12/31/2022]
Affiliation(s)
- Josephine F. Trott
- Department of Animal Science; University of California, Davis; One Shields Ave Davis CA 95616 USA
| | - Bradley A. Freking
- USDA, ARS; US Meat Animal Research Center; PO Box 166 Clay Center NE 68933 USA
| | - Russell C. Hovey
- Department of Animal Science; University of California, Davis; One Shields Ave Davis CA 95616 USA
| |
Collapse
|
28
|
Short-chain fatty acids inhibit growth hormone and prolactin gene transcription via cAMP/PKA/CREB signaling pathway in dairy cow anterior pituitary cells. Int J Mol Sci 2013; 14:21474-88. [PMID: 24177567 PMCID: PMC3856016 DOI: 10.3390/ijms141121474] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 09/26/2013] [Accepted: 09/30/2013] [Indexed: 12/28/2022] Open
Abstract
Short-chain fatty acids (SCFAs) play a key role in altering carbohydrate and lipid metabolism, influence endocrine pancreas activity, and as a precursor of ruminant milk fat. However, the effect and detailed mechanisms by which SCFAs mediate bovine growth hormone (GH) and prolactin (PRL) gene transcription remain unclear. In this study, we detected the effects of SCFAs (acetate, propionate, and butyrate) on the activity of the cAMP/PKA/CREB signaling pathway, GH, PRL, and Pit-1 gene transcription in dairy cow anterior pituitary cells (DCAPCs). The results showed that SCFAs decreased intracellular cAMP levels and a subsequent reduction in PKA activity. Inhibition of PKA activity decreased CREB phosphorylation, thereby inhibiting GH and PRL gene transcription. Furthermore, PTX blocked SCFAs- inhibited cAMP/PKA/CREB signaling pathway. These data showed that the inhibition of GH and PRL gene transcription induced by SCFAs is mediated by Gi activation and that propionate is more potent than acetate and butyrate in inhibiting GH and PRL gene transcription. In conclusion, this study identifies a biochemical mechanism for the regulation of SCFAs on bovine GH and PRL gene transcription in DCAPCs, which may serve as one of the factors that regulate pituitary function in accordance with dietary intake.
Collapse
|
29
|
Li DY, Zhang L, Trask JS, Xu HL, Yin HD, Zhu Q. Genetic effects of polymorphisms in the prolactin receptor gene on chicken reproductive traits. ANIMAL PRODUCTION SCIENCE 2013. [DOI: 10.1071/an12178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Prolactin receptor (PRLR) is a single transmembrane protein through which prolactin plays a wide variety of physiological roles in vertebrates. Markers of alleles for the PRLR gene were assessed for the association with six reproductive traits (bodyweight at first egg; egg weight at first egg; age at first egg; number of eggs at 300 days of age; bodyweight at 300 days of age; and egg weight at 300 days of age) in a single generation of the Erlang Mountain Chicken. Five single-nucleotide polymorphisms were detected in the PRLR gene by sequencing pooled DNA samples. Genotypes were identified using PCR-single strand conformational polymorphism and direct PCR-sequencing methods. The GLM procedure was used to estimate the association between genotypes and reproductive traits. The results showed that at the P1 locus, individuals with genotype TT had shorter age at first egg and greater number of eggs at 300 days of age than those with genotype CC (P < 0.01). Our findings suggest that the single-nucleotide polymorphism g.-14A > G at P1 locus could be a potential genetic marker for age at first egg and number of eggs at 300 days of age in the Erlang Mountain Chicken and haplotype ATGTT might be advantageous for reproductive traits.
Collapse
|
30
|
Schennink A, Trott JF, Freking BA, Hovey RC. A novel first exon directs hormone-sensitive transcription of the pig prolactin receptor. J Mol Endocrinol 2013; 51:1-13. [PMID: 23576686 DOI: 10.1530/jme-12-0234] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Endocrine, paracrine, and autocrine prolactin (PRL) acts through its receptor (PRLR) to confer a wide range of biological functions, including its established role during lactation. We have identified a novel first exon of the porcine PRLR that gives rise to three different mRNA transcripts. Transcription of this first exon is tissue specific, where it increases during gestation in the adrenal glands and uterus. Within the mammary glands, its transcription is induced by estrogen and PRL, while in the uterus, its expression is downregulated by progestin. The promoter region has an enhancer element located between -453 and -424 bp and a putative repressor element between -648 and -596 bp. Estrogen, acting through the estrogen receptor, activates transcription from this promoter through both E-box and transcription factor AP-2 α binding sites. These findings support the concept that the multilevel hormonal regulation of PRLR transcription contributes to the various biological functions of PRL.
Collapse
Affiliation(s)
- Anke Schennink
- Department of Animal Science, University of California Davis, Davis, California 95616, USA.
| | | | | | | |
Collapse
|
31
|
Dahl GE, Montgomery TL. Triennial Lactation Symposium: Lactation biology training for the next generation - A tribute to Dr. H. Allen Tucker. J Anim Sci 2012; 90:1663-5. [PMID: 22573842 DOI: 10.2527/jas.2011-5258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- G E Dahl
- Department of Animal Sciences, University of Florida, Gainesville 32611, USA.
| | | |
Collapse
|