1
|
Hensel B, Henneberg S, Kleve-Feld M, Jung M, Schulze M. Selection and direct biomarkers of reproductive capacity of breeding boars. Anim Reprod Sci 2024; 269:107490. [PMID: 38735766 DOI: 10.1016/j.anireprosci.2024.107490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/26/2024] [Accepted: 04/28/2024] [Indexed: 05/14/2024]
Abstract
Efficient management of pig reproduction is paramount for the sustainability and productivity of the global pork industry. Modern artificial insemination (AI) breeding programs have greatly benefited from the integration of advanced selection methods and biomarkers to enhance the reproductive performance of boars. While traditional selection methods have relied soley on boar phenotype, such as growth rate and conformation, modern pig breeding has shifted more and more toward molecular and genetic tools, which are still complemented by phenotypic traits. These methods encompass genomics, transcriptomics, and proteomics. Biomarkers serve as critical indicators of boar reproductive capacity. They can help to identify individuals with superior fertility and aid in the early identification of potential fertility issues, allowing for proactive management strategies. This review summarizes current knowledge of various biomarkers associated with semen quality, sperm function, and overall reproductive fitness in boars. Furthermore, we explore advanced technologies and their potential applications in uncovering novel selection methods and biomarkers for predicting boar fertility. A comprehensive understanding of selection criteria and biomarkers governing boar reproductive capacity is essential for developing effective breeding programs to enhance swine reproductive performance.
Collapse
Affiliation(s)
- Britta Hensel
- Institute for Reproduction of Farm Animals Schönow, Bernauer Allee 10, Bernau D-16321, Germany
| | - Sophie Henneberg
- Institute for Reproduction of Farm Animals Schönow, Bernauer Allee 10, Bernau D-16321, Germany
| | - Michael Kleve-Feld
- Pig Improvement Company, 100 Bluegrass Commons Blvd. Ste 2200, Hendersonville, TN 37075, United States
| | - Markus Jung
- Institute for Reproduction of Farm Animals Schönow, Bernauer Allee 10, Bernau D-16321, Germany
| | - Martin Schulze
- Institute for Reproduction of Farm Animals Schönow, Bernauer Allee 10, Bernau D-16321, Germany.
| |
Collapse
|
2
|
Matheson SM, Walling GA, Edwards SA. Genetic selection against intrauterine growth retardation in piglets: a problem at the piglet level with a solution at the sow level. Genet Sel Evol 2018; 50:46. [PMID: 30227828 PMCID: PMC6145367 DOI: 10.1186/s12711-018-0417-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 09/10/2018] [Indexed: 01/21/2023] Open
Abstract
Background In polytocous livestock species, litter size and offspring weight act antagonistically; in modern pig breeds, selection for increased litter size has resulted in lower mean birth weights, an increased number of small piglets and an increased number of those affected by varying degrees of intrauterine growth retardation (IUGR). IUGR poses life-long challenges, both mental, with morphological brain changes and altered cognition, and physical, such as immaturity of organs, reduced colostrum intake and weight gain. In pigs, head morphology of newborn piglets is a good phenotypic marker for identifying such compromised piglets. Growth retardation could be considered as a property of the dam, in part due to either uterine capacity or insufficiency. A novel approach to this issue is to consider the proportion of IUGR-affected piglets in a litter as an indirect measure of uterine capacity. However, uterine capacity or sufficiency cannot be equated solely to litter size and thus is a trait difficult to measure on farm. Results A total of 21,159 Landrace × Large White or Landrace × White Duroc piglets (born over 52 weeks) with recorded head morphology and birth weights were followed from birth until death or weaning. At the piglet level, the estimated heritability for IUGR (as defined by head morphology) was low at 0.01 ± 0.01. Piglet direct genetic effects of birth weight (h2 = 0.07 ± 0.02) were strongly negatively correlated with head morphology (− 0.93), in that IUGR-affected piglets tended to have lower birth weights. At the sow level, analysis of the proportion of IUGR-affected piglets in a litter gave a heritability of 0.20 ± 0.06, with high and negative genetic correlations of the proportion of IUGR-affected piglets with average offspring birth weight (− 0.90) and with the proportion of piglets surviving until 24 h (− 0.80). Conclusions This suggests that the proportion of IUGR-affected piglets in a litter is a suitable indirect measure of uterine capacity for inclusion in breeding programmes that aim at reducing IUGR in piglets and improving piglet survival.
Collapse
Affiliation(s)
- Stephanie M Matheson
- Agriculture, School of Natural and Environmental Sciences, University of Newcastle, Newcastle upon Tyne, NE1 7RU, UK.
| | - Grant A Walling
- JSR Genetics, Southburn, Driffield, East Yorkshire, YO25 9ED, UK
| | - Sandra A Edwards
- Agriculture, School of Natural and Environmental Sciences, University of Newcastle, Newcastle upon Tyne, NE1 7RU, UK
| |
Collapse
|
3
|
Lopez Rodriguez A, Van Soom A, Arsenakis I, Maes D. Boar management and semen handling factors affect the quality of boar extended semen. Porcine Health Manag 2017; 3:15. [PMID: 28770098 PMCID: PMC5525438 DOI: 10.1186/s40813-017-0062-5] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 05/25/2017] [Indexed: 01/05/2023] Open
Abstract
Artificial insemination (AI) is the preferred method for reproduction in the majority of the intensive pig production systems Worldwide. To this end, fresh extended ready-to-use semen doses are either purchased from AI-centres or produced by boars kept on-farm. For profitable semen production, it is necessary to obtain a maximum amount of high quality semen from each boar. This paper reviews current knowledge on factors that may affect semen quality by influencing the boar or the semen during processing. Genetic markers could be used for early detection of boars with the highest fertility potential. Genetic selection for fast growth might jeopardize semen quality. Early detection of boars no longer fit for semen production might be possible by ultrasonography of the testes. Seasonal variation in sperm quality could be associated with changes in photoperiod and heat stress during summer. Comfortable housing, with appropiate bedding material to avoid locomotion problems is essential. In some areas, cooling systems may be necessary to avoid heat stress. The sperm quality can be manipulated by feeding strategies aiming, for instance, to increase sperm resistance to oxidative stress and extend storage duration. High collection frequency will negatively influence sperm quality. Also, if collection is not hygienically performed it will result in bacterial contamination of the semen doses. The concern over bacterial contamination has risen not only because of its negative effect on semen quality but also due to the detection of antimicrobial resistance in isolates from extended semen. Moreover, bacterial and viral pathogens must be monitored because they affect semen production and quality and constitute a risk of herd infection. During processing, boar sperm are submitted to many stress factors that can cause oxidative stress and capacitation-like changes potentially reducing their fertility potential. Dilution rate or dilution temperature affects the quality of the semen doses. Some packaging might preserve semen better than others and some plastic components might be toxic for sperm. Standard operation procedures and quality assurance systems in AI centres are needed.
Collapse
Affiliation(s)
- Alfonso Lopez Rodriguez
- Department of Reproduction Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Ann Van Soom
- Department of Reproduction Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Ioannis Arsenakis
- Department of Reproduction Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Dominiek Maes
- Department of Reproduction Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| |
Collapse
|
4
|
Kawarasaki T, Enya S, Otake M, Shibata M, Mikawa S. Reproductive performance and expression of imprinted genes in somatic cell cloned boars. Anim Sci J 2017; 88:1801-1810. [PMID: 28568977 DOI: 10.1111/asj.12838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 04/03/2017] [Indexed: 01/05/2023]
Abstract
To assess the performance of boars derived by somatic cell cloning, we analyzed various aspects of their reproductive characteristics and the expression of two imprinted genes. Cloned boars (cloned Duroc × Jinhua) were analyzed for birth weight, growth rate, age at first ejaculation, semen characteristics and fertility, in comparison with naturally bred control boars of the same strain. The expression of imprinted genes was analyzed using the microsatellite marker SWC9 for the paternally expressed gene insulin-like growth factor -2 (IGF2) and with single nucleotide polymorphisms (SNPs) for the gene maternally expressed 3 (MEG3). The cloned boars had high production of semen and were nearly equal in level of fertility to conventional pigs; they showed similar characteristics as naturally bred boars of the same strains. The expression of IGF2 was partially disturbed, but this disturbed expression was not linked to a change in developmental fate or reproductive performance. These results indicate that use of cloned boars could be highly effective for proliferation of pigs with desirable characteristics, preservation of genetic resources and risk reduction against epidemic diseases, such as foot-and-mouth disease, through storage of somatic cells as a precautionary measure for use in regenerating pig populations after a future pandemic.
Collapse
Affiliation(s)
- Tatsuo Kawarasaki
- Swine and Poultry Department, Shizuoka Prefectural Research Institute of Animal Industry, Swine and Poultry Research Center, Kikugawa, Shizuoka, Japan.,School of Agriculture, Tokai University, Kumamoto, Japan
| | - Satoko Enya
- Swine and Poultry Department, Shizuoka Prefectural Research Institute of Animal Industry, Swine and Poultry Research Center, Kikugawa, Shizuoka, Japan
| | - Masayoshi Otake
- Swine and Poultry Department, Shizuoka Prefectural Research Institute of Animal Industry, Swine and Poultry Research Center, Kikugawa, Shizuoka, Japan
| | - Masatoshi Shibata
- Swine and Poultry Department, Shizuoka Prefectural Research Institute of Animal Industry, Swine and Poultry Research Center, Kikugawa, Shizuoka, Japan
| | - Satoshi Mikawa
- Animal Genome Unit, Division of Animal Breeding and Reproduction, Institute of Livestock and Glassland Science, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| |
Collapse
|
5
|
Vicente-Carrillo A, Edebert I, Garside H, Cotgreave I, Rigler R, Loitto V, Magnusson KE, Rodríguez-Martínez H. Boar spermatozoa successfully predict mitochondrial modes of toxicity: implications for drug toxicity testing and the 3R principles. Toxicol In Vitro 2015; 29:582-91. [PMID: 25624015 DOI: 10.1016/j.tiv.2015.01.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 11/01/2014] [Accepted: 01/08/2015] [Indexed: 02/05/2023]
Abstract
Replacement of animal testing by in vitro methods (3-R principles) requires validation of suitable cell models, preferably obtained non-invasively, defying traditional use of explants. Ejaculated spermatozoa are highly dependent on mitochondrial production and consumption of ATP for their metabolism, including motility display, thus becoming a suitable model for capturing multiple modes of action of drugs and other chemicals acting via mitochondrial disturbance. In this study, a hypothesis was tested that the boar spermatozoon is a suitable cell type for toxicity assessment, providing a protocol for 3R-replacement of animals for research and drug-testing. Boar sperm kinetics was challenged with a wide variety of known frank mito-toxic chemicals with previously shown mitochondrial effects, using a semi-automated motility analyser allied with real-time fluorescent probing of mitochondrial potential (MitoTracker & JC-1). Output of this sperm assay (obtained after 30 min) was compared to cell viability (ATP-content, data obtained after 24-48 h) of a hepatome-cell line (HepG2). Results of compound effects significantly correlated (P<0.01) for all sperm variables and for most variables in (HepG2). Dose-dependent decreases of relative ATP content in HepG2 cells correlated to sperm speed (r=0.559) and proportions of motile (r=0.55) or progressively motile (r=0.53) spermatozoa. The significance of the study relies on the objectivity of computerized testing of sperm motility inhibition which is comparable albeit of faster output than somatic cell culture models. Sperm suspensions, easily and painlessly obtained from breeding boars, are confirmed as suitable biosensors for preclinical toxicology screening and ranking of lead compounds in the drug development processes.
Collapse
Affiliation(s)
- A Vicente-Carrillo
- Developmental Biology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - I Edebert
- Karlbergsvägen 83 B, Stockholm, Sweden
| | - H Garside
- Drug Safety and Metabolism, AstraZeneca Research and Development, Alderley Park, Macclesfield, Cheshire East SK10 4TG, United Kingdom
| | - I Cotgreave
- Swedish Toxicology Sciences Research Center (Swetox) and Department of Biochemical Toxicology, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - R Rigler
- Department of Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - V Loitto
- Medical Microbiology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - K E Magnusson
- Medical Microbiology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - H Rodríguez-Martínez
- Developmental Biology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.
| |
Collapse
|