1
|
Katiyar R, Gonmei C, Deori S, Singh M, Abedin SN, Rautela R, Singh NS, Chakravarty H, Das M, Choudhury BU, Mishra VK. Effect of heat stress on pig production and its mitigation strategies: a review. Trop Anim Health Prod 2025; 57:139. [PMID: 40117038 DOI: 10.1007/s11250-025-04387-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 03/07/2025] [Indexed: 03/23/2025]
Abstract
Heat stress (HS) poses a significant challenge to pig production worldwide, with far-reaching consequences for productivity, reproduction, and overall animal welfare. Stress, broadly defined as the nonspecific physiological response to environmental demands, disrupts homeostasis, leading to health imbalances, behavioral changes, and reduced productive efficiency. Pigs are particularly susceptible to HS due to their limited thermoregulatory capacity, influenced by a low density of functional sweat glands and a thick subcutaneous fat layer. Rising global temperatures have exacerbated HS-induced economic losses in the swine industry, manifesting as decreased growth rates, poor reproductive performance, reduced feed efficiency, increased morbidity, and mortality. HS impairs pig production by diminishing feed intake and nutrient availability, which leads to reduced growth, suboptimal carcass quality, and compromised reproduction. Sows experience increased anestrus, extended weaning-to-estrus intervals, and smaller litter sizes, while boars exhibit reduced semen quality and fertility. The genetic selection for higher productivity has inadvertently lowered heat tolerance, as metabolic heat production increases with improved production traits. Furthermore, inadequate environmental management in pig housing exacerbates the impact of HS. Variations in heat tolerance among pigs underscore the importance of understanding genetic, physiological, and environmental factors influencing their response to HS. Research reveals genetic differences in thermotolerance, offering potential avenues for selective breeding to improve resilience. Effective management strategies, including nutritional adjustments, environmental modifications, and genetic selection, are crucial for mitigating the negative effects of HS and enhancing pig productivity. This review highlights the multifaceted impacts of HS on swine production, explores the physiological and reproductive consequences, and discusses adaptive and ameliorative measures to address these challenges, with a focus on maintaining sustainable pig production in the face of climatic changes.
Collapse
Affiliation(s)
- Rahul Katiyar
- ICAR Research Complex for NEH Region, Umiam, Meghalaya, India.
| | | | - Sourabh Deori
- ICAR Research Complex for NEH Region, Umiam, Meghalaya, India.
| | - Mahak Singh
- ICAR Research Complex for NEH Region, Nagaland Centre, Medziphema, Nagaland, India.
| | | | - Rupali Rautela
- ICAR-Central Institute for Research on Buffaloes, Hisar, Haryana, India
| | | | | | - Meena Das
- ICAR Research Complex for NEH Region, Umiam, Meghalaya, India
| | - B U Choudhury
- ICAR Research Complex for NEH Region, Tripura Centre, Lembucherra, Tripura, India
| | | |
Collapse
|
2
|
Lin WC, Hoe BC, Li X, Lian D, Zeng X. Glucose Metabolism-Modifying Natural Materials for Potential Feed Additive Development. Pharmaceutics 2024; 16:1208. [PMID: 39339244 PMCID: PMC11435105 DOI: 10.3390/pharmaceutics16091208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/20/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Glucose, a primary energy source derived from animals' feed ration, is crucial for their growth, production performance, and health. However, challenges such as metabolic stress, oxidative stress, inflammation, and gut microbiota disruption during animal production practices can potentially impair animal glucose metabolism pathways. Phytochemicals, probiotics, prebiotics, and trace minerals are known to change the molecular pathway of insulin-dependent glucose metabolism and improve glucose uptake in rodent and cell models. These compounds, commonly used as animal feed additives, have been well studied for their ability to promote various aspects of growth and health. However, their specific effects on glucose uptake modulation have not been thoroughly explored. This article focuses on glucose metabolism is on discovering alternative non-pharmacological treatments for diabetes in humans, which could have significant implications for developing feed additives that enhance animal performance by promoting insulin-dependent glucose metabolism. This article also aims to provide information about natural materials that impact glucose uptake and to explore their potential use as non-antibiotic feed additives to promote animal health and production. Further exploration of this topic and the materials involved could provide a basis for new product development and innovation in animal nutrition.
Collapse
Affiliation(s)
- Wei-Chih Lin
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
- Kemin (China) Technologies Co., Ltd., Zhuhai 519040, China
| | - Boon-Chin Hoe
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
- Kemin (China) Technologies Co., Ltd., Zhuhai 519040, China
| | - Xianming Li
- Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Daizheng Lian
- Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Xiaowei Zeng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
3
|
Kumar M, Kumar V, Singh Y, Srivastava A, Kushwaha R, Vaswani S, Kumar A, Khare S, Yadav B, Yadav R, Sirohi R, Shukla PK. Does the peroral chromium administration in young Hariana calves reduce the risk of calf diarrhea by ameliorating insulin response, lactose intolerance, antioxidant status, and immune response? J Trace Elem Med Biol 2023; 80:127313. [PMID: 37801788 DOI: 10.1016/j.jtemb.2023.127313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/08/2023]
Abstract
BACKGROUND The reduction in insulin sensitivity during rumen development may predispose dairy calves towards lactose intolerance, which could be the reason behind neonatal calf diarrhea (NCD). Chromium (Cr) results in a range of effects when fed to ruminants, but most studies have shown improved insulin sensitivity. The aim of this study was to determine the effect of Cr supplementation on insulin sensitivity, lactose intolerance, diarrhoea and antioxidant, and immune response in young Hariana calves. METHODS A total of 20 milk-fed Hariana calves were randomly assigned to 1 of 2 treatments, each consisted of 10 calves: (1) a control group without supplemental Cr and (2) a 0.15 mg Cr as Cr-picolinate (CrPic)/kg BW0.75 supplemented group (Cr0.15). RESULTS A more rapid glucose disappearance with unaltered insulin kinetics during intravenous glucose tolerance test (IVGTT) and oral lactose tolerance test (OLTT) indicates greater insulin sensitivity in Cr supplemented calves. Better insulin sensitivity in Cr supplemented calves was further confirmed by higher values of the quantitative insulin sensitivity check index (QUICKI), revised quantitative insulin sensitivity check index (RQUICKI) and insulin receptor substrate-1 (IRS-1) and lower (P < 0.05) values of homeostasis model assessment-insulin resistance (HOMA-IR) and glucose-to-insulin ratio in Cr supplemented calves during IVGTT. Cr supplementation resulted in a lower (P < 0.05) serum cortisol concentration, whereas serum non-esterified fatty acid (NEFA) concentrations during IVGTT did not differ among the groups. The rise in serum glucose concentrations within 2 h post lactose infusion during OLTT peaked at more than twice the basal glucose concentration, therefore calves were not considered as lactose intolerant. Within monthly blood samples, concentrations of serum insulin were similar among treatments, whereas the Cr supplemented group had lower (P < 0.05) serum glucose concentration and glucose-to-insulin ratio compared with the control group. No treatment differences were detected in the biomarkers of antioxidant status and immunity. Serum Cr concentrations were higher (P < 0.05) in Cr supplemented calves while concentrations of other studied minerals were remained unaltered. The incidence, duration of diarrhea, and faecal score were better (P < 0.05) in calves fed on Cr supplemented diet whereas, no treatment effect was observed on average daily gain (ADG). During the study period, no calves died, and no calves were found to have pneumonia, navel or joint disease. CONCLUSION Feeding a Cr-supplemented diet improved insulin sensitivity and reduced the risk of diarrhoea in milk-fed young calves, but had no or minimal effects on lactose intolerance, antioxidant status, immune response, and growth performance.
Collapse
Affiliation(s)
- Muneendra Kumar
- Department of Animal Nutrition, College of Veterinary Science and Animal Husbandry, U.P. Pandit Deen Dayal Upadhyaya Pashu-Chikitsa Vigyan Vishwavidyalaya Evam Go-Anusandhan Sansthan (DUVASU), Mathura 281001, India.
| | - Vinod Kumar
- Department of Animal Nutrition, College of Veterinary Science and Animal Husbandry, U.P. Pandit Deen Dayal Upadhyaya Pashu-Chikitsa Vigyan Vishwavidyalaya Evam Go-Anusandhan Sansthan (DUVASU), Mathura 281001, India
| | - Yajuvendra Singh
- Department of Livestock Production Management, College of Veterinary Science and Animal Husbandry, U.P. Pandit Deen Dayal Upadhyaya Pashu-Chikitsa Vigyan Vishwavidyalaya Evam Go-Anusandhan Sansthan (DUVASU), Mathura 281001, India
| | - Ashish Srivastava
- Department of Veterinary Medicine, College of Veterinary Science and Animal Husbandry, U.P. Pandit Deen Dayal Upadhyaya Pashu-Chikitsa Vigyan Vishwavidyalaya Evam Go-Anusandhan Sansthan (DUVASU), Mathura 281001, India
| | - Raju Kushwaha
- Department of Animal Nutrition, College of Veterinary Science and Animal Husbandry, U.P. Pandit Deen Dayal Upadhyaya Pashu-Chikitsa Vigyan Vishwavidyalaya Evam Go-Anusandhan Sansthan (DUVASU), Mathura 281001, India
| | - Shalini Vaswani
- Department of Animal Nutrition, College of Veterinary Science and Animal Husbandry, U.P. Pandit Deen Dayal Upadhyaya Pashu-Chikitsa Vigyan Vishwavidyalaya Evam Go-Anusandhan Sansthan (DUVASU), Mathura 281001, India
| | - Avinash Kumar
- Department of Animal Nutrition, College of Veterinary Science and Animal Husbandry, U.P. Pandit Deen Dayal Upadhyaya Pashu-Chikitsa Vigyan Vishwavidyalaya Evam Go-Anusandhan Sansthan (DUVASU), Mathura 281001, India
| | - Shivam Khare
- Department of Animal Nutrition, College of Veterinary Science and Animal Husbandry, U.P. Pandit Deen Dayal Upadhyaya Pashu-Chikitsa Vigyan Vishwavidyalaya Evam Go-Anusandhan Sansthan (DUVASU), Mathura 281001, India
| | - Brijesh Yadav
- Department of Veterinary Physiology, College of Veterinary Science and Animal Husbandry, U.P. Pandit Deen Dayal Upadhyaya Pashu-Chikitsa Vigyan Vishwavidyalaya Evam Go-Anusandhan Sansthan (DUVASU), Mathura 281001, India
| | - Rajkumar Yadav
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, U.P. Pandit Deen Dayal Upadhyaya Pashu-Chikitsa Vigyan Vishwavidyalaya Evam Go-Anusandhan Sansthan (DUVASU), Mathura 281001, India
| | - Rajneesh Sirohi
- Department of Livestock Production Management, College of Veterinary Science and Animal Husbandry, U.P. Pandit Deen Dayal Upadhyaya Pashu-Chikitsa Vigyan Vishwavidyalaya Evam Go-Anusandhan Sansthan (DUVASU), Mathura 281001, India
| | - Pankaj Kumar Shukla
- Department of Poultry Science, College of Veterinary Science and Animal Husbandry, U.P. Pandit Deen Dayal Upadhyaya Pashu-Chikitsa Vigyan Vishwavidyalaya Evam Go-Anusandhan Sansthan (DUVASU), Mathura 281001, India
| |
Collapse
|
4
|
Sánchez-Villalba E, Corral-March EA, Valenzuela-Melendres M, Zamorano-García L, Celaya-Michel H, Ochoa-Meza A, González-Ríos H, Barrera-Silva MÁ. Chromium Methionine and Ractopamine Supplementation in Summer Diets for Grower-Finisher Pigs Reared under Heat Stress. Animals (Basel) 2023; 13:2671. [PMID: 37627462 PMCID: PMC10451215 DOI: 10.3390/ani13162671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/07/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
This study aimed to determine the effects of the dietary supplementation of chromium methionine (CrMet) and ractopamine (RAC) on pigs in the growing-finishing stage under heat stress. The parameters evaluated included productive behavior, blood components, carcass characteristics, organ weight, and meat quality. This study was conducted during the summer season in Sonora, Mexico. The treatments included: (1) control diet (CON), a base diet (BD) formulated to satisfy the nutritional requirements of pigs; (2) RAC, BD plus 10 ppm RAC supplemented during the last 34 days of the study; (3) CrMet-S, BD supplemented with 0.8 ppm of Cr from CrMet during the last 34 days; and (4) CrMet-L, BD supplemented with 0.8 ppm of Cr from CrMet for an 81 d period. RAC supplementation improved the productive behavior and main carcass characteristics of the pigs compared with CON. However, RAC and CrMet supplementation during the last 34 days showed similar results in terms of weight gain, carcass quality, blood components, organ weight, and meat quality. The addition of CrMet-S had a moderate (although not significant) increase in productive performance and carcass weight. These findings are encouraging, as they suggest that CrMet may be a potential alternative for growth promotion. However, more research is needed.
Collapse
Affiliation(s)
- Esther Sánchez-Villalba
- Departamento de Agricultura y Ganadería, Universidad de Sonora, Carretera a Bahía de Kino Km. 21, Hermosillo 83000, Mexico; (E.S.-V.); (H.C.-M.); (A.O.-M.)
| | - Eileen Aglahe Corral-March
- Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD, A.C.), Carretera a la Victoria Km. 0.6, Hermosillo 83304, Mexico; (E.A.C.-M.); (M.V.-M.); (L.Z.-G.)
| | - Martín Valenzuela-Melendres
- Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD, A.C.), Carretera a la Victoria Km. 0.6, Hermosillo 83304, Mexico; (E.A.C.-M.); (M.V.-M.); (L.Z.-G.)
| | - Libertad Zamorano-García
- Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD, A.C.), Carretera a la Victoria Km. 0.6, Hermosillo 83304, Mexico; (E.A.C.-M.); (M.V.-M.); (L.Z.-G.)
| | - Hernán Celaya-Michel
- Departamento de Agricultura y Ganadería, Universidad de Sonora, Carretera a Bahía de Kino Km. 21, Hermosillo 83000, Mexico; (E.S.-V.); (H.C.-M.); (A.O.-M.)
| | - Andrés Ochoa-Meza
- Departamento de Agricultura y Ganadería, Universidad de Sonora, Carretera a Bahía de Kino Km. 21, Hermosillo 83000, Mexico; (E.S.-V.); (H.C.-M.); (A.O.-M.)
| | - Humberto González-Ríos
- Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD, A.C.), Carretera a la Victoria Km. 0.6, Hermosillo 83304, Mexico; (E.A.C.-M.); (M.V.-M.); (L.Z.-G.)
| | - Miguel Ángel Barrera-Silva
- Departamento de Agricultura y Ganadería, Universidad de Sonora, Carretera a Bahía de Kino Km. 21, Hermosillo 83000, Mexico; (E.S.-V.); (H.C.-M.); (A.O.-M.)
| |
Collapse
|
5
|
Nano-chromium picolinate and heat stress enhance insulin sensitivity in cross-bred sheep. ANIMAL NUTRITION 2023. [DOI: 10.1016/j.aninu.2023.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
6
|
Soffa DR, Stewart JW, Arneson AG, Dias NW, Mercadante VR, Rhoads RP, Rhoads ML. Reproductive and lactational responses of multiparous dairy cattle to short-term postpartum chromium supplementation during the summer months. JDS COMMUNICATIONS 2022; 4:161-165. [PMID: 36974212 PMCID: PMC10039238 DOI: 10.3168/jdsc.2022-0287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/05/2022] [Indexed: 12/24/2022]
Abstract
The objective of this work was to evaluate the potential benefits of short-duration, high-dose chromium (Cr) supplementation in early postpartum dairy cows during the summer months. Multiparous, early-lactation cows (20.95 ± 0.21 d in milk) were assigned to 1 of 2 treatment groups: (1) control diet (Con; n = 10) or (2) control diet + Cr propionate (CrPro; 12 mg/head per day Cr; n = 12). Measurements of ovarian structures, respiration rates (RR), rectal temperatures (RT), and blood glucose concentrations were recorded every 3 d. Blood was also collected for analysis of plasma progesterone concentrations. Every 6 d, in conjunction with ultrasonography, endometrial cytology samples were collected via cytobrush from each cow to determine the incidences of subclinical endometritis, as determined by polymorphonuclear leukocyte (PMNL)%. No differences were detected in RR, RT, blood glucose, feed intake, milk yield, or change in body weight. The supplementation did, however, improve some reproductive parameters. At cytology sample 6, the PMNL% increased in Con cows, and was greater than the PMNL% in the CrPro group. Chromium consumption did not affect the number or size of most follicles, with the exception being the 6 to 9 mm category where the CrPro group had a greater average diameter and tended to have greater numbers of follicles in this category. While corpus luteum numbers and size did not differ between treatments, the ratio of progesterone to average corpus luteum volume was greater in the CrPro group compared with the Con group. The results from this study indicate that, whereas the short-term, high-dose supplementation strategy did not affect feed intake or milk yield, this Cr supplementation strategy could benefit reproductive performance during periods of stress.
Collapse
|
7
|
DiGiacomo K, Zamuner F, Sun Y, Dunshea FR, Raynes JK, Leury BJ. Effects of Raw and Pasteurized Camel Milk on Metabolic Responses in Pigs Fed a High-Fat Diet. Animals (Basel) 2022; 12:ani12131701. [PMID: 35804599 PMCID: PMC9265008 DOI: 10.3390/ani12131701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/26/2022] [Accepted: 06/28/2022] [Indexed: 11/20/2022] Open
Abstract
Simple Summary Camel milk (CM) contains insulin-like peptides and is high in vitamin C, vitamin E, and antioxidants. Previous studies in diabetic mice and humans have demonstrated a positive impact of CM consumption on glycemic balance, potentially greater than that observed for the consumption of bovine milk. Thus, CM may be a viable therapeutic treatment for diabetic humans, although the mode of action of these effects are not yet understood. This experiment used a high-fat diet as a monogastric model to examine the effect of CM consumption (raw or pasteurized) on some key blood metabolic markers and examined responses to an in vitro glucose tolerance test. While the results are preliminary given the low number of animals, this experiment suggested that CM can improve glycemic control, potentially via a tighter control of insulin effectiveness and/or uptake. Abstract Evidence suggests that camel milk (CM) can have insulin-like actions, although the mode of action is not understood. Using the pig as a monogastric model, this pilot experiment examined the effects of CM consumption on metabolic responses to an in vitro glucose tolerance test (IVGTT). Twenty female Large White × Landrace pigs were individually housed for 6 wks and randomly allocated to one of the following four diets (fed ad libitum; n = 5): control (Con); high fat (HF; ~16% fat); raw CM (the HF diet plus 500 mL CM/ day); or pasteurized CM (PCM). Blood samples were collected on two occasions (weeks 2 and 5). At week 6, the pigs were fitted with an ear vein cannula and the following day an in vitro glucose tolerance test (IVGTT) was conducted (0.3 g/kg BW glucose). Plasma fatty acids and cholesterol concentrations were greater in the pigs fed the HF diet and greatest in those fed CM, while there was no effect of diet on insulin concentrations. The pigs fed CM tended to have a reduced peak insulin (p = 0.058) and an increased glucose nadir (p = 0.009) in response to the IVGTT. These preliminary results tend to support the hypothesis that feeding CM can improve glycemic control in pigs.
Collapse
Affiliation(s)
- Kristy DiGiacomo
- Faculty of Veterinary and Agricultural Sciences, School of Agriculture and Food, University of Melbourne, Parkville, VIC 2010, Australia; (F.Z.); (Y.S.); (F.R.D.); (B.J.L.)
- Correspondence:
| | - Fernanda Zamuner
- Faculty of Veterinary and Agricultural Sciences, School of Agriculture and Food, University of Melbourne, Parkville, VIC 2010, Australia; (F.Z.); (Y.S.); (F.R.D.); (B.J.L.)
| | - Yushu Sun
- Faculty of Veterinary and Agricultural Sciences, School of Agriculture and Food, University of Melbourne, Parkville, VIC 2010, Australia; (F.Z.); (Y.S.); (F.R.D.); (B.J.L.)
| | - Frank R. Dunshea
- Faculty of Veterinary and Agricultural Sciences, School of Agriculture and Food, University of Melbourne, Parkville, VIC 2010, Australia; (F.Z.); (Y.S.); (F.R.D.); (B.J.L.)
- Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Jared K. Raynes
- Faculty of Engineering, School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2006, Australia;
| | - Brian J. Leury
- Faculty of Veterinary and Agricultural Sciences, School of Agriculture and Food, University of Melbourne, Parkville, VIC 2010, Australia; (F.Z.); (Y.S.); (F.R.D.); (B.J.L.)
| |
Collapse
|
8
|
Systematic review of animal-based indicators to measure thermal, social, and immune-related stress in pigs. PLoS One 2022; 17:e0266524. [PMID: 35511825 PMCID: PMC9070874 DOI: 10.1371/journal.pone.0266524] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 03/22/2022] [Indexed: 11/19/2022] Open
Abstract
The intense nature of pig production has increased the animals’ exposure to stressful conditions, which may be detrimental to their welfare and productivity. Some of the most common sources of stress in pigs are extreme thermal conditions (thermal stress), density and mixing during housing (social stress), or exposure to pathogens and other microorganisms that may challenge their immune system (immune-related stress). The stress response can be monitored based on the animals’ coping mechanisms, as a result of specific environmental, social, and health conditions. These animal-based indicators may support decision making to maintain animal welfare and productivity. The present study aimed to systematically review animal-based indicators of social, thermal, and immune-related stresses in farmed pigs, and the methods used to monitor them. Peer-reviewed scientific literature related to pig production was collected using three online search engines: ScienceDirect, Scopus, and PubMed. The manuscripts selected were grouped based on the indicators measured during the study. According to our results, body temperature measured with a rectal thermometer was the most commonly utilized method for the evaluation of thermal stress in pigs (87.62%), as described in 144 studies. Of the 197 studies that evaluated social stress, aggressive behavior was the most frequently-used indicator (81.81%). Of the 535 publications examined regarding immune-related stress, cytokine concentration in blood samples was the most widely used indicator (80.1%). Information about the methods used to measure animal-based indicators is discussed in terms of validity, reliability, and feasibility. Additionally, the introduction and wide spreading of alternative, less invasive methods with which to measure animal-based indicators, such as cortisol in saliva, skin temperature and respiratory rate via infrared thermography, and various animal welfare threats via vocalization analysis are highlighted. The information reviewed was used to discuss the feasible and most reliable methods with which to monitor the impact of relevant stressors commonly presented by intense production systems on the welfare of farmed pigs.
Collapse
|
9
|
Liu F, Zhao W, Le HH, Cottrell JJ, Green MP, Leury BJ, Dunshea FR, Bell AW. Review: What have we learned about the effects of heat stress on the pig industry? Animal 2021; 16 Suppl 2:100349. [PMID: 34801425 DOI: 10.1016/j.animal.2021.100349] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/18/2022] Open
Abstract
Pig production faces seasonal fluctuations. The low farrowing rate of sows mated in summer, increased carcass fatness of progeny born to the sows mated in summer, and slower growth rate of finisher pigs in summer are three economically important impacts identified in the pig industry. The purpose of this review is to examine advances over the past decade in understanding the mechanisms underlying the three impacts associated with summer conditions, particularly heat stress (HS), and to provide possible amelioration strategies. For impact 1, summer mating results in low farrowing rates mainly caused by the high frequency of early pregnancy disruptions. The contributions of semen DNA damage, poor oocyte quality, local progesterone concentrations, and suboptimal embryonic oestrogen secretion are discussed, as these all may contribute to HS-mediated effects around conception. Despite this, it is still unclear what the underlying mechanisms might be and thus, there is currently a lack of commercially viable solutions. For impact 2, there have been recent advances in the understanding of gestational HS on both the sow and foetus, with gestational HS implicated in decreased foetal muscle fibre number, a greater proportion of lighter piglets, and increased carcass fatness at slaughter. So far, no effective strategies have been developed to mitigate the impacts associated with gestational HS on foetuses. For impact 3, the slowed growth rate of pigs during summer is one reason for the reduced carcass weights in summer. Studies have shown that the reduction in growth rates may be due to more than reductions in feed intake alone, and the impaired intestinal barrier function and inflammatory response may also play a role. In addition, it is consistently reported that HS attenuates fat mobilisation which can potentially exacerbate carcass fatness when carcass weight is increased. Novel feed additives have exhibited the potential to reduce the impacts of HS on intestinal barrier function in grower pigs. Collectively, based on these three impacts, the economic loss associated with HS can be estimated. A review of these impacts is warranted to better align the future research directions with the needs of the pig industry. Ultimately, a better understanding of the underlying mechanisms and continuous investments in developing commercially viable strategies to combat HS will benefit the pig industry.
Collapse
Affiliation(s)
- F Liu
- Research and Innovation Unit, Rivalea Australia Pty Ltd, Corowa, NSW 2646, Australia.
| | - W Zhao
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - H H Le
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - J J Cottrell
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - M P Green
- Faculty of Science, University of Melbourne, Parkville, VIC 3010, Australia
| | - B J Leury
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - F R Dunshea
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC 3010, Australia; Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - A W Bell
- Department of Animal Science, Cornell University, Ithaca 14853-4801, USA
| |
Collapse
|
10
|
Liu F, Braden CJ, Smits RJ, Craig JR, Henman DJ, Brewster CJ, Morrison RS, Athorn RZ, Leury BJ, Zhao W, Cottrell JJ, Dunshea FR, Bell AW. Compensatory feeding during early gestation for sows with a high weight loss after a summer lactation increased piglet birth weight but reduced litter size. J Anim Sci 2021; 99:6338156. [PMID: 34343289 DOI: 10.1093/jas/skab228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/31/2021] [Indexed: 12/20/2022] Open
Abstract
Sows mated in summer produce a greater proportion of born-light piglets (<1.1 kg) which contributes to increased carcass fatness in the progeny population. The reasons for the low birth weight of these piglets remain unclear, and there have been few successful mitigation strategies identified. We hypothesized that: 1) the low birth weight of progeny born to sows mated in summer may be associated with weight loss during the previous summer lactation; and 2) increasing early gestation feed allowance for the sows with high lactational weight loss in summer can help weight recovery and improve progeny birth weight. Sows were classified as having either low (av. 1%) or high (av. 7%) lactational weight loss in their summer lactation. All the sows with low lactational weight loss (LLStd) and half of the sows with high lactational weight loss received a standard gestation feeding regime (HLStd) (2.6 kg/d; day 0-30 gestation), whereas the rest of the sows with high lactational weight loss received a compensatory feed allowance (HLComp) (3.5 kg/d; day 0-30 gestation). A comparison of LLStd (n = 75) versus HLStd sows (n = 78) showed that this magnitude of weight loss over summer lactation did not affect the average piglet or litter birth weight, but such results may be influenced by the higher litter size (P = 0.030) observed in LLStd sows. A comparison of HLStd versus HLComp (n = 81) sows showed that the compensatory feeding increased (P = 0.021) weight gain of gestating sows by 6 kg, increased (P = 0.009) average piglet birth weight by 0.12 kg, tended to reduce (P = 0.054) the percentage of born-light piglets from 23.5% to 17.1% but reduced the litter size by 1.4 (P = 0.014). A subgroup of progeny stratified as born-light (0.8-1.1 kg) or -normal (1.3-1.7 kg) from each sow treatment were monitored for growth performance from weaning until 100 kg weight. The growth performance and carcass backfat of progeny were not affected by sow treatments. Born-light progeny had lower feed intake, lower growth rate, higher G:F, and higher carcass backfat than born-normal progeny (all P < 0.05). In summary, compensatory feeding from day 0 to 30 gestation in the sows with high weight loss during summer lactation reduced the percentage of born-light progeny at the cost of a lower litter size, which should improve growth rate and carcass leanness in the progeny population born to sows with high lactational weight loss.
Collapse
Affiliation(s)
- Fan Liu
- Rivalea Australia Pty Ltd, Corowa, NSW 2646, Australia
| | | | | | | | | | | | | | | | - Brian J Leury
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Weicheng Zhao
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Jeremy J Cottrell
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Frank R Dunshea
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC 3010, Australia.,Faculty of Biological Sciences, The University of Leeds, Leeds LS2 9JT, UK
| | - Alan W Bell
- Department of Animal Science, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
11
|
Santos AP, Tokach MD, Kiefer C, Goodband RD, Woodworth JC, DeRouchey JM, Dritz SS, Gebhardt JT. Effects of dietary chromium propionate and space allowance on performance and carcass responses of growing-finishing pigs. Transl Anim Sci 2021; 5:txab112. [PMID: 34316540 PMCID: PMC8309953 DOI: 10.1093/tas/txab112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/24/2021] [Indexed: 11/21/2022] Open
Abstract
In a 72-d trial, 256 pigs (Line 600 × 241, DNA Columbus, NE) were used to determine the effect of dietary Cr (Cr propionate; Kemin Industries, Des Moines, IA) and physical space restriction on performance and carcass characteristics of finishing pigs. Pens were blocked by initial weight and randomly assigned to treatments with eight pigs per pen and eight pens per treatment. Treatments were arranged in a 2 × 2 factorial with main effects of Cr (control and Cr propionate, 200 µg/kg added Cr) and space allowances (0.91 m2/animal: normal and 0.63 m2/animal: restricted). Pigs were fed in three dietary phases and pigs were weighed approximately every 14 d throughout the study. Feed efficiency was calculated as both a standard gain to feed ratio and as an adjusted G:F ratio at a common final bodyweight. There were no evidence of space allocation × Cr interactions for any measured responses (P > 0.05). Space restriction decreased (P < 0.001) daily weight gain, final body weight, hot carcass weight, and daily feed intake, but increased carcass yield (P = 0.009) and decreased backfat depth (P = 0.003). Feed efficiency was greater for pigs provided a normal space allowance when adjusted for a common final bodyweight (P = 0.021), although no evidence of a difference was observed for unadjusted G:F (P = 0.687). Adding Cr to the diet reduced G:F on both an adjusted and unadjusted basis (P ≤ 0.021). There was marginally significant evidence that pigs provided Cr had lower average daily gain (P = 0.079) and final bodyweight (P = 0.056) compared to pigs not provided added Cr. There was marginally significant evidence that Cr resulted in greater backfat depth (P = 0.069), although no evidence of a difference in other carcass parameters were observed (P > 0.10). These results demonstrated that there were no interactions between Cr propionate and space allocation, illustrating that under the conditions of this study Cr propionate did not provide an advantage in growth performance or carcass characteristics in either adequate or restricted space allocation.
Collapse
Affiliation(s)
- Alexandre P Santos
- Animal Science Graduate Program, Federal University of Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Mike D Tokach
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS 66506, USA
| | - Charles Kiefer
- Animal Science Graduate Program, Federal University of Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Robert D Goodband
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS 66506, USA
| | - Jason C Woodworth
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS 66506, USA
| | - Joel M DeRouchey
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS 66506, USA
| | - Steve S Dritz
- Department of Diagnostic Medicine/Pathobiology College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA.,Genus PIC, Hendersonville, TN 37075, USA
| | - Jordan T Gebhardt
- Department of Diagnostic Medicine/Pathobiology College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
12
|
Liu Y, Tang J, He Y, Jia G, Liu G, Tian G, Chen X, Cai J, Kang B, Zhao H. Selenogenome and AMPK signal insight into the protective effect of dietary selenium on chronic heat stress-induced hepatic metabolic disorder in growing pigs. J Anim Sci Biotechnol 2021; 12:68. [PMID: 34116728 PMCID: PMC8196429 DOI: 10.1186/s40104-021-00590-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/02/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Chronic heat stress (CHS) disrupts hepatic metabolic homeostasis and jeopardizes product quality of pigs. Selenium (Se) may regulate the metabolic state through affect selenoprotein. Thus, we investigate the protective effect of dietary hydroxy-4-methylselenobutanoic acid (HMSeBA) on CHS induced hepatic metabolic disorder in growing pigs, and the corresponding response of selenoprotein. METHODS Forty crossbreed growing pigs were randomly assigned to five groups: control group raised in the thermoneutral environment (22 ± 2 °C) with basal diet; four CHS groups raised in hyperthermal condition (33 ± 2 °C) with basal diet and supplied with 0.0, 0.2, 0.4, and 0.6 mg Se/kg HMSeBA, respectively. The trial lasted 28 d. The serum biochemical, hepatic metabolism related enzyme, protein and gene expression and 25 selenoproteins in liver tissue were determined by real-time PCR, ELISA and western blot. RESULTS CHS significantly increased the rectal temperature, respiration rate, serum aspartate aminotransferase (AST) and low-density lipoprotein cholesterol (LDL-C) of pigs, up-regulated hepatic heat shock protein 70 (HSP70) and induced lower liver weight, glycogen content, hepatic glucokinase and glutathione peroxidase (GSH-Px). The CHS-induced liver metabolic disorder was associated with the aberrant expression of 6 metabolism-related gene and 11 selenoprotein encoding genes, and decreased the protein abundance of GCK, GPX4 and SELENOS. HMSeBA improved anti-oxidative capacity of liver. 0.4 or 0.6 mg Se/kg HMSeBA supplementation recovered the liver weight, glycogen content and rescue of mRNA abundance of genes related to metabolism and protein levels of GCK. HMSeBA supplementation changed expressions of 15 selenoprotein encoding genes, and enhanced protein expression of GPX1, GPX4 and SELENOS in the liver affected by CHS. CHS alone showed no impact while HMSeBA supplementation increased protein levels of p-AMPKα in the liver. CONCLUSIONS In summary, HMSeBA supplementation beyond nutrient requirement mitigates CHS-induced hepatic metabolic disorder, recovered the liver glycogen content and the processes that are associated with the activation of AMPK signal and regulation of selenoproteins in the liver of growing pigs.
Collapse
Affiliation(s)
- Yan Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Jiayong Tang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Ying He
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Gang Jia
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Guangmang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Gang Tian
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Xiaoling Chen
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Jingyi Cai
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Bo Kang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Hua Zhao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
13
|
Dietary nano chromium picolinate can ameliorate some of the impacts of heat stress in cross-bred sheep. ACTA ACUST UNITED AC 2020; 7:198-205. [PMID: 33997348 PMCID: PMC8110942 DOI: 10.1016/j.aninu.2020.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 06/21/2020] [Accepted: 07/29/2020] [Indexed: 11/22/2022]
Abstract
Two studies were conducted to evaluate the effect of nano chromium picolinate (nCrPic) during heat stress (HS) in sheep. In the initial study, 36 Merino × Poll cross-bred sheep were individually penned and allocated to 3 dietary treatments (0, 400 and 800 μg/kg nCrPic) for 8 wk. Body composition was determined at the beginning and end of the experiment using dual energy X-ray absorptiometry. The sheep remained in their dietary groups but were then placed in metabolic cages and randomly allocated within the dietary group to differing ambient temperature regimes, i.e., thermo-neutral (TN) (n = 18) and HS (n = 18), for 3 wk. Dietary nCrPic had no effect on growth performance and body composition during the initial study conducted under TN conditions. Heat stress decreased average daily feed intake (ADFI) (P = 0.002) whereas sheep under HS had reduced average daily gain (ADG) and indeed lost weight (P < 0.001). Dietary nCrPic increased both ADFI (P = 0.041) and ADG (P = 0.049) under both TH and HS conditions such that the performance of sheep receiving supplemental nCrPic and exposed to HS was similar to that of control sheep maintained under TN conditions. Heat stress increased rectal temperature (P < 0.001) and respiration rate (P < 0.001), particularly during the hottest parts of the day as indicated by interactions (P < 0.001) between time of day and thermal treatment. Rectal temperature was lower in sheep fed nCrPic (P = 0.050), particularly under peak HS conditions during the afternoon as indicated by the interactions between dietary nCrPic and time of day (P < 0.001) and dietary nCrPic, thermal treatment and time of day (P = 0.010). Similarly, respiration rate was lower in sheep fed nCrPic under peak HS conditions during the afternoon as indicated by the interactions between dietary nCrPic and thermal treatment (P < 0.001) and dietary nCrPic and time of day (P = 0.030). In conclusion, dietary nCrPic can partially ameliorate the negative effects of HS as indicated by the maintenance of ADFI and decreased physiological responses, such as elevations in rectal temperature and respiration rate.
Collapse
|
14
|
Cottrell JJ, Furness JB, Wijesiriwardana UA, Ringuet M, Liu F, DiGiacomo K, Leury BJ, Clarke IJ, Dunshea FR. The Effect of Heat Stress on Respiratory Alkalosis and Insulin Sensitivity in Cinnamon Supplemented Pigs. Animals (Basel) 2020; 10:E690. [PMID: 32326633 PMCID: PMC7222789 DOI: 10.3390/ani10040690] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/06/2020] [Accepted: 04/14/2020] [Indexed: 01/03/2023] Open
Abstract
With increases in the frequency, intensity and duration of heat waves forecast plus expansion of tropical agriculture, heat stress (HS) is both a current and an emerging problem. As cinnamon has been shown to increase insulin sensitivity, which is part of the adaptive response to HS, the aim of this experiment was to determine if cinnamon could improve insulin sensitivity and ameliorate HS in grower pigs. In a 2 × 2 factorial design, 36 female Large White × Landrace pigs were fed control (0%) vs. cinnamon (1.5%) diets and housed for 7 day under thermoneutral (20 °C, TN) vs. HS conditions (8 h 35 °C/16 h 28 °C, 35% relative humidity). At the completion of the challenge, insulin sensitivity was assessed by an intravenous glucose tolerance test (IVGTT). Heat stress increased parameters such as respiration rate and rectal temperature. Furthermore, biochemical changes in blood and urine indicated the pigs were experiencing respiratory alkalosis. Minimal modelling of parameters of insulin sensitivity showed that HS pigs had a lower insulin response to the IVGTT and improved insulin sensitivity. Cinnamon had additive effects with heat stress, reflected in lowering the insulin area under curve (AUC) and elevated insulin sensitivity compared to TN. However, this apparent improvement in insulin sensitivity did not ameliorate any of the other physiological symptoms of HS.
Collapse
Affiliation(s)
- Jeremy J. Cottrell
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville VIC 3010, Melbourne, Australia; (J.B.F.); (U.A.W.); (F.L.); (K.D.); (B.J.L.); (F.R.D.)
| | - John B. Furness
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville VIC 3010, Melbourne, Australia; (J.B.F.); (U.A.W.); (F.L.); (K.D.); (B.J.L.); (F.R.D.)
- Department of Anatomy and Neurosciences, The University of Melbourne, Parkville VIC 3010, Melbourne, Australia;
| | - Udani A. Wijesiriwardana
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville VIC 3010, Melbourne, Australia; (J.B.F.); (U.A.W.); (F.L.); (K.D.); (B.J.L.); (F.R.D.)
| | - Mitchell Ringuet
- Department of Anatomy and Neurosciences, The University of Melbourne, Parkville VIC 3010, Melbourne, Australia;
| | - Fan Liu
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville VIC 3010, Melbourne, Australia; (J.B.F.); (U.A.W.); (F.L.); (K.D.); (B.J.L.); (F.R.D.)
| | - Kristy DiGiacomo
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville VIC 3010, Melbourne, Australia; (J.B.F.); (U.A.W.); (F.L.); (K.D.); (B.J.L.); (F.R.D.)
| | - Brian J. Leury
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville VIC 3010, Melbourne, Australia; (J.B.F.); (U.A.W.); (F.L.); (K.D.); (B.J.L.); (F.R.D.)
| | - Iain J. Clarke
- Department of Physiology, Monash University, Clayton VIC 3168, Monash, Australia;
| | - Frank R. Dunshea
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville VIC 3010, Melbourne, Australia; (J.B.F.); (U.A.W.); (F.L.); (K.D.); (B.J.L.); (F.R.D.)
| |
Collapse
|
15
|
Osei-Amponsah R, Chauhan SS, Leury BJ, Cheng L, Cullen B, Clarke IJ, Dunshea FR. Genetic Selection for Thermotolerance in Ruminants. Animals (Basel) 2019; 9:E948. [PMID: 31717903 PMCID: PMC6912363 DOI: 10.3390/ani9110948] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/05/2019] [Accepted: 11/05/2019] [Indexed: 12/15/2022] Open
Abstract
Variations in climatic variables (temperature, humidity and solar radiation) negatively impact livestock growth, reproduction, and production. Heat stress, for instance, is a source of huge financial loss to livestock production globally. There have been significant advances in physical modifications of animal environment and nutritional interventions as tools of heat stress mitigation. Unfortunately, these are short-term solutions and may be unsustainable, costly, and not applicable to all production systems. Accordingly, there is a need for innovative, practical, and sustainable approaches to overcome the challenges posed by global warming and climate change-induced heat stress. This review highlights attempts to genetically select and breed ruminants for thermotolerance and thereby sustain production in the face of changing climates. One effective way is to incorporate sustainable heat abatement strategies in ruminant production. Improved knowledge of the physiology of ruminant acclimation to harsh environments, the opportunities and tools available for selecting and breeding thermotolerant ruminants, and the matching of animals to appropriate environments should help to minimise the effect of heat stress on sustainable animal genetic resource growth, production, and reproduction to ensure protein food security.
Collapse
Affiliation(s)
- Richard Osei-Amponsah
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, VIC 3010, Australia; (R.O.-A.); (B.J.L.); (L.C.); (B.C.); (I.J.C.); (F.R.D.)
- Department of Animal Science, University of Ghana, Legon, Accra, Ghana
| | - Surinder S. Chauhan
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, VIC 3010, Australia; (R.O.-A.); (B.J.L.); (L.C.); (B.C.); (I.J.C.); (F.R.D.)
| | - Brian J. Leury
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, VIC 3010, Australia; (R.O.-A.); (B.J.L.); (L.C.); (B.C.); (I.J.C.); (F.R.D.)
| | - Long Cheng
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, VIC 3010, Australia; (R.O.-A.); (B.J.L.); (L.C.); (B.C.); (I.J.C.); (F.R.D.)
| | - Brendan Cullen
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, VIC 3010, Australia; (R.O.-A.); (B.J.L.); (L.C.); (B.C.); (I.J.C.); (F.R.D.)
| | - Iain J. Clarke
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, VIC 3010, Australia; (R.O.-A.); (B.J.L.); (L.C.); (B.C.); (I.J.C.); (F.R.D.)
| | - Frank R. Dunshea
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, VIC 3010, Australia; (R.O.-A.); (B.J.L.); (L.C.); (B.C.); (I.J.C.); (F.R.D.)
| |
Collapse
|
16
|
Spears JW. Boron, Chromium, Manganese, and Nickel in Agricultural Animal Production. Biol Trace Elem Res 2019; 188:35-44. [PMID: 30259263 DOI: 10.1007/s12011-018-1529-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/17/2018] [Indexed: 02/06/2023]
Abstract
This paper provides an overview of research that has been conducted with manganese (Mn), chromium (Cr), nickel (Ni), and boron (B) in poultry, swine, and ruminants. Manganese is an essential trace mineral that functions as an enzyme component and enzyme activator. A deficiency of Mn results in a variety of bone abnormalities, and Mn deficiency signs have been observed under practical conditions in poultry and cattle. Chromium can potentiate the action of insulin, but whether Cr is an essential trace mineral is controversial. Insulin sensitivity has been enhanced by Cr in cattle, swine, and broilers. Responses to Cr supplementation have been variable. Production responses to Cr supplementation have been most consistent in animals exposed to various stressors (heat, cold, weaning, etc). The legality of supplementing Cr to animal diets varies among countries, Cr sources, and animal species. A specific biochemical function for Ni and B has not been identified in mammals. Signs of Ni deficiency have been produced experimentally in a number of animal species. Nickel may affect rumen microbial fermentation in ruminants, as Ni is a component of bacterial urease and cofactor F430 in methanogenic bacteria. There is little evidence that dietary Ni limits animal production under practical conditions. Beneficial effects of B supplementation on growth and bone strength have been seen in poultry and swine, but results have been variable.
Collapse
Affiliation(s)
- Jerry W Spears
- Department of Animal Science, North Carolina State University, Raleigh, NC, 27695-7621, USA.
| |
Collapse
|
17
|
Purwar V, Oberoi PS, Dang AK. Effect of feed supplement and additives on stress mitigation in Karan Fries heifers. Vet World 2017; 10:1407-1412. [PMID: 29391680 PMCID: PMC5771164 DOI: 10.14202/vetworld.2017.1407-1412] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 10/30/2017] [Indexed: 11/26/2022] Open
Abstract
AIM The objective of this study was to evaluate the effects of protected fat plus yeast, niacin, zinc, and chromium dietary supplementation on the reduction of heat stress in Karan Fries (KF) heifers during hot humid months. MATERIALS AND METHODS The basal ration for both the control and treatment groups was the same, containing maize as green fodder and concentrate mixture. However, the treatment group was supplemented with protected fat (2.5% of dry matter intake [DMI]), yeast (10 g/animal/day), niacin (6 g/animal/day), zinc (40 mg/kg DMI), and chromium (1.5 mg/kg DMI). RESULT The overall mean value of afternoon rectal temperature for control and treatment group was 103.17±0.09 and 102.72±0.10°F, respectively, and was significantly (p<0.01) lower in the treatment group. The overall mean value of afternoon respiration rate for control and treatment group was 76.35±0.56 and 73.13±0.58 breaths/min, respectively, and was also significantly (p<0.01) lower in the treatment group. The overall mean value of afternoon pulse rate for control and treatment group was 97.09±0.63 and 94.67±0.67 beats/minute, respectively, and was also significantly (p<0.01) lower in the treatment group. Finally, the mean cortisol concentration for control and treatment group was 3.94±0.05 ng/ml and 3.70±0.06 ng/ml, respectively, and was significantly (p<0.01) lower in the treatment group. CONCLUSION The present study shows that supplementation with the above feed additives could serve as a heat stress abatement strategy in growing KF heifers during extreme conditions in summer months.
Collapse
Affiliation(s)
- Vaibhav Purwar
- Livestock Production and Management Division, ICAR-National Dairy Research Institute, Karnal - 132 001, Haryana, India
| | - P. S. Oberoi
- Livestock Production and Management Division, ICAR-National Dairy Research Institute, Karnal - 132 001, Haryana, India
| | - A. K. Dang
- Animal Physiology Division, ICAR-National Dairy Research Institute, Karnal - 132 001, Haryana, India
| |
Collapse
|
18
|
Liu F, Cottrell JJ, Collins CL, Henman DJ, O'Halloran KSB, Dunshea FR. Supplementation of selenium, vitamin E, chromium and betaine above recommended levels improves lactating performance of sows over summer. Trop Anim Health Prod 2017; 49:1461-1469. [PMID: 28726110 DOI: 10.1007/s11250-017-1348-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 07/03/2017] [Indexed: 01/06/2023]
Abstract
Heat stress (HS) exacerbates the body weight loss of lactating sows and reduces litter weight gain. Selenium (Se), vitamin E (VE), chromium (Cr) and betaine have been shown to ameliorate symptoms of HS, and yeast nucleotides and mannan oligosaccharides have been reported to improve lactational performance and immune response in pigs. Therefore, a combination of these nutrients may improve lactational performance of sows in summer. The effects of two nutritionally enhanced diets on lactational performance of sows in summer were investigated in two experiments. In experiment 1, we compared the effects of a nutritionally fortified diet (0.4 ppm Se, 95 IU/kg VE, 0.4 ppm Cr and 0.2% betaine; named as SVCB diet) with the NRC 2012 standard diet (0.15 ppm Se, 44 IU/kg VE) on lactational performance of sows in summer. Results showed that the SVCB diet reduced body weight loss (P = 0.039) and tended to reduce backfat loss (P = 0.075) of sows without affecting feed intake, while litter weight gain was not influenced. In experiment 2, we further enhanced the nutrients in the SVCB diet (0.8 ppm Se, 1% yeast nucleotides, and 0.1% mannan oligosaccharides; named as SNM diet). Results showed that the SNM diet did not improve feed intake of sows, farrowing performance, or litter weight gain compared with the SVCB diet, but increased body weight loss of the third parity sows (P = 0.037). Overall, a combined supplementation of Se, VE, Cr, and betaine above the NRC recommended levels can reduce mobilisation of body reserve of lactating sows in summer.
Collapse
Affiliation(s)
- Fan Liu
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Jeremy James Cottrell
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | | | | | | | - Frank Rowland Dunshea
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|