1
|
Tandon D, Campbell‐Staton S, Cheviron Z, von Holdt BM. Geographic Variation in Epigenetic Responses to Hypoxia in Deer Mice (Peromyscus maniculatus) Distributed Along an Elevational Gradient. Mol Ecol 2025; 34:e17752. [PMID: 40156223 PMCID: PMC12010463 DOI: 10.1111/mec.17752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 03/14/2025] [Accepted: 03/18/2025] [Indexed: 04/01/2025]
Abstract
Lowland and highland Peromyscus maniculatus populations display divergent, locally adapted physiological phenotypes shaped by altitudinal differences in oxygen availability. Many physiological responses to hypoxia seem to have evolved in lowland ancestors to offset episodic and localised bouts of low internal oxygen availability. However, upon chronic hypoxia exposure at high elevation, these responses can lead to physiological complications. Therefore, highland ancestry is often associated with evolved hypoxia responses, particularly traits promoting tolerance of constant hypoxia. Environmentally induced DNA methylation can dynamically alter gene expression patterns, providing a proximate basis for phenotypic plasticity. Given each population's differential reliance on plasticity for hypoxia tolerance, we hypothesised that lowland mice have a more robust epigenetic response to hypoxia exposure, driving trait plasticity, than highland mice. Using DNA methylation data of tissues from the heart's left ventricle, we show that upon hypoxia exposure, lowland mice chemically modulate the epigenetic landscape to a greater extent than highland mice, especially at key hypoxia-relevant genes such as Egln3. This gene is a regulator of the gene Epas1 that is frequently targeted for positive selection at high elevation. We find higher methylation among wild highland mice at gene Egln3 compared to wild lowland mice, suggesting a shared epigenetic ancestral response to episodic and chronic hypoxia. These findings highlight each population's distinct reliance on molecular plasticity driven by their unique evolutionary histories.
Collapse
Affiliation(s)
- Dhriti Tandon
- Department of Ecology and Evolutionary BiologyPrinceton UniversityPrincetonNew JerseyUSA
| | - Shane Campbell‐Staton
- Department of Ecology and Evolutionary BiologyPrinceton UniversityPrincetonNew JerseyUSA
| | - Zachary Cheviron
- Division of Biological Sciences and Wildlife Biology ProgramUniversity of MontanaMissoulaMontanaUSA
| | - Bridgett M. von Holdt
- Department of Ecology and Evolutionary BiologyPrinceton UniversityPrincetonNew JerseyUSA
| |
Collapse
|
2
|
Cai F, Li J, Zhang Y, Huang S, Liu W, Zhuo W, Qiu C. Interaction between Wnt/β-catenin signaling pathway and EMT pathway mediates the mechanism of sunitinib resistance in renal cell carcinoma. BMC Cancer 2024; 24:175. [PMID: 38317072 PMCID: PMC10840195 DOI: 10.1186/s12885-024-11907-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 01/22/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND Targeted drugs are the main methods of RCC treatment. However, drug resistance is common in RCC patients, in-depth study of the drug-resistant mechanism is essential. METHODS We constructed sunitinib resistant and Twist overexpressed A498 cells, and studied its mechanisms in vitro and in vivo. RESULTS In cell research, we found that either sunitinib resistance or Twist overexpression can activate Wnt/β-catenin and EMT signaling pathway, and the sunitinib resistance may work through β-catenin/TWIST/TCF4 trimer. In zebrafish research, we confirmed the similarity of Twist overexpression and sunitinib resistance, and the promoting effect of Twist overexpression on drug resistance. CONCLUSIONS Sunitinib resistance and Twist overexpression can activate Wnt/β-catenin signaling pathway and EMT to promote the growth and metastasis of RCC cells.
Collapse
Affiliation(s)
- Fangzhen Cai
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Jianwei Li
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Yanmei Zhang
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Sihuai Huang
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Wenbin Liu
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Weifeng Zhuo
- Department of Urology, JinJiang Municipal Hospital, Quanzhou, Fujian, China
| | - Chengzhi Qiu
- Department of General Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China.
| |
Collapse
|
3
|
Feng D, Qu L. Transcriptome analyses describe the consequences of persistent HIF-1 over-activation in Caenorhabditis elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.15.567311. [PMID: 38014086 PMCID: PMC10680707 DOI: 10.1101/2023.11.15.567311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Metazoan animals rely on oxygen for survival, but during normal development and homeostasis, animals are often challenged by hypoxia (low oxygen). In metazoans, many of the critical hypoxia responses are mediated by the evolutionarily conserved hypoxia-inducible transcription factors (HIFs). The stability and activity of HIF complexes are strictly regulated. In the model organism C. elegans, HIF-1 stability and activity are negatively regulated by VHL-1, EGL-9, RHY-1 and SWAN-1. Importantly, C. elegans mutants carrying strong loss-of-function mutations in these genes are viable, and this provides opportunities to interrogate the molecular consequences of persistent HIF-1 over-activation. We find that the genome-wide gene expression patterns are compellingly similar in these mutants, supporting models in which RHY-1, SWAN-1 and EGL-9 function in common pathway(s) to regulate HIF-1 activity. These studies illuminate the diversified biological roles played by HIF-1, including metabolism, hypoxia and other stress responses, reproduction and development. Genes regulated by persistent HIF-1 over-activation overlap with genes responsive to pathogens, and they overlap with genes regulated by DAF-16. As crucial stress regulators, HIF-1 and DAF-16 converge on key stress-responsive genes and function synergistically to enable hypoxia survival.
Collapse
Affiliation(s)
- Dingxia Feng
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, United States of America
| | - Long Qu
- Department of Statistics, Iowa State University, Ames, Iowa, United States of America
| |
Collapse
|
4
|
Zhan Y, Ning B, Sun J, Chang Y. Living in a hypoxic world: A review of the impacts of hypoxia on aquaculture. MARINE POLLUTION BULLETIN 2023; 194:115207. [PMID: 37453286 DOI: 10.1016/j.marpolbul.2023.115207] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/12/2023] [Accepted: 06/18/2023] [Indexed: 07/18/2023]
Abstract
Hypoxia is a harmful result of anthropogenic climate change. With the expansion of global low-oxygen zones (LOZs), many organisms have faced unprecedented challenges affecting their survival and reproduction. Extensive research has indicated that oxygen limitation has drastic effects on aquatic animals, including on their development, morphology, behavior, reproduction, and physiological metabolism. In this review, the global distribution and formation of LOZs were analyzed, and the impacts of hypoxia on aquatic animals and the molecular responses of aquatic animals to hypoxia were then summarized. The commonalities and specificities of the response to hypoxia in aquatic animals in different LOZs were discussed lastly. In general, this review will deepen the knowledge of the impacts of hypoxia on aquaculture and provide more information and research directions for the development of fishery resource protection strategies.
Collapse
Affiliation(s)
- Yaoyao Zhan
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, Liaoning, PR China
| | - Bingyu Ning
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, Liaoning, PR China
| | - Jingxian Sun
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, Liaoning, PR China; College of Life Science, Liaoning Normal University, Dalian 116029, Liaoning, PR China
| | - Yaqing Chang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, Liaoning, PR China; College of Life Science, Liaoning Normal University, Dalian 116029, Liaoning, PR China.
| |
Collapse
|
5
|
Abstract
After decades of research, our knowledge of the complexity of cancer mechanisms, elegantly summarized as 'hallmarks of cancer', is expanding, as are the therapeutic opportunities that this knowledge brings. However, cancer still needs intense research to diminish its tremendous impact. In this context, the use of simple model organisms such as Caenorhabditis elegans, in which the genetics of the apoptotic pathway was discovered, can facilitate the investigation of several cancer hallmarks. Amenable for genetic and drug screens, convenient for fast and efficient genome editing, and aligned with the 3Rs ('Replacement, Reduction and Refinement') principles for ethical animal research, C. elegans plays a significant role in unravelling the intricate network of cancer mechanisms and presents a promising option in clinical diagnosis and drug discovery.
Collapse
Affiliation(s)
- Julián Cerón
- Modeling Human Diseases in C. elegans Group – Genes, Disease and Therapy Program, Bellvitge Biomedical Research Institute – IDIBELL, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
6
|
Yan W, Feng Q, Li Y, Lin Y, Yao J, Jia Z, Lu L, Liu L, Zhou H. Integrated network pharmacology and DSS-induced colitis model to determine the anti-colitis effect of Rheum palmatum L. and Coptis chinensis Franch in granules. JOURNAL OF ETHNOPHARMACOLOGY 2023; 300:115675. [PMID: 36075275 DOI: 10.1016/j.jep.2022.115675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 08/20/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Rheum palmatum L. (RP) and Coptis chinensis Franch. (CC), frequently used as herbal pair (HP) in clinical practicing of traditional Chinese medicine, exerted predominate efficacies in colitis treatment. However, the mechanism of their synergism lacks scientific explanation. AIM OF THE STUDY By integrating network pharmacology and DSS-induced colitis model, the anti-colitis effects and synergistic molecular mechanisms of RP-CC combination was determined. MATERIALS AND METHODS In vivo study, mice were divided into control, model, RP, CC and RP-CC (low, middle, high) groups, 2.5% DSS was administrated to induce colitis for consecutive 7 days, subsequently, the therapeutic effects were evaluated from body weight changes, disease activity index (DAI), and pathological conditions. After determining the shared and exclusive targets of RP and CC, respectively by network pharmacology, CETSA, WB, and qPCR were utilized to verify the action modes of RP and CC on specific targets. RESULTS Compared to RP or CC used alone, RP-CC combination can significantly protect colon tissues from inflammatory damage in a dose-dependent manner via remarkably alleviating DAI and colon shortening. Network pharmacological analysis suggested that AKT1 would be the core target for RP-CC synergism since these two herbs could simultaneously but non-competitively bind to AKT1 at different sits. Furthermore, RP and CC could also influencing HIF and MAPK pathways, respectively, these additional actions attribute to more optimizing effectiveness towards colitis. CONCLUSION In contrast to the mild therapeutic effects of RP or CC individually, RP-CC herb pair could exert strong and synergistic effects in treatment of colitis via non-competitive binding to AKT1 simultaneously, as well as exclusively influencing MAPK and HIF pathways. Our study not only provides the evidence for understanding the combined effect of RP and CC, but also brings up a new strategy and suggestive thoughts for the rationality of HP-based TCM formula.
Collapse
Affiliation(s)
- Wenxin Yan
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Qian Feng
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Yu Li
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Yuefang Lin
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Jingjing Yao
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Zhen Jia
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Linlin Lu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
| | - Liang Liu
- Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, Guangdong, 510006, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, SAR, China.
| | - Hua Zhou
- Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, Guangdong, 510006, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, SAR, China.
| |
Collapse
|
7
|
Xu L, Yuan H, Wang Z, Zhao S, Yang Y. Ssc-miR-141 Attenuates Hypoxia-Induced Alveolar Type II Epithelial Cell Injury in Tibetan Pigs by Targeting PDCD4. Genes (Basel) 2022; 13:genes13122398. [PMID: 36553664 PMCID: PMC9778443 DOI: 10.3390/genes13122398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/14/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
The Tibetan pig is an endemic economic animal in the plateau region of China, and has a unique adaptation mechanism to the plateau hypoxic environment. Research into microRNAs (miRNAs) involved in the mechanism underlying hypoxia adaptation of Tibetan pig is very limited. Therefore, we isolated alveolar type II epithelial (ATII) cells from the lungs of the Tibetan pig, cultured them in normoxia/hypoxia (21% O2; 2% O2) for 48 h, and performed high-throughput sequencing analysis. We identified a hypoxic stress-related ssc-miR-141 and predicted its target genes. The target genes of ssc-miR-141 were mainly enriched in mitogen-activated protein kinase (MAPK), autophagy-animal, and Ras signaling pathways. Further, we confirmed that PDCD4 may serve as the target gene of ssc-miR-141. Real-time quantitative polymerase chain reaction (RT-qPCR) analysis was performed to confirm the expression levels of ssc-miR-141 and PDCD4, and a dual-luciferase gene reporter system was used to verify the targeted linkage of ssc-miR-141 to PDCD4. The results showed that the expression level of ssc-miR-141 in the hypoxia group was higher than that in the normoxia group, while the expression level of PDCD4 tended to show the opposite trend and significantly decreased under hypoxia. These findings suggest that ssc-miR-141 is associated with hypoxia adaptation and provide a new insight into the role of miRNAs from ATII cells of Tibetan pig in hypoxia adaptation.
Collapse
Affiliation(s)
- Linna Xu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730030, China
- Gansu Provincial Animal Husbandry Technology Popularization Station, Lanzhou 730030, China
| | - Haonan Yuan
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730030, China
| | - Zongli Wang
- National Animal Husbandry Services, Beijing 100026, China
| | - Shengguo Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730030, China
- Correspondence:
| | - Yanan Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730030, China
| |
Collapse
|
8
|
O'Keeffe C, Greenwald I. EGFR signal transduction is downregulated in C. elegans vulval precursor cells during dauer diapause. Development 2022; 149:dev201094. [PMID: 36227589 PMCID: PMC9793418 DOI: 10.1242/dev.201094] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/04/2022] [Indexed: 11/05/2022]
Abstract
Caenorhabditis elegans larvae display developmental plasticity in response to environmental conditions: in adverse conditions, second-stage larvae enter a reversible, long-lived dauer stage instead of proceeding to reproductive adulthood. Dauer entry interrupts vulval induction and is associated with a reprogramming-like event that preserves the multipotency of vulval precursor cells (VPCs), allowing vulval development to reinitiate if conditions improve. Vulval induction requires the LIN-3/EGF-like signal from the gonad, which activates EGFR-Ras-ERK signal transduction in the nearest VPC, P6.p. Here, using a biosensor and live imaging we show that EGFR-Ras-ERK activity is downregulated in P6.p in dauers. We investigated this process using gene mutations or transgenes to manipulate different steps of the pathway, and by analyzing LET-23/EGFR subcellular localization during dauer life history. We found that the response to EGF is attenuated at or upstream of Ras activation, and discuss potential membrane-associated mechanisms that could achieve this. We also describe other findings pertaining to the maintenance of VPC competence and quiescence in dauer larvae. Our analysis indicates that VPCs have L2-like and unique dauer stage features rather than features of L3 VPCs in continuous development.
Collapse
Affiliation(s)
- Catherine O'Keeffe
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Iva Greenwald
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| |
Collapse
|
9
|
High-throughput sequencing revealed the expression profile and potential key molecules of the circular RNAs involved in the process of hypoxic adaptation in Tibetan chickens. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00848-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Abstract
In its natural habitat, C. elegans encounters a wide variety of microbes, including food, commensals and pathogens. To be able to survive long enough to reproduce, C. elegans has developed a complex array of responses to pathogens. These activities are coordinated on scales that range from individual organelles to the entire organism. Often, the response is triggered within cells, by detection of infection-induced damage, mainly in the intestine or epidermis. C. elegans has, however, a capacity for cell non-autonomous regulation of these responses. This frequently involves the nervous system, integrating pathogen recognition, altering host biology and governing avoidance behavior. Although there are significant differences with the immune system of mammals, some mechanisms used to limit pathogenesis show remarkable phylogenetic conservation. The past 20 years have witnessed an explosion of host-pathogen interaction studies using C. elegans as a model. This review will discuss the broad themes that have emerged and highlight areas that remain to be fully explored.
Collapse
Affiliation(s)
- Céline N Martineau
- Aix Marseille Université, Inserm, CNRS, CIML, Turing Centre for Living Systems, Marseille, France
| | | | - Nathalie Pujol
- Aix Marseille Université, Inserm, CNRS, CIML, Turing Centre for Living Systems, Marseille, France.
| |
Collapse
|
11
|
Zhao Y, Zeng D, Wang H, Sun N, Xin J, Yang H, Lei L, Khalique A, Rajput DS, Pan K, Shu G, Jing B, Ni X. Analysis of miRNA Expression in the Ileum of Broiler Chickens During Bacillus licheniformis H2 Supplementation Against Subclinical Necrotic Enteritis. Probiotics Antimicrob Proteins 2020; 13:356-366. [PMID: 32975724 DOI: 10.1007/s12602-020-09709-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2020] [Indexed: 01/20/2023]
Abstract
Subclinical necrotic enteritis (SNE) is one of the serious threats to the poultry industry. Probiotics have been proven to exert beneficial effects in controlling SNE. However, their exact mechanisms have not been fully elucidated. Moreover, few studies have focused on their impact on microRNAs (miRNAs). Therefore, the present study aimed to explore the miRNA expression profiles in the ileum of broiler chickens during probiotic supplementation for controlling SNE. A total of 180 newly hatched male broilers were randomly allocated into three groups, including a negative control group, an SNE infection group, and a Bacillus licheniformis H2 pretreatment group. Illumina high-throughput sequencing was conducted to identify the miRNA expression of the three groups. Results showed that 628 miRNAs, including 582 known miRNAs and 46 novel miRNAs, were detected in the miRNA libraries. The target genes of 57 significantly differentially expressed miRNAs were predicted and annotated. Moreover, they were found to be partly enriched in pathways related to immunity and inflammation such as tumor necrosis factor receptor binding, immune response-regulating signaling pathway, Toll-like receptor 2 signaling pathway, interleukin-15 production, activation of NF-κB-inducing kinase activity, and MAP kinase tyrosine/serine/threonine phosphatase activity. Some of the target genes of 57 miRNAs were related to the MAPK signaling pathway. Furthermore, the expression of several miRNAs, which may be involved in the MAPK signaling pathway, was significantly affected by SNE induction and showed no significant difference in the presence of H2. All these findings provide comprehensive miRNA expression profiles of three different treatment groups. They further suggest that H2 could exert beneficial effects in controlling SNE through immune and inflammatory response associated with altered miRNA expression, such as the MAPK signaling pathway.
Collapse
Affiliation(s)
- Ying Zhao
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Dong Zeng
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Hesong Wang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ning Sun
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jinge Xin
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Hanbo Yang
- Chengdu Slan Biotechnology Co., Ltd, Chengdu, China
| | - Lei Lei
- Chengdu Slan Biotechnology Co., Ltd, Chengdu, China
| | - Abdul Khalique
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Danish Sharafat Rajput
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Kangcheng Pan
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Gang Shu
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Bo Jing
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xueqin Ni
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University, Chengdu, Sichuan, China.
| |
Collapse
|
12
|
Mereu L, Morf MK, Spiri S, Gutierrez P, Escobar-Restrepo JM, Daube M, Walser M, Hajnal A. Polarized epidermal growth factor secretion ensures robust vulval cell fate specification in Caenorhabditis elegans. Development 2020; 147:dev175760. [PMID: 32439759 PMCID: PMC7286359 DOI: 10.1242/dev.175760] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 05/04/2020] [Indexed: 11/20/2022]
Abstract
The anchor cell (AC) in C. elegans secretes an epidermal growth factor (EGF) homolog that induces adjacent vulval precursor cells (VPCs) to differentiate. The EGF receptor in the nearest VPC sequesters the limiting EGF amounts released by the AC to prevent EGF from spreading to distal VPCs. Here, we show that not only EGFR localization in the VPCs but also EGF polarity in the AC is necessary for robust fate specification. The AC secretes EGF in a directional manner towards the nearest VPC. Loss of AC polarity causes signal spreading and, when combined with MAPK pathway hyperactivation, the ectopic induction of distal VPCs. In a screen for genes preventing distal VPC induction, we identified sra-9 and nlp-26 as genes specifically required for polarized EGF secretion. sra-9(lf) and nlp-26(lf) mutants exhibit errors in vulval fate specification, reduced precision in VPC to AC alignment and increased variability in MAPK activation. sra-9 encodes a seven-pass transmembrane receptor acting in the AC and nlp-26 a neuropeptide-like protein expressed in the VPCs. SRA-9 and NLP-26 may transduce a feedback signal to channel EGF secretion towards the nearest VPC.
Collapse
Affiliation(s)
- Louisa Mereu
- Department of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
- Molecular Life Science PhD Program, University and ETH Zürich, CH-8057 Zürich, Switzerland
| | - Matthias K Morf
- Department of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
- Molecular Life Science PhD Program, University and ETH Zürich, CH-8057 Zürich, Switzerland
| | - Silvan Spiri
- Department of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
- Molecular Life Science PhD Program, University and ETH Zürich, CH-8057 Zürich, Switzerland
| | - Peter Gutierrez
- Department of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
- Molecular Life Science PhD Program, University and ETH Zürich, CH-8057 Zürich, Switzerland
| | - Juan M Escobar-Restrepo
- Department of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Michael Daube
- Department of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Michael Walser
- Department of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Alex Hajnal
- Department of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| |
Collapse
|
13
|
Haag A, Walser M, Henggeler A, Hajnal A. The CHORD protein CHP-1 regulates EGF receptor trafficking and signaling in C. elegans and in human cells. eLife 2020; 9:e50986. [PMID: 32053105 PMCID: PMC7062474 DOI: 10.7554/elife.50986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 02/12/2020] [Indexed: 11/13/2022] Open
Abstract
The intracellular trafficking of growth factor receptors determines the activity of their downstream signaling pathways. Here, we show that the putative HSP-90 co-chaperone CHP-1 acts as a regulator of EGFR trafficking in C. elegans. Loss of chp-1 causes the retention of the EGFR in the ER and decreases MAPK signaling. CHP-1 is specifically required for EGFR trafficking, as the localization of other transmembrane receptors is unaltered in chp-1(lf) mutants, and the inhibition of hsp-90 or other co-chaperones does not affect EGFR localization. The role of the CHP-1 homolog CHORDC1 during EGFR trafficking is conserved in human cells. Analogous to C. elegans, the response of CHORDC1-deficient A431 cells to EGF stimulation is attenuated, the EGFR accumulates in the ER and ERK2 activity decreases. Although CHP-1 has been proposed to act as a co-chaperone for HSP90, our data indicate that CHP-1 plays an HSP90-independent function in controlling EGFR trafficking through the ER.
Collapse
Affiliation(s)
- Andrea Haag
- Institute of Molecular Life Sciences, University of ZürichWinterthurerstrasseSwitzerland
- Molecular Life Science Zürich PhD ProgramZürichSwitzerland
| | - Michael Walser
- Institute of Molecular Life Sciences, University of ZürichWinterthurerstrasseSwitzerland
| | - Adrian Henggeler
- Institute of Molecular Life Sciences, University of ZürichWinterthurerstrasseSwitzerland
| | - Alex Hajnal
- Institute of Molecular Life Sciences, University of ZürichWinterthurerstrasseSwitzerland
| |
Collapse
|