1
|
Unger Avila P, Padvitski T, Leote AC, Chen H, Saez-Rodriguez J, Kann M, Beyer A. Gene regulatory networks in disease and ageing. Nat Rev Nephrol 2024; 20:616-633. [PMID: 38867109 DOI: 10.1038/s41581-024-00849-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2024] [Indexed: 06/14/2024]
Abstract
The precise control of gene expression is required for the maintenance of cellular homeostasis and proper cellular function, and the declining control of gene expression with age is considered a major contributor to age-associated changes in cellular physiology and disease. The coordination of gene expression can be represented through models of the molecular interactions that govern gene expression levels, so-called gene regulatory networks. Gene regulatory networks can represent interactions that occur through signal transduction, those that involve regulatory transcription factors, or statistical models of gene-gene relationships based on the premise that certain sets of genes tend to be coexpressed across a range of conditions and cell types. Advances in experimental and computational technologies have enabled the inference of these networks on an unprecedented scale and at unprecedented precision. Here, we delineate different types of gene regulatory networks and their cell-biological interpretation. We describe methods for inferring such networks from large-scale, multi-omics datasets and present applications that have aided our understanding of cellular ageing and disease mechanisms.
Collapse
Affiliation(s)
- Paula Unger Avila
- Cluster of Excellence on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Tsimafei Padvitski
- Cluster of Excellence on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Ana Carolina Leote
- Cluster of Excellence on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - He Chen
- Cluster of Excellence on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Department II of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Julio Saez-Rodriguez
- Faculty of Medicine and Heidelberg University Hospital, Institute for Computational Biomedicine, Heidelberg University, Heidelberg, Germany
| | - Martin Kann
- Department II of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Andreas Beyer
- Cluster of Excellence on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany.
- Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
- Institute for Genetics, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany.
| |
Collapse
|
2
|
Wang B, Reville PK, Yassouf MY, Jelloul FZ, Ly C, Desai PN, Wang Z, Borges P, Veletic I, Dasdemir E, Burks JK, Tang G, Guo S, Garza AI, Nasnas C, Vaughn NR, Baran N, Deng Q, Matthews J, Gunaratne PH, Antunes DA, Ekmekcioglu S, Sasaki K, Garcia MB, Cuglievan B, Hao D, Daver N, Green MR, Konopleva M, Futreal A, Post SM, Abbas HA. Comprehensive characterization of IFNγ signaling in acute myeloid leukemia reveals prognostic and therapeutic strategies. Nat Commun 2024; 15:1821. [PMID: 38418901 PMCID: PMC10902356 DOI: 10.1038/s41467-024-45916-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 02/05/2024] [Indexed: 03/02/2024] Open
Abstract
Interferon gamma (IFNγ) is a critical cytokine known for its diverse roles in immune regulation, inflammation, and tumor surveillance. However, while IFNγ levels were elevated in sera of most newly diagnosed acute myeloid leukemia (AML) patients, its complex interplay in AML remains insufficiently understood. We aim to characterize these complex interactions through comprehensive bulk and single-cell approaches in bone marrow of newly diagnosed AML patients. We identify monocytic AML as having a unique microenvironment characterized by IFNγ producing T and NK cells, high IFNγ signaling, and immunosuppressive features. IFNγ signaling score strongly correlates with venetoclax resistance in primary AML patient cells. Additionally, IFNγ treatment of primary AML patient cells increased venetoclax resistance. Lastly, a parsimonious 47-gene IFNγ score demonstrates robust prognostic value. In summary, our findings suggest that inhibiting IFNγ is a potential treatment strategy to overcoming venetoclax resistance and immune evasion in AML patients.
Collapse
Affiliation(s)
- Bofei Wang
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Patrick K Reville
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mhd Yousuf Yassouf
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fatima Z Jelloul
- Department of Hematopathology, Division of Pathology & Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Christopher Ly
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Poonam N Desai
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- School of Biomedical Informatics, The University of Texas Health Science Center, Houston, TX, USA
| | - Zhe Wang
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pamella Borges
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Ivo Veletic
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Enes Dasdemir
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Jared K Burks
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Guilin Tang
- Department of Hematopathology, Division of Pathology & Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shengnan Guo
- School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, China
| | - Araceli Isabella Garza
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cedric Nasnas
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nicole R Vaughn
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Natalia Baran
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Qing Deng
- Department of Lymphoma & Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jairo Matthews
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Preethi H Gunaratne
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Dinler A Antunes
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Suhendan Ekmekcioglu
- Department of Melanoma Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Koji Sasaki
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Miriam B Garcia
- Department of Pediatrics, Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Branko Cuglievan
- Department of Pediatrics, Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dapeng Hao
- School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, China
| | - Naval Daver
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael R Green
- Department of Lymphoma & Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Genomic Medicine, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Marina Konopleva
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Andrew Futreal
- Department of Genomic Medicine, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sean M Post
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hussein A Abbas
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Genomic Medicine, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
3
|
Hosseini-Gerami L, Higgins IA, Collier DA, Laing E, Evans D, Broughton H, Bender A. Benchmarking causal reasoning algorithms for gene expression-based compound mechanism of action analysis. BMC Bioinformatics 2023; 24:154. [PMID: 37072707 PMCID: PMC10111792 DOI: 10.1186/s12859-023-05277-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 04/06/2023] [Indexed: 04/20/2023] Open
Abstract
BACKGROUND Elucidating compound mechanism of action (MoA) is beneficial to drug discovery, but in practice often represents a significant challenge. Causal Reasoning approaches aim to address this situation by inferring dysregulated signalling proteins using transcriptomics data and biological networks; however, a comprehensive benchmarking of such approaches has not yet been reported. Here we benchmarked four causal reasoning algorithms (SigNet, CausalR, CausalR ScanR and CARNIVAL) with four networks (the smaller Omnipath network vs. 3 larger MetaBase™ networks), using LINCS L1000 and CMap microarray data, and assessed to what extent each factor dictated the successful recovery of direct targets and compound-associated signalling pathways in a benchmark dataset comprising 269 compounds. We additionally examined impact on performance in terms of the functions and roles of protein targets and their connectivity bias in the prior knowledge networks. RESULTS According to statistical analysis (negative binomial model), the combination of algorithm and network most significantly dictated the performance of causal reasoning algorithms, with the SigNet recovering the greatest number of direct targets. With respect to the recovery of signalling pathways, CARNIVAL with the Omnipath network was able to recover the most informative pathways containing compound targets, based on the Reactome pathway hierarchy. Additionally, CARNIVAL, SigNet and CausalR ScanR all outperformed baseline gene expression pathway enrichment results. We found no significant difference in performance between L1000 data or microarray data, even when limited to just 978 'landmark' genes. Notably, all causal reasoning algorithms also outperformed pathway recovery based on input DEGs, despite these often being used for pathway enrichment. Causal reasoning methods performance was somewhat correlated with connectivity and biological role of the targets. CONCLUSIONS Overall, we conclude that causal reasoning performs well at recovering signalling proteins related to compound MoA upstream from gene expression changes by leveraging prior knowledge networks, and that the choice of network and algorithm has a profound impact on the performance of causal reasoning algorithms. Based on the analyses presented here this is true for both microarray-based gene expression data as well as those based on the L1000 platform.
Collapse
Affiliation(s)
- Layla Hosseini-Gerami
- Department of Chemistry, Centre for Molecular Informatics, Cambridge, UK
- Ignota Labs, London, UK
| | | | - David A Collier
- Eli Lilly and Company, Bracknell, UK
- Social, Genetic and Developmental Psychiatry Centre, IoPPN, Kings's College London, London, UK
- Genetic and Genomic Consulting Ltd, Farnham, UK
| | - Emma Laing
- Eli Lilly and Company, Bracknell, UK
- GSK, Stevenage, UK
| | - David Evans
- Eli Lilly and Company, Bracknell, UK
- DeepMind, London, UK
| | - Howard Broughton
- Centre de Investigación, Eli Lilly and Company, Alcobendas, Spain
| | - Andreas Bender
- Department of Chemistry, Centre for Molecular Informatics, Cambridge, UK.
| |
Collapse
|
4
|
Tang J, Xu Q, Tang K, Ye X, Cao Z, Zou M, Zeng J, Guan X, Han J, Wang Y, Yang L, Lin Y, Jiang K, Chen X, Zhao Y, Tian D, Li C, Shen W, Du X. Susceptibility identification for seasonal influenza A/H3N2 based on baseline blood transcriptome. Front Immunol 2023; 13:1048774. [PMID: 36713410 PMCID: PMC9878565 DOI: 10.3389/fimmu.2022.1048774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/23/2022] [Indexed: 01/13/2023] Open
Abstract
Introduction Influenza susceptibility difference is a widely existing trait that has great practical significance for the accurate prevention and control of influenza. Methods Here, we focused on the human susceptibility to the seasonal influenza A/H3N2 of healthy adults at baseline level. Whole blood expression data for influenza A/H3N2 susceptibility from GEO were collected firstly (30 symptomatic and 19 asymptomatic). Then to explore the differences at baseline, a suite of systems biology approaches - the differential expression analysis, co-expression network analysis, and immune cell frequencies analysis were utilized. Results We found the baseline condition, especially immune condition between symptomatic and asymptomatic, was different. Co-expression module that is positively related to asymptomatic is also related to immune cell type of naïve B cell. Function enrichment analysis showed significantly correlation with "B cell receptor signaling pathway", "immune response-activating cell surface receptor signaling pathway" and so on. Also, modules that are positively related to symptomatic are also correlated to immune cell type of neutrophils, with function enrichment analysis showing significantly correlations with "response to bacterium", "inflammatory response", "cAMP-dependent protein kinase complex" and so on. Responses of symptomatic and asymptomatic hosts after virus exposure show differences on resisting the virus, with more effective frontline defense for asymptomatic hosts. A prediction model was also built based on only baseline transcription information to differentiate symptomatic and asymptomatic population with accuracy of 0.79. Discussion The results not only improve our understanding of the immune system and influenza susceptibility, but also provide a new direction for precise and targeted prevention and therapy of influenza.
Collapse
Affiliation(s)
- Jing Tang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China,School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Qiumei Xu
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China,Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Kang Tang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China,School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Xiaoyan Ye
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zicheng Cao
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China,School of Public Health, Shantou University, Shantou, China
| | - Min Zou
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China,School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Jinfeng Zeng
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China,School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Xinyan Guan
- Department of Chronic Disease Control and Prevention, Shenzhen Guangming District Center for Disease Control and Prevention, Shenzhen, China
| | - Jinglin Han
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China,School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Yihan Wang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China,School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Lan Yang
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China,School of Public Health, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Yishan Lin
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China,School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Kaiao Jiang
- Palos Verdes Peninsula High School, Rancho Palos Verdes, CA, United States
| | - Xiaoliang Chen
- Department of Chronic Disease Control and Prevention, Shenzhen Guangming District Center for Disease Control and Prevention, Shenzhen, China
| | - Yang Zhao
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China,School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Dechao Tian
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China,School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Chunwei Li
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wei Shen
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China,*Correspondence: Xiangjun Du, ; Wei Shen,
| | - Xiangjun Du
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China,School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China,*Correspondence: Xiangjun Du, ; Wei Shen,
| |
Collapse
|
5
|
Dynamics of hepatocyte-cholangiocyte cell-fate decisions during liver development and regeneration. iScience 2022; 25:104955. [PMID: 36060070 PMCID: PMC9437857 DOI: 10.1016/j.isci.2022.104955] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/17/2022] [Accepted: 08/12/2022] [Indexed: 11/25/2022] Open
Abstract
The immense regenerative potential of the liver is attributed to the ability of its two key cell types – hepatocytes and cholangiocytes – to trans-differentiate to one another either directly or through intermediate progenitor states. However, the dynamic features of decision-making between these cell-fates during liver development and regeneration remains elusive. Here, we identify a core gene regulatory network comprising c/EBPα, TGFBR2, and SOX9 which is multistable in nature, enabling three distinct cell states – hepatocytes, cholangiocytes, and liver progenitor cells (hepatoblasts/oval cells) – and stochastic switching among them. Predicted expression signature for these three states are validated through multiple bulk and single-cell transcriptomic datasets collected across developmental stages and injury-induced liver repair. This network can also explain the experimentally observed spatial organization of phenotypes in liver parenchyma and predict strategies for efficient cellular reprogramming. Our analysis elucidates how the emergent dynamics of underlying regulatory networks drive diverse cell-fate decisions in liver development and regeneration. Identified minimal regulatory network to model liver development and regeneration Changes in phenotypic landscapes by in-silico perturbations of regulatory networks Ability to explain physiological spatial patterning of liver cell types Decoded strategies for efficient reprogramming among liver cell phenotypes
Collapse
|
6
|
Kim J, T. Jakobsen S, Natarajan KN, Won KJ. TENET: gene network reconstruction using transfer entropy reveals key regulatory factors from single cell transcriptomic data. Nucleic Acids Res 2021; 49:e1. [PMID: 33170214 PMCID: PMC7797076 DOI: 10.1093/nar/gkaa1014] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 10/05/2020] [Accepted: 10/14/2020] [Indexed: 12/22/2022] Open
Abstract
Accurate prediction of gene regulatory rules is important towards understanding of cellular processes. Existing computational algorithms devised for bulk transcriptomics typically require a large number of time points to infer gene regulatory networks (GRNs), are applicable for a small number of genes and fail to detect potential causal relationships effectively. Here, we propose a novel approach 'TENET' to reconstruct GRNs from single cell RNA sequencing (scRNAseq) datasets. Employing transfer entropy (TE) to measure the amount of causal relationships between genes, TENET predicts large-scale gene regulatory cascades/relationships from scRNAseq data. TENET showed better performance than other GRN reconstructors, in identifying key regulators from public datasets. Specifically from scRNAseq, TENET identified key transcriptional factors in embryonic stem cells (ESCs) and during direct cardiomyocytes reprogramming, where other predictors failed. We further demonstrate that known target genes have significantly higher TE values, and TENET predicted higher TE genes were more influenced by the perturbation of their regulator. Using TENET, we identified and validated that Nme2 is a culture condition specific stem cell factor. These results indicate that TENET is uniquely capable of identifying key regulators from scRNAseq data.
Collapse
Affiliation(s)
- Junil Kim
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2200 Copenhagen N, Denmark
- Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Simon T. Jakobsen
- Functional Genomics and Metabolism Unit, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Denmark
| | - Kedar N Natarajan
- Functional Genomics and Metabolism Unit, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Denmark
- Danish Institute of Advanced Study (D-IAS), University of Southern Denmark, Denmark
| | - Kyoung-Jae Won
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2200 Copenhagen N, Denmark
- Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| |
Collapse
|