1
|
Gope TK, Pal D, Srivastava AK, Chatterjee B, Bose S, Ain R. ARID3A inhibits colorectal cancer cell stemness and drug-resistance by targeting a multitude of stemness-associated genes. Life Sci 2025; 372:123642. [PMID: 40250751 DOI: 10.1016/j.lfs.2025.123642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/14/2025] [Accepted: 04/11/2025] [Indexed: 04/20/2025]
Abstract
AIMS ARID3A is highly expressed in CRC patients. However, the functional role of ARID3A in CRC remains unexplored. We sought to demonstrate ARID3A function in CRC. MATERIALS AND METHODS ARID3A was knocked-down using lentiviruses harboring shRNA. CRC patients' tissue cDNA array was used to assess expression of ARID3A. Effect of ARID3A on CSC-associated genes was analysed using real-time PCR array. Western-blot analysis and ChIP assay were used to validate the role of ARID3A. Paclitaxel-resistant CSC-enriched cell population was used to assess correlation between ARID3A, stemness and drug resistance potential. Ex vivo findings were corroborated on preclinical mouse model. KEY FINDINGS ARID3A expression was significantly higher throughout CRC stages than normal individuals. ARID3A expression was significantly higher in the aggressive CRC cell line HCT116 compared to HT29, which expressed higher levels of CD44, CD133, and EpCAM, suggesting a reciprocal relationship between ARID3A expression and CRC stemness. Real-time PCR-based stem cell array using ARID3A-knockdown HCT116 cells showed upregulation of 9 cancer stem cell (CSC)-associated genes. ChIP-assay verified binding of ARID3A on transcriptionally active promoter regions of CSC associated genes. ARID3A depletion led to enhanced proliferation, anchorage-independent growth, and ABCG2 upregulation in HCT116 cells. In paclitaxel-resistant HCT116 cells, ARID3A expression was dampened, whereas, CD44 and CD133 increased. ARID3A knockdown accelerated tumor growth and promoted larger tumor formation in nude-mouse xenograft model. Ki67, CD44 and CD133 were highly upregulated in knockdown tumors. SIGNIFICANCE This study demonstrated that ARID3A inhibits CRC stemness, anchorage-independent growth, self-renewal, anti-cancer drug resistance of CRC cells and tumor growth in vivo.
Collapse
Affiliation(s)
- Tamal Kanti Gope
- Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Calcutta, West-Bengal 700032, India; Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, UP 201002, India
| | - Debankur Pal
- Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Calcutta, West-Bengal 700032, India; Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, UP 201002, India
| | - Amit Kumar Srivastava
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, WB, India
| | - Bilash Chatterjee
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, WB, India
| | - Subhankar Bose
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, WB, India
| | - Rupasri Ain
- Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Calcutta, West-Bengal 700032, India; Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, UP 201002, India.
| |
Collapse
|
2
|
Biase FH, Moorey SE, Schnuelle JG, Rodning S, Ortega MS, Spencer TE. Altered microRNA composition in the uterine lumen fluid in cattle (Bos taurus) pregnancies initiated by artificial insemination or transfer of an in vitro produced embryo. J Anim Sci Biotechnol 2024; 15:130. [PMID: 39267128 PMCID: PMC11397056 DOI: 10.1186/s40104-024-01083-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 07/29/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are presented in the uterine lumen of many mammals, and in vitro experiments have determined that several miRNAs are important for the regulation of endometrial and trophoblast functions. Our aim was to identify and contrast the miRNAs present in extracellular vesicles (EVs) in the uterine lumen fluid (ULF) at the onset of attachment in cattle pregnancies (gestation d 18) initiated by artificial insemination (AI) or by the transfer of an in vitro-produced blastocyst (IVP-ET). A third group had no conceptus after the transfer of an IVP embryo. RESULTS The abundance of 263 annotated miRNAs was quantified in the EVs collected from ULF. There was an increase in the transcript abundance of 20 miRNAs in the ULF EVs from the AI pregnant group, while 4 miRNAs had a lower abundance relative to the group not containing a conceptus. Additionally, 4 miRNAs were more abundant in ULF EVs in the AI pregnant group relative to IVP-ET group (bta-mir-17, bta-mir-7-3, MIR7-1, MIR18A). Specific miRNAs in the ULF EVs were co-expressed with messenger RNAs expressed in extra-embryonic tissues and endometrium, including genes that are known to be their targets. CONCLUSIONS The results provide biological insights into the participation of miRNAs in the regulation of trophoblast proliferation and differentiation, as well as in endometrium receptivity. The knowledge that in vitro cultured embryos can contribute to the altered abundance of specific miRNAs in the uterine lumen can lead to the development of corrective approaches to reduce conceptus losses during the first month of pregnancy in cattle.
Collapse
Affiliation(s)
- Fernando H Biase
- School of Animal Sciences, Virginia Polytechnic Institute and State University, 175 W Campus Dr, Blacksburg, VA, 24061, USA.
| | - Sarah E Moorey
- Department of Animal Science, University of Tennessee, Knoxville, TN, 37996, USA
| | - Julie G Schnuelle
- Department of Clinical Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Soren Rodning
- Department of Animal Science, Auburn University, Auburn, AL, 36849, USA
| | - Martha Sofia Ortega
- Department of Animal and Dairy Sciences, University of Wisconsin Madison, Madison, WI, 53706, USA
| | - Thomas E Spencer
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
3
|
Biondic S, Petropoulos S. Evidence for Functional Roles of MicroRNAs in Lineage Specification During Mouse and Human Preimplantation Development. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2023; 96:481-494. [PMID: 38161584 PMCID: PMC10751869 DOI: 10.59249/fosi4358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Proper formation of the blastocyst, including the specification of the first embryonic cellular lineages, is required to ensure healthy embryo development and can significantly impact the success of assisted reproductive technologies (ARTs). However, the regulatory role of microRNAs in early development, particularly in the context of preimplantation lineage specification, remains largely unknown. Taking a cross-species approach, this review aims to summarize the expression dynamics and functional significance of microRNAs in the differentiation and maintenance of lineage identity in both the mouse and the human. Findings are consolidated from studies conducted using in vitro embryonic stem cell models representing the epiblast, trophectoderm, and primitive endoderm lineages (modeled by naïve embryonic stem cells, trophoblast stem cells, and extraembryonic endoderm stem cells, respectively) to provide insight on what may be occurring in the embryo. Additionally, studies directly conducted in both mouse and human embryos are discussed, emphasizing similarities to the stem cell models and the gaps in our understanding, which will hopefully lead to further investigation of these areas. By unraveling the intricate mechanisms by which microRNAs regulate the specification and maintenance of cellular lineages in the blastocyst, we can leverage this knowledge to further optimize stem cell-based models such as the blastoids, enhance embryo competence, and develop methods of non-invasive embryo selection, which can potentially increase the success rates of assisted reproductive technologies and improve the experiences of those receiving fertility treatments.
Collapse
Affiliation(s)
- Savana Biondic
- Centre de Recherche du Centre Hospitalier de
l’Université de Montréal, Axe Immunopathologie, Montréal, Canada
- Faculty of Medicine, Molecular Biology Program,
Université de Montréal, Montréal, Canada
| | - Sophie Petropoulos
- Centre de Recherche du Centre Hospitalier de
l’Université de Montréal, Axe Immunopathologie, Montréal, Canada
- Faculty of Medicine, Molecular Biology Program,
Université de Montréal, Montréal, Canada
- Division of Obstetrics and Gynecology, Department of
Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm,
Sweden
| |
Collapse
|
4
|
Jena SK, Das S, Chakraborty S, Ain R. Molecular determinants of epithelial mesenchymal transition in mouse placenta and trophoblast stem cell. Sci Rep 2023; 13:10978. [PMID: 37414855 PMCID: PMC10325982 DOI: 10.1038/s41598-023-37977-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/30/2023] [Indexed: 07/08/2023] Open
Abstract
Trophectoderm cells of the blastocyst are the precursor of the placenta that is comprised of trophoblast, endothelial and smooth muscle cells. Since trophoectoderm cells are epithelial in nature, epithelial mesenchymal transition (EMT) of trophoblast stem (TS) cells might play pivotal role in placental morphogenesis. However, the molecular regulation of EMT during placental development and trophoblast differentiation still remained elusive. In this report, we sought to identify the molecular signature that regulates EMT during placental development and TS cell differentiation in mice. On E7.5 onwards the TS cells, located in the ectoplacental cone (EPC), rapidly divide and differentiate leading to formation of placenta proper. Using a real time PCR based array of functional EMT transcriptome with RNA from mouse implantation sites (IS) on E7.5 and E9.5, it was observed that there was an overall reduction of EMT gene expression in the IS as gestation progressed from E7.5 to E9.5 albeit the levels of EMT gene expression were substantial on both days. Further validation of array results using real time PCR and western blot analysis showed significant decrease in EMT-associated genes that included (a) transcription factors (Snai2, Zeb1, Stat3 and Foxc2), (b) extracellular matrix and cell adhesion related genes (Bmp1, Itga5, Vcan and Col3A1), (c) migration and motility- associated genes (Vim, Msn and FN1) and (d) differentiation and development related genes (Wnt5b, Jag1 and Cleaved Notch-1) on E9.5. To understand whether EMT is an ongoing process during placentation, the EMT-associated signatures genes, prevalent on E 7.5 and 9.5, were analysed on E12.5, E14.5 and E17.5 of mouse placenta. Interestingly, expression of these EMT-signature proteins were significantly higher at E12.5 though substantial expressions was observed in placenta with progression of gestation from mid- to late. To evaluate whether TS cells have the potential to undergo EMT ex vivo, TS cells were subjected to EMT induction, which was confirmed using morphological analysis and marker gene expression. Induction of EMT in TS cells showed similar gene expression profile of placental EMT. These results have broad biological implications, as inadequate mesenchymal transition leading to improper trophoblast-vasculogenic mimicry leads to placental pathophysiology and pregnancy failure.
Collapse
Affiliation(s)
- Shipra Kanti Jena
- Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Calcutta, West Bengal, 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, UP, 201002, India
| | - Shreya Das
- Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Calcutta, West Bengal, 700032, India
| | - Shreeta Chakraborty
- Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Calcutta, West Bengal, 700032, India
| | - Rupasri Ain
- Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Calcutta, West Bengal, 700032, India.
- Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, UP, 201002, India.
| |
Collapse
|
5
|
Luo L, Yao L, Xie Y, Chen E, Ding Y, Ge L. miR-526b-5p/c-Myc/Foxp1 participates in recurrent spontaneous abortion by regulating the proliferation, migration, and invasion of trophoblasts. J Assist Reprod Genet 2023; 40:1559-1572. [PMID: 37052757 PMCID: PMC10352202 DOI: 10.1007/s10815-023-02793-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/30/2023] [Indexed: 04/14/2023] Open
Abstract
PURPOSE As a member of the C19MC family, miR-526b-5p is mainly expressed in the placental tissue and is a well-known tumor suppressor microRNA. However, its effect on the function of trophoblasts and its role in the development of recurrent spontaneous abortion (RSA) remains unclear. METHODS Transcriptome sequencing, quantitative real-time polymerase chain reaction (RT-qPCR), Western blot, 5-ethynyl-2'-deoxyuridine (Edu) proliferation analysis, cell counting kit-8 (CCK8) assay, Transwell assays, and wound healing were used to detect the proliferation, migration, and invasion capacity of trophoblasts. Target genes of miR-526b-5p were obtained by the dual luciferase reporter system. The promoter-reporter system and ChIP-qPCR were used to prove that c-Myc positively regulated the expression of Foxp1 RESULTS: The miR-526b-5p levels were significantly higher in patients with RSA than in controls. High expression of miR-526b-5p inhibited the proliferation, migration, and invasion of trophoblast cell line. By contrast, low expression of miR-526b-5p promoted the proliferation and migration of trophoblast cell line. Target genes of miR-526b-5p were c-Myc and Foxp1. c-Myc positively regulated the expression of Foxp1 by binding to the Foxp1 promoter location -146/-135. Finally, miR-526b-5p impeded the proliferation, migration, and invasion of trophoblasts by negatively regulating c-Myc by rescue experiments. CONCLUSION Thus, miR-526b-5p affected the proliferation, migration, and invasion of trophoblasts by targeting c-Myc and Foxp1. Low expression of c-Myc further deactivated the positive transcriptional regulation of c-Myc on Foxp1, which may be the mechanism of RSA. This study provides potential therapeutic targets and clues for the diagnosis and treatment of RSA.
Collapse
Affiliation(s)
- Li Luo
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, No. 1 Yixueyuan Rd, Chongqing, 400016, China
- , Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, No. 120, Longshan Rd, Chongqing, 401147, China
| | - Lu Yao
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, No. 1 Yixueyuan Rd, Chongqing, 400016, China
- , Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, No. 120, Longshan Rd, Chongqing, 401147, China
| | - Youlong Xie
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, No. 1 Yixueyuan Rd, Chongqing, 400016, China
| | - Enxiang Chen
- Department of Genetics, School of Basic Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Yubin Ding
- , Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, No. 120, Longshan Rd, Chongqing, 401147, China
| | - Luxing Ge
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, No. 1 Yixueyuan Rd, Chongqing, 400016, China.
| |
Collapse
|
6
|
Paul M, Chakraborty S, Islam S, Ain R. Trans-differentiation of trophoblast stem cells: implications in placental biology. Life Sci Alliance 2023; 6:6/3/e202201583. [PMID: 36574992 PMCID: PMC9797987 DOI: 10.26508/lsa.202201583] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/28/2022] Open
Abstract
Trophoblast invasion is a hallmark of hemochorial placentation. Invasive trophoblast cells replace the endothelial cells of uterine spiral arteries. The mechanism by which the invasive trophoblast cells acquire this phenotype is unknown. Here, we demonstrate that, during differentiation, a small population of trophoblast stem (TS) cells trans-differentiate into a hybrid cell type expressing markers of both trophoblast (TC) and endothelial (EC) cells. In addition, a compendium of EC-specific genes was found to be associated with TS cell differentiation. Using functional annotation, these genes were categorized into angiogenesis, cell adhesion molecules, and apoptosis-related genes. HES1 repressed transcription of EC genes in TS cells. Interestingly, differentiated TCs secrete TRAIL, but its receptor DR4 is expressed only in ECs and not in TCs. TRAIL induced apoptosis in EC but not in TC. Co-culture of ECs with TC induced apoptosis in ECs via extrinsic apoptotic pathway. These results highlight that (a) TS cells possess the potential to trans-differentiate into "trophendothelial" phenotype, regulated by HES1 and (b) trophoblast differentiation-induced TRAIL secretion directs preferential demise of ECs located in their vicinity.
Collapse
Affiliation(s)
- Madhurima Paul
- Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Shreeta Chakraborty
- Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata, India.,National Institutes of Health, Bethesda, MD, USA
| | - Safirul Islam
- Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata, India.,School of Biotechnology, Presidency University, Kolkata, India
| | - Rupasri Ain
- Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
7
|
Mukherjee I, Singh S, Karmakar A, Kashyap N, Mridha AR, Sharma JB, Luthra K, Sharma RS, Biswas S, Dhar R, Karmakar S. New immune horizons in therapeutics and diagnostic approaches to Preeclampsia. Am J Reprod Immunol 2023; 89:e13670. [PMID: 36565013 DOI: 10.1111/aji.13670] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 11/02/2022] [Accepted: 12/10/2022] [Indexed: 12/25/2022] Open
Abstract
Hypertensive disorders of pregnancy (HDP) are one of the commonest maladies, affecting 5%-10% of pregnancies worldwide. The American College of Obstetricians and Gynecologists (ACOG) identifies four categories of HDP, namely gestational hypertension (GH), Preeclampsia (PE), chronic hypertension (CH), and CH with superimposed PE. PE is a multisystem, heterogeneous disorder that encompasses 2%-8% of all pregnancy-related complications, contributing to about 9% to 26% of maternal deaths in low-income countries and 16% in high-income countries. These translate to 50 000 maternal deaths and over 500 000 fetal deaths worldwide, therefore demanding high priority in understanding clinical presentation, screening, diagnostic criteria, and effective management. PE is accompanied by uteroplacental insufficiency leading to vascular and metabolic changes, vasoconstriction, and end-organ ischemia. PE is diagnosed after 20 weeks of pregnancy in women who were previously normotensive or hypertensive. Besides shallow trophoblast invasion and inadequate remodeling of uterine arteries, dysregulation of the nonimmune system has been the focal point in PE. This results from aberrant immune system activation and imbalanced differentiation of T cells. Further, a failure of tolerance toward the semi-allogenic fetus results due to altered distribution of Tregs such as CD4+FoxP3+ or CD4+CD25+CD127(low) FoxP3+ cells, thereby creating a cytotoxic environment by suboptimal production of immunosuppressive cytokines like IL-10, IL-4, and IL-13. Also, intracellular production of complement protein C5a may result in decreased FoxP3+ regulatory T cells. With immune system dysfunction as a major driver in PE pathogenesis, it is logical that therapeutic targeting of components of the immune system with pharmacologic agents like anti-inflammatory and immune-modulating molecules are either being used or under clinical trial. Cholesterol synthesis inhibitors like Pravastatin may improve placental perfusion in PE, while Eculizumab (monoclonal antibody inhibiting C5) and small molecular inhibitor of C5a, Zilucoplan are under investigation. Monoclonal antibody against IL-17(Secukinumab) has been proposed to alter the Th imbalance in PE. Autologous Treg therapy and immune checkpoint inhibitors like anti-CTLA-4 are emerging as new candidates in immune horizons for PE management in the future.
Collapse
Affiliation(s)
- Indrani Mukherjee
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India.,Amity Institute of Biotechnology (AIB), Amity University, Noida, India
| | - Sunil Singh
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Abhibrato Karmakar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Neha Kashyap
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Asit Ranjan Mridha
- Department of Obstetrics & Gynaecology, All India Institute of Medical Sciences, New Delhi, India
| | - Jai Bhagwan Sharma
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Kalpana Luthra
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Radhey Shyam Sharma
- Ex-Head and Scientist G, Indian Council of Medical Research, New Delhi, India
| | - Subhrajit Biswas
- Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Amity University, Noida, India
| | - Ruby Dhar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Subhradip Karmakar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
8
|
Saha S, Bose R, Chakraborty S, Ain R. Tipping the balance toward stemness in trophoblast: Metabolic programming by Cox6B2. FASEB J 2022; 36:e22600. [PMID: 36250984 DOI: 10.1096/fj.202200703rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 11/11/2022]
Abstract
Metabolic effector(s) driving cell fate is an emerging concept in stem cell biology. Here we showed that Cytochrome C Oxidase Subunit 6B2 (Cox6B2) is essential to maintain the stemness of trophoblast stem (TS) cells. RNA interference of Cox6b2 resulted in decreased mitochondrial Complex IV activity, ATP production, and oxygen consumption rate in TS cells. Furthermore, depletion of Cox6b2 in TS cells led to decreased self-renewal capacity indicated by compromised BrdU incorporation, Ki67 staining, and decreased expression of TS cell genetic markers. As expected, the consequence of Cox6b2 knockdown was the induction of differentiation. TS cell stemness factor CDX2 transactivates Cox6b2 promoter in TS cells. In differentiated cells, Cox6b2 is post-transcriptionally regulated by two microRNAs, miR-322-5p and miR-503-5p, leading to its downregulation as demonstrated by the gain-in or loss of function of these miRNAs. Cox6b2 transcripts gradually rise in placental trophoblast gestation progresses in both mice and rats with predominant expression in labyrinthine trophoblast. Cox6b2 expression is compromised in the growth-restricted placenta of rats with reciprocal up-regulation of miR-322-5p and miR-503-5p. These data highlight the importance of Cox6B2 in the regulation of TS cell state and uncompromised placental growth.
Collapse
Affiliation(s)
- Sarbani Saha
- Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Rumela Bose
- Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Shreeta Chakraborty
- Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata, India.,National Institute of Child Health and Human Development, Bethesda, Maryland, USA
| | - Rupasri Ain
- Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
9
|
Suzuki D, Sasaki K, Kumamoto S, Tanaka K, Ogawa H. Dynamic Changes of Gene Expression in Mouse Mural Trophectoderm Regulated by Cdx2 During Implantation. Front Cell Dev Biol 2022; 10:945241. [PMID: 36051443 PMCID: PMC9425295 DOI: 10.3389/fcell.2022.945241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/21/2022] [Indexed: 11/24/2022] Open
Abstract
Implantation of the blastocyst into the uterus is a specific and essential process for mammalian embryonic development. In mice, implantation is initiated from the mural trophectoderm of the blastocyst and the mTE controls implantation progression by acquiring the ability to attach and invade into the endometrium while differentiating into primary trophoblast giant cells. Nevertheless, it remains largely unclear when and how the mTE differentiates and acquires this ability during implantation. Here, by RNA sequencing analysis with the pre- and peri-implantation mTE, we show that the mTE undergoes stage-specific and dynamic changes of gene expression during implantation. We also reveal that the mTE begins down-regulating Cdx2 and up-regulating differentiation marker genes during the peri-implantation stage. In addition, using trophectoderm (TE) -specific lentiviral vector-mediated gene transduction, we demonstrate that TE-specific Cdx2 overexpression represses differentiation of the mTE into the primary trophoblast giant cells. Moreover, we reveal that TE-specific Cdx2 overexpression also represses the up-regulation of cell adhesion- and migration-related genes, including Slc6a14, Slc16a3, Itga7, Itgav and Itgb3, which are known to regulate migration of trophectoderm cells. In particular, the expression of Itgb3, an integrin subunit gene, exhibits high inverse correlation with that of Cdx2 in the TE. Reflecting the down-regulation of the genes for TE migration, TE-specific Cdx2 overexpression causes suppression of the blastocyst outgrowth in vitro and abnormal progression of implantation in vivo. Thus, our results specify the time-course changes of global gene expression in the mTE during implantation and uncover the significance of Cdx2 down-regulation for implantation progression.
Collapse
Affiliation(s)
- Daisuke Suzuki
- Department of Bioscience, Graduate School of Life Science, Tokyo University of Agriculture, Tokyo, Japan
| | - Keisuke Sasaki
- Bioresource Center, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Soichiro Kumamoto
- NODAI Genome Research Center, Tokyo University of Agriculture, Tokyo, Japan
| | - Keisuke Tanaka
- NODAI Genome Research Center, Tokyo University of Agriculture, Tokyo, Japan
| | - Hidehiko Ogawa
- Department of Bioscience, Graduate School of Life Science, Tokyo University of Agriculture, Tokyo, Japan
- *Correspondence: Hidehiko Ogawa,
| |
Collapse
|
10
|
Basak T, Ain R. Molecular regulation of trophoblast stem cell self-renewal and giant cell differentiation by the Hippo components YAP and LATS1. Stem Cell Res Ther 2022; 13:189. [PMID: 35526072 PMCID: PMC9080189 DOI: 10.1186/s13287-022-02844-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/22/2022] [Indexed: 11/25/2022] Open
Abstract
Background Trophoblast stem cells (TSCs), the precursors of trophoblast cells of placenta, possess the potential to differentiate into various trophoblastic subtypes in vitro. Establishment of extraembryonic trophoblastic lineage is preceded by the “outside versus inside” positional information in preimplantation embryos, critically synchronized by the Hippo components. Abundant expression of Hippo effector YAP in TSCs and differentiated cells with paucity of information on Hippo regulation of TSC proliferation/differentiation led us test the hypothesis that Hippo dynamics is one of the regulators of TSC proliferation/differentiation. Methods Blastocyst-derived murine TSCs were used. Dynamics of Hippo components were analyzed using immunofluorescence, western blotting, immunoprecipitation, qRT-PCR. Interaction studies were performed using full-length and deletion constructs. BrdU incorporation assay, flow cytometry-based polyploidy analysis and confocal microscopy were used to decipher the underlying mechanism. Results YAP translocates to the nucleus in TSCs and utilizes its WW2 domain to interact with the PPQY motif of the stemness factor, CDX2. YAP limits TSC proliferation with associated effect on CDX2 target CyclinD1. Trophoblast giant cells (TGC) differentiation is associated with cytoplasmic retention of YAP, heightened pYAPSer127, decrease in the level of the core Hippo component, LATS1, which thereby impedes LATS1-LIMK2 association. Decreased LATS1-LIMK2 complex formation in TGCs was associated with elevated pLIMK2Thr505 as well as its target pCOFILINSer3. Precocious overexpression of LATS1 during trophoblast differentiation decreased TGC marker, Prl2c2, diminished pLIMK2Thr505 and inactive COFILIN (pCOFILINSer3) while COFILIN-phosphatase, CHRONOPHIN remained unchanged. LATS1 overexpression inhibited trophoblast endoreduplication with smaller-sized TGC-nuclei, lower ploidy level and disintegrated actin filaments. Inhibition of LIMK2 activity recapitulated the effects of LATS1 overexpression in trophoblast cells. Conclusion These results unveil a multilayered regulation of trophoblast self-renewal and differentiation by the Hippo components. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02844-w.
Collapse
Affiliation(s)
- Trishita Basak
- Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, West Bengal, 700032, India
| | - Rupasri Ain
- Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, West Bengal, 700032, India.
| |
Collapse
|
11
|
Suzuki D, Okura K, Nagakura S, Ogawa H. CDX2 downregulation in mouse mural trophectoderm during peri-implantation is heteronomous, dependent on the YAP-TEAD pathway and controlled by estrogen-induced factors. Reprod Med Biol 2022; 21:e12446. [PMID: 35386376 PMCID: PMC8967280 DOI: 10.1002/rmb2.12446] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 01/31/2023] Open
Abstract
Purpose To investigate the transition of CDX2 expression patterns in mouse trophectoderm (TE) and its regulatory mechanisms during implantation. Methods Mouse E3.5-4.5 blastocysts were used to immunostain CDX2, YAP, TEAD4, and ESRRB. Endogenous estrogen signaling was perturbed by administrating estrogen receptor antagonist ICI 182,780 or ovariectomy followed by administration of progesterone and β-estradiol to elucidate the relationship between the transition of CDX2 expression patterns and ovarian estrogen-dependent change in the uterine environment. Results CDX2 expression was gradually downregulated in the mural TE from E4.0 in vivo, whereas CDX2 downregulation was not observed in blastocysts cultured in KSOM. Fetal bovine serum (FBS) supplementation in KSOM induced CDX2 downregulation independently of blastocyst attachment to dishes. CDX2 downregulation in the mural TE was repressed by administration of ICI 182,780 or by ovariectomy, and administration of β-estradiol into ovariectomized mice retriggered CDX2 downregulation. Furthermore, Cdx2 expression in the mural TE might be controlled by the YAP-TEAD pathway. Conclusions CDX2 downregulation was induced heteronomously in the mural TE from E4.0 by uterus-derived factors, the secretion of which was stimulated by ovarian estrogen.
Collapse
Affiliation(s)
- Daisuke Suzuki
- Department of BioscienceTokyo University of AgricultureTokyoJapan
- Research Fellow of Japan Society for the Promotion of ScienceTokyoJapan
| | - Keitaro Okura
- Department of BioscienceTokyo University of AgricultureTokyoJapan
| | - Seina Nagakura
- Department of BioscienceTokyo University of AgricultureTokyoJapan
| | - Hidehiko Ogawa
- Department of BioscienceTokyo University of AgricultureTokyoJapan
| |
Collapse
|
12
|
Chu T, Mouillet JF, Cao Z, Barak O, Ouyang Y, Sadovsky Y. RNA Network Interactions During Differentiation of Human Trophoblasts. Front Cell Dev Biol 2021; 9:677981. [PMID: 34150771 PMCID: PMC8209545 DOI: 10.3389/fcell.2021.677981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/29/2021] [Indexed: 12/15/2022] Open
Abstract
In the human placenta, two trophoblast cell layers separate the maternal blood from the villous basement membrane and fetal capillary endothelial cells. The inner layer, which is complete early in pregnancy and later becomes discontinuous, comprises the proliferative mononuclear cytotrophoblasts, which fuse together and differentiate to form the outer layer of multinucleated syncytiotrophoblasts. Because the syncytiotrophoblasts are responsible for key maternal-fetal exchange functions, tight regulation of this differentiation process is critical for the proper development and the functional role of the placenta. The molecular mechanisms regulating the fusion and differentiation of trophoblasts during human pregnancy remain poorly understood. To decipher the interactions of non-coding RNAs (ncRNAs) in this process, we exposed cultured primary human trophoblasts to standard in vitro differentiation conditions or to conditions known to hinder this differentiation process, namely exposure to hypoxia (O2 < 1%) or to the addition of dimethyl sulfoxide (DMSO, 1.5%) to the culture medium. Using next generation sequencing technology, we analyzed the differential expression of trophoblastic lncRNAs, miRNAs, and mRNAs that are concordantly modulated by both hypoxia and DMSO. Additionally, we developed a model to construct a lncRNA-miRNA-mRNA co-expression network and inferred the functions of lncRNAs and miRNAs via indirect gene ontology analysis. This study improves our knowledge of the interactions between ncRNAs and mRNAs during trophoblast differentiation and identifies key biological processes that may be impaired in common gestational diseases, such as fetal growth restriction or preeclampsia.
Collapse
Affiliation(s)
- Tianjiao Chu
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Jean-Francois Mouillet
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Zhishen Cao
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Oren Barak
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Yingshi Ouyang
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Yoel Sadovsky
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
13
|
Overexpression of miR-210-3p Impairs Extravillous Trophoblast Functions Associated with Uterine Spiral Artery Remodeling. Int J Mol Sci 2021; 22:ijms22083961. [PMID: 33921262 PMCID: PMC8069107 DOI: 10.3390/ijms22083961] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 12/18/2022] Open
Abstract
Hsa-miR-210-3p has been reported to be upregulated in preeclampsia (PE); however, the functions of miR-210-3p in placental development are not fully understood, and, consequently, miR-210-3p’s role in the pathogenesis of PE is still under investigation. In this study, we found that overexpression of miR-210-3p reduced trophoblast migration and invasion, extravillous trophoblast (EVT) outgrowth in first trimester explants, expression of endovascular trophoblast (enEVT) markers and the ability of trophoblast to form endothelial-like networks. In addition, miR-210-3p overexpression significantly downregulated the mRNA levels of interleukin-1B and -8, as well as CXC motif ligand 1. These cytokines have been suggested to play a role in EVT invasion and the recruitment of immune cells to the spiral artery remodeling sites. We also showed that caudal-related homeobox transcription factor 2 (CDX2) is targeted by miR-210-3p and that CDX2 downregulation mimicked the observed effects of miR-210-3p upregulation in trophoblasts. These findings suggest that miR-210-3p may play a role in regulating events associated with enEVT functions and its overexpression could impair spiral artery remodeling, thereby contributing to PE.
Collapse
|
14
|
Yang XM, Song YQ, Li L, Liu DM, Chen GD. miR-1249-5p regulates the osteogenic differentiation of ADSCs by targeting PDX1. J Orthop Surg Res 2021; 16:10. [PMID: 33407691 PMCID: PMC7789402 DOI: 10.1186/s13018-020-02147-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 12/01/2020] [Indexed: 12/12/2022] Open
Abstract
Background Osteoporosis (OP) is an age-related systemic bone disease. MicroRNAs (miRNAs) are involved in the regulation of osteogenic differentiation. The purpose of this study was to explore the role and mechanism of miR-1249-5p for promoting osteogenic differentiation of adipose-derived stem cells (ADSCs). Methods GSE74209 dataset was retrieved from NCBI Gene Expression Omnibus (GEO) database and performed bioinformatic analyses. OP tissue and healthy control tissues were obtained and used for RT-PCR analyses. ADSCs were incubated with miR-1249-5p mimic, inhibitor and corresponding negative control (NC), alkaline phosphatase (ALP) staining, and Alizarin Red Staining (ARS) were then performed to assess the role of miR-1249-5p for osteogenesis of ADSCs. Targetscan online website and dual-luciferase reporter assay were performed to verify that the 3′-UTR of PDX1 mRNA is a direct target of miR-1249-5p. RT-PCR and western blot were also performed to identify the mechanism of miR-1249-5p for osteogenesis of ADSCs. Results A total of 170 differentially expressed miRNAs were selected, among which, 75 miRNAs were downregulated and 95 miRNAs were upregulated. Moreover, miR-1249-5p was decreased in OP patients, while showed a gradual increase with the extension of induction time. miR-1249-5p mimic significantly increased osteogenic differentiation capacity and p-PI3K and p-Akt protein levels. Luciferase activity in ADSCs co-transfected of miR-1249-5p mimic with PDX1-WT reporter plasmids was remarkably decreased, but there was no obvious change in miR-1249-5p mimic with PDX1-MUT reporter plasmids co-transfection group. Overexpression PDX1 could partially reverse the promotion effects of miR-1249-5p on osteogenesis of ADSCs. Conclusion In conclusion, miR-1249-5p promotes osteogenic differentiation of ADSCs by targeting PDX1 through the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Xiao-Mei Yang
- The Department of Emergency, Cangzhou Central Hospital, Cangzhou, 061000, China
| | - Ya-Qi Song
- The Department of Emergency, Cangzhou Central Hospital, Cangzhou, 061000, China
| | - Liang Li
- The Department of Emergency, Cangzhou Central Hospital, Cangzhou, 061000, China
| | - Dong-Ming Liu
- The Department of Emergency, Cangzhou Central Hospital, Cangzhou, 061000, China
| | - Guang-Dong Chen
- The Department of Orthopedics, Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou, 061000, Hebei Province, China.
| |
Collapse
|