1
|
Wang W, Zhang K, Zhang K, Wu R, Tang Y, Li Y. Gut microbiota promotes cholesterol gallstone formation through the gut-metabolism-gene axis. Microb Pathog 2025; 203:107446. [PMID: 40118296 DOI: 10.1016/j.micpath.2025.107446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 02/17/2025] [Accepted: 02/28/2025] [Indexed: 03/23/2025]
Abstract
BACKGROUND Gallstone disease, arising from the interplay between host metabolism and gut microbiota, represents a significant health concern. Dysbiosis of the gut microbiome and disruptions in circadian rhythm contribute to the pathogenesis of gallstones. This study conducted a comprehensive analysis of gut microbiota and metabolites derived from stool and serum samples of 28 patients with cholesterol gallstones (CGS) and 19 healthy controls, employing methodologies such as 16S rRNA sequencing, metaproteomics, metabolomics, and host genetic analysis. Additionally, a retrospective cohort study was utilized to assess the efficacy of probiotics or ursodeoxycholic acid (UDCA) in preventing CGS formation post-bariatric surgery. RESULTS In CGS patients, gut microbiota diversity shifted, with harmful bacteria rising and beneficial ones declining. The altered microbiota primarily affected amino acid, lipid, nucleotide, and carbohydrate metabolism. Metabolic abnormalities were noted in amino acids, glucose, lipids, and bile acids with decreased levels of ursodeoxycholic, glycosodeoxycholic, and glycolithocholic acids, and increased glycohyodeoxycholic and allocholic acids. Glutamine and alanine levels dropped, while phenylalanine and tyrosine rosed. Animal studies confirmed gene changes in gallbladder tissues related to bile acid, energy, glucose, and lipid metabolism. Importantly, UDCA and probiotics effectively reduced CGS risk post-bariatric surgery, especially when combined. CONCLUSIONS Multi-omics can clarify CGS pathology, by focusing on the gut-metabolism-gene axis, paving the way for future studies on CGS prevention and treatment through gut microbiota or metabolic interventions.
Collapse
Affiliation(s)
- Wei Wang
- Department of Interventional, The Second Hospital of Shandong University, Shandong, 250033, China
| | - Kai Zhang
- Department of Hepatobiliary Surgery, Shandong Provincial Third Hospital, Shandong University, Shandong, 250033, China
| | - Kun Zhang
- Shanghai Biotree Biotech Co., Ltd., Shanghai, China
| | - Rui Wu
- Department of Hepatobiliary Surgery, Shandong Provincial Third Hospital, Shandong University, Shandong, 250033, China
| | - Yu Tang
- Department of Geriatrics, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Yuliang Li
- Department of Interventional, The Second Hospital of Shandong University, Shandong, 250033, China.
| |
Collapse
|
2
|
Loaiza-Moss J, Braun U, Leitges M. Transcriptome Analysis Suggests PKD3 Regulates Proliferative Glucose Metabolism, Calcium Homeostasis and Microtubule Dynamics After MEF Spontaneous Immortalization. Int J Mol Sci 2025; 26:596. [PMID: 39859313 PMCID: PMC11765705 DOI: 10.3390/ijms26020596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/06/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
Cell immortalization corresponds to a biologically relevant clinical feature that allows cells to acquire a high proliferative potential during carcinogenesis. In multiple cancer types, Protein Kinase D3 (PKD3) has often been reported as a dysregulated oncogenic kinase that promotes cell proliferation. Using mouse embryonic fibroblasts (MEFs), in a spontaneous immortalization model, PKD3 has been demonstrated as a critical regulator of cell proliferation after immortalization. However, the mechanisms by which PKD3 regulates proliferation in immortalized MEFs require further elucidation. Using a previously validated Prkd3-deficient MEF model, we performed a poly-A transcriptomic analysis to identify putative Prkd3-regulated biological processes and downstream targets in MEFs after spontaneous immortalization. To this end, differentially expressed genes (DEGs) were identified and further analyzed by gene ontology (GO) enrichment and protein-protein interaction (PPI) network analyses to identify potential hub genes. Our results suggest that Prkd3 modulates proliferation through the regulation of gene expression associated with glucose metabolism (Tnf, Ucp2, Pgam2, Angptl4), calcium homeostasis and transport (Calcr and P2rx7) and microtubule dynamics (Stmn2 and Map10). These candidate processes and associated genes represent potential mechanisms involved in Prkd3-induced proliferation in spontaneously immortalized cells as well as clinical targets in several cancer types.
Collapse
Affiliation(s)
| | | | - Michael Leitges
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, 300 Prince Philip Drive, St. Johns, NL A1B 3V6, Canada; (J.L.-M.); (U.B.)
| |
Collapse
|
3
|
Koutník J, Peer S, Humer D, Sumara G, Leitges M, Baier G, Siegmund K. T cell-intrinsic PKD3 fine-tunes differentiation into CD8 + central memory T cells and CD8 single positive thymocyte development. Immunology 2024; 173:125-140. [PMID: 38798068 DOI: 10.1111/imm.13804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/01/2024] [Indexed: 05/29/2024] Open
Abstract
Members of the Protein kinases D (PKD) family are described as regulators of T cell responses. From the two T cell-expressed isoforms PKD2 and PKD3, so far mainly the former was thoroughly investigated and is well understood. Recently, we have investigated also PKD3 using conventional as well as conditional T cell-specific knockout models. These studies suggested PKD3 to be a T cell-extrinsic regulator of the cells' fate. However, these former model systems did not take into account possible redundancies with the highly homologous PKD2. To overcome this issue and thus properly unravel PKD3's T cell-intrinsic functions, here we additionally used a mouse model overexpressing a constitutively active isoform of PKD3 specifically in the T cell compartment. These transgenic mice showed a slightly higher proportion of central memory T cells in secondary lymphoid organs and blood. This effect could not be explained via differences upon polyclonal stimulation in vitro, however, may be connected to the observed developmental aberrances in the CD8 single positive compartment during thymic development. Lastly, the observed alterations in the CD8+ T cell compartment did not impact proper immune response upon immunization with ovalbumin or in a subcutaneous tumour model suggesting only a small to absent biological relevance. Taking together the knowledge of all our published studies on PKD3 in the T cell compartment, we now conclude that T cell-intrinsic PKD3 is a fine-tuner of central memory T cell as well as CD8 single positive thymocyte development.
Collapse
Affiliation(s)
- Jiří Koutník
- Institute of Cell Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Sebastian Peer
- Institute of Cell Genetics, Medical University of Innsbruck, Innsbruck, Austria
- Department of Internal Medicine V, Medical University of Innsbruck, Innsbruck, Austria
| | - Dominik Humer
- Institute of Cell Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Grzegorz Sumara
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warszawa, Poland
| | - Michael Leitges
- Division of BioMedical Sciences, Memorial University of Newfoundland, St. John's, Canada
| | - Gottfried Baier
- Institute of Cell Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Kerstin Siegmund
- Institute of Cell Genetics, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
4
|
Wit M, Belykh A, Sumara G. Protein kinase D (PKD) on the crossroad of lipid absorption, synthesis and utilization. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119653. [PMID: 38104800 DOI: 10.1016/j.bbamcr.2023.119653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 10/19/2023] [Accepted: 11/30/2023] [Indexed: 12/19/2023]
Abstract
Inappropriate lipid levels in the blood, as well as its content and composition in different organs, underlie multiple metabolic disorders including obesity, non-alcoholic fatty liver disease, type 2 diabetes, and atherosclerosis. Multiple processes contribute to the complex metabolism of triglycerides (TGs), fatty acids (FAs), and other lipid species. These consist of digestion and absorption of dietary lipids, de novo FAs synthesis (lipogenesis), uptake of TGs and FAs by peripheral tissues, TGs storage in the intracellular depots as well as lipid utilization for β-oxidation and their conversion to lipid-derivatives. A majority of the enzymatic reactions linked to lipogenesis, TGs synthesis, lipid absorption, and transport are happening at the endoplasmic reticulum, while β-oxidation takes place in mitochondria and peroxisomes. The Golgi apparatus is a central sorting, protein- and lipid-modifying organelle and hence is involved in lipid metabolism as well. However, the impact of the processes taking part in the Golgi apparatus are often overseen. The protein kinase D (PKD) family (composed of three members, PKD1, 2, and 3) is the master regulator of Golgi dynamics. PKDs are also a sensor of different lipid species in distinct cellular compartments. In this review, we discuss the roles of PKD family members in the regulation of lipid metabolism including the processes executed by PKDs at the Golgi apparatus. We also discuss the role of PKDs-dependent signaling in different cellular compartments and organs in the context of the development of metabolic disorders.
Collapse
Affiliation(s)
- Magdalena Wit
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warszawa, Poland
| | - Andrei Belykh
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warszawa, Poland
| | - Grzegorz Sumara
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warszawa, Poland.
| |
Collapse
|
5
|
Liu P, Li H, Xu H, Gong J, Jiang M, Xu Z, Shi J. Aggravated hepatic fibrosis induced by phenylalanine and tyrosine was ameliorated by chitooligosaccharides supplementation. iScience 2023; 26:107754. [PMID: 37731617 PMCID: PMC10507131 DOI: 10.1016/j.isci.2023.107754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 03/21/2023] [Accepted: 08/24/2023] [Indexed: 09/22/2023] Open
Abstract
Hepatic fibrosis is a classic pathological manifestation of metabolic chronic hepatopathy. The pathological process might either gradually deteriorate into cirrhosis and ultimately liver cancer with inappropriate nutrition supply, or be slowed down by several multifunctional nutrients, alternatively. Herein, we found diet with excessive phenylalanine (Phe) and tyrosine (Tyr) exacerbated hepatic fibrosis symptoms of liver dysfunction and gut microflora dysbiosis in mice. Chitooligosaccharides (COS) could ameliorate hepatic fibrosis with the regulation of amino acid metabolism by downregulating the mTORC1 pathway, especially that of Phe and Tyr, and also with the alleviation of the dysbiosis of gut microbiota, simultaneously. Conclusively, this work presents new insight into the role of Phe and Tyr in the pathologic process of hepatic fibrosis, while revealing the effectiveness and molecular mechanism of COS in improving hepatic fibrosis from the perspective of metabolites.
Collapse
Affiliation(s)
- Peng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Road, Shanghai 201403, China
| | - Heng Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Hongyu Xu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
| | - Jinsong Gong
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Min Jiang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Zhenghong Xu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
| | - Jinsong Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
6
|
Karwen T, Kolczynska‐Matysiak K, Gross C, Löffler MC, Friedrich M, Loza‐Valdes A, Schmitz W, Wit M, Dziaczkowski F, Belykh A, Trujillo‐Viera J, El‐Merahbi R, Deppermann C, Nawaz S, Hastoy B, Demczuk A, Erk M, Wieckowski MR, Rorsman P, Heinze KG, Stegner D, Nieswandt B, Sumara G. Platelet-derived lipids promote insulin secretion of pancreatic β cells. EMBO Mol Med 2023; 15:e16858. [PMID: 37490001 PMCID: PMC10493578 DOI: 10.15252/emmm.202216858] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 07/26/2023] Open
Abstract
Hyperreactive platelets are commonly observed in diabetic patients indicating a potential link between glucose homeostasis and platelet reactivity. This raises the possibility that platelets may play a role in the regulation of metabolism. Pancreatic β cells are the central regulators of systemic glucose homeostasis. Here, we show that factor(s) derived from β cells stimulate platelet activity and platelets selectively localize to the vascular endothelium of pancreatic islets. Both depletion of platelets and ablation of major platelet adhesion or activation pathways consistently resulted in impaired glucose tolerance and decreased circulating insulin levels. Furthermore, we found platelet-derived lipid classes to promote insulin secretion and identified 20-Hydroxyeicosatetraenoic acid (20-HETE) as the main factor promoting β cells function. Finally, we demonstrate that the levels of platelet-derived 20-HETE decline with age and that this parallels with reduced impact of platelets on β cell function. Our findings identify an unexpected function of platelets in the regulation of insulin secretion and glucose metabolism, which promotes metabolic fitness in young individuals.
Collapse
Affiliation(s)
- Till Karwen
- Rudolf Virchow Center for Integrative and Translational BioimagingJulius‐Maximilians University of WürzburgWürzburgGermany
| | | | - Carina Gross
- Institute of Experimental Biomedicine IUniversity Hospital WürzburgWürzburgGermany
| | - Mona C Löffler
- Rudolf Virchow Center for Integrative and Translational BioimagingJulius‐Maximilians University of WürzburgWürzburgGermany
| | - Mike Friedrich
- Rudolf Virchow Center for Integrative and Translational BioimagingJulius‐Maximilians University of WürzburgWürzburgGermany
| | - Angel Loza‐Valdes
- Nencki Institute of Experimental BiologyPolish Academy of SciencesWarszawaPoland
| | - Werner Schmitz
- Theodor Boveri Institute, BiocenterUniversity of WürzburgWürzburgGermany
| | - Magdalena Wit
- Nencki Institute of Experimental BiologyPolish Academy of SciencesWarszawaPoland
| | - Filip Dziaczkowski
- Nencki Institute of Experimental BiologyPolish Academy of SciencesWarszawaPoland
| | - Andrei Belykh
- Nencki Institute of Experimental BiologyPolish Academy of SciencesWarszawaPoland
| | - Jonathan Trujillo‐Viera
- Rudolf Virchow Center for Integrative and Translational BioimagingJulius‐Maximilians University of WürzburgWürzburgGermany
| | - Rabih El‐Merahbi
- Rudolf Virchow Center for Integrative and Translational BioimagingJulius‐Maximilians University of WürzburgWürzburgGermany
| | - Carsten Deppermann
- Rudolf Virchow Center for Integrative and Translational BioimagingJulius‐Maximilians University of WürzburgWürzburgGermany
- Center for Thrombosis and HemostasisUniversity Medical Center of the Johannes Gutenberg‐UniversityMainzGermany
| | - Sameena Nawaz
- Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and MetabolismChurchill HospitalOxfordUK
| | - Benoit Hastoy
- Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and MetabolismChurchill HospitalOxfordUK
| | - Agnieszka Demczuk
- Nencki Institute of Experimental BiologyPolish Academy of SciencesWarszawaPoland
| | - Manuela Erk
- Rudolf Virchow Center for Integrative and Translational BioimagingJulius‐Maximilians University of WürzburgWürzburgGermany
| | - Mariusz R Wieckowski
- Nencki Institute of Experimental BiologyPolish Academy of SciencesWarszawaPoland
| | - Patrik Rorsman
- Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and MetabolismChurchill HospitalOxfordUK
- Department of Physiology, Institute of Neuroscience and PhysiologyUniversity of GöteborgGöteborgSweden
- Oxford National Institute for Health Research, Biomedical Research CentreChurchill HospitalOxfordUK
| | - Katrin G Heinze
- Rudolf Virchow Center for Integrative and Translational BioimagingJulius‐Maximilians University of WürzburgWürzburgGermany
| | - David Stegner
- Rudolf Virchow Center for Integrative and Translational BioimagingJulius‐Maximilians University of WürzburgWürzburgGermany
- Institute of Experimental Biomedicine IUniversity Hospital WürzburgWürzburgGermany
| | - Bernhard Nieswandt
- Rudolf Virchow Center for Integrative and Translational BioimagingJulius‐Maximilians University of WürzburgWürzburgGermany
- Institute of Experimental Biomedicine IUniversity Hospital WürzburgWürzburgGermany
| | - Grzegorz Sumara
- Rudolf Virchow Center for Integrative and Translational BioimagingJulius‐Maximilians University of WürzburgWürzburgGermany
- Nencki Institute of Experimental BiologyPolish Academy of SciencesWarszawaPoland
| |
Collapse
|
7
|
Johnson JR, Barclay JW. C. elegans dkf-1 (Protein Kinase D1) mutants have age-dependent defects in locomotion and neuromuscular transmission. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000800. [PMID: 37090152 PMCID: PMC10113962 DOI: 10.17912/micropub.biology.000800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 03/24/2023] [Accepted: 04/04/2023] [Indexed: 04/25/2023]
Abstract
Changes in neuronal function that occur with age are an area of increasing importance. A potential significant contributor to age-dependent decline may be alterations to neurotransmitter release. Protein kinases, such as Protein Kinase C and Protein Kinase A, are well characterised modulators of neuronal function and neurotransmission. Protein Kinase D (PRKD) is a serine/threonine kinase whose role in neurons is less well characterised. Here we report that mutations in the C. elegans PRKD homolog, dkf-1 , show an acceleration in age-dependent decline of locomotion rate and an alteration to age-dependent changes in aldicarb sensitivity. These effects could be explained by a pre- or post-synaptic function of the protein kinase as the animal ages.
Collapse
Affiliation(s)
- James R. Johnson
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, England, United Kingdom
| | - Jeff W. Barclay
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, England, United Kingdom
- Correspondence to: Jeff W. Barclay (
)
| |
Collapse
|
8
|
Chen L, Zhao X, Wei S, Ma X, Liu H, Li J, Jing M, Wang M, Zhao Y. Mechanism of Paeoniflorin on ANIT-Induced Cholestatic Liver Injury Using Integrated Metabolomics and Network Pharmacology. Front Pharmacol 2021; 12:737630. [PMID: 34526905 PMCID: PMC8435635 DOI: 10.3389/fphar.2021.737630] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/16/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Paeoniflorin (PF), the major active compound isolated from the roots of Paeonia lactiflora Pall., has been used in the treatment of severe hepatic diseases for several decades and displays bright prospects in liver protective effect. However, its biological mechanism that regulates bile acid metabolism and cholestatic liver injury has not been fully elucidated. Our study aims to investigate the mechanism by which PF in the treatment of cholestatic liver injury using a comprehensive approach combining metabolomics and network pharmacological analysis. Methods: The hepatoprotective effect of PF against cholestasis liver injury, induced by α-naphthylisothiocyanate (ANIT), was evaluated in rats. The serum biochemical indices including ALT, AST, TBA, TBIL, ALP, ALB, and the pathological characteristics of the liver were analyzed. Moreover, UHPLC-Q-TOF was performed to explore the feces of rats with ANIT-induced cholestatic liver injury treated with PF and the potential biomarkers were screened by metabolomics. The targets for the regulation of potential biomarkers by PF were screened by network pharmacology, and then the relevant key targets were verified by immunohistochemical and western blotting methods. Results: PF significantly improved serum indexes and alleviated liver histological damage. Metabolomics analyses showed that the therapeutic effect of PF is mainly associated with the regulation of 13 metabolites involved in 16 metabolic pathways. The "PF-targets-metabolites" interaction network was constructed, and then five key targets including CDC25B, CYP2C9, MAOB, mTOR, and ABCB1 that regulated the potential biomarkers were obtained. The above five targets were further verified by immunohistochemistry and western blotting, and the results showed that PF significantly improved the expression of key proteins regulating these biomarkers. Conclusion: Our study provides direct evidence for the modulatory properties of PF treatment on ANIT-induced cholestatic liver injury using metabolomics and network pharmacology analyses. PF exhibits favorable pharmacological effect by regulating related signal pathways and key targets for biomarkers. Therefore, these findings may help better understand the complex mechanisms and provide a new and effective approach to the treatment of cholestatic liver injury.
Collapse
Affiliation(s)
- Lisheng Chen
- Department of Pharmacy, Hebei North University, Zhangjiakou, China
- Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xu Zhao
- Hepotology Department, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Shizhang Wei
- Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiao Ma
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Honghong Liu
- Integrated TCM and Western Medicine Department, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jianyu Li
- Integrated TCM and Western Medicine Department, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Manyi Jing
- Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Min Wang
- Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yanling Zhao
- Department of Pharmacy, Hebei North University, Zhangjiakou, China
- Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|