1
|
Chiolo I, Altmeyer M, Legube G, Mekhail K. Nuclear and genome dynamics underlying DNA double-strand break repair. Nat Rev Mol Cell Biol 2025:10.1038/s41580-025-00828-1. [PMID: 40097581 DOI: 10.1038/s41580-025-00828-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2025] [Indexed: 03/19/2025]
Abstract
Changes in nuclear shape and in the spatial organization of chromosomes in the nucleus commonly occur in cancer, ageing and other clinical contexts that are characterized by increased DNA damage. However, the relationship between nuclear architecture, genome organization, chromosome stability and health remains poorly defined. Studies exploring the connections between the positioning and mobility of damaged DNA relative to various nuclear structures and genomic loci have revealed nuclear and cytoplasmic processes that affect chromosome stability. In this Review, we discuss the dynamic mechanisms that regulate nuclear and genome organization to promote DNA double-strand break (DSB) repair, genome stability and cell survival. Genome dynamics that support DSB repair rely on chromatin states, repair-protein condensates, nuclear or cytoplasmic microtubules and actin filaments, kinesin or myosin motor proteins, the nuclear envelope, various nuclear compartments, chromosome topology, chromatin loop extrusion and diverse signalling cues. These processes are commonly altered in cancer and during natural or premature ageing. Indeed, the reshaping of the genome in nuclear space during DSB repair points to new avenues for therapeutic interventions that may take advantage of new cancer cell vulnerabilities or aim to reverse age-associated defects.
Collapse
Affiliation(s)
- Irene Chiolo
- Department of Molecular and Computational Biology, University of Southern California, Los Angeles, CA, USA.
| | - Matthias Altmeyer
- Department of Molecular Mechanisms of Disease, University of Zurich (UZH), Zurich, Switzerland.
| | - Gaëlle Legube
- MCD, Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, UT3, Toulouse, France.
| | - Karim Mekhail
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
2
|
Kilgas S, Swift ML, Chowdhury D. 53BP1-the 'Pandora's box' of genome integrity. DNA Repair (Amst) 2024; 144:103779. [PMID: 39476547 DOI: 10.1016/j.dnarep.2024.103779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/16/2024] [Accepted: 10/22/2024] [Indexed: 11/03/2024]
Abstract
53BP1 has several functions in the maintenance of genome integrity. It functions as a key mediator involved in double-strand break (DSB) repair, which functions to maintain a balance in the repair pathway choices and in preserving genomic stability. While its DSB repair functions are relatively well-characterized, its role in DNA replication and replication fork protection is less understood. In response to replication stress, 53BP1 contributes to fork protection by regulating fork reversal and restart. It helps maintain replication fork stability and speed, with 53BP1 loss leading to defective fork progression and increased sensitivity to replication stress agents. However, 53BP1's precise role in fork protection remains debated, as some studies have not observed protective effects. Therefore, it is critical to determine the role of 53BP1 in replication to better understand when it promotes replication fork protection, and the underlying mechanisms involved. Moreover, 53BP1's function in replication stress extends beyond its activity at active replication forks; it also forms specialized nuclear bodies (NBs) which protect stretches of under-replicated DNA (UR-DNA) transmitted from a previous cell cycle to daughter cells through mitosis. The mechanism of 53BP1 NBs in the coordination of replication and repair events at UR-DNA loci is not fully understood and warrants further investigation. The present review article focuses on elucidating 53BP1's functions in replication stress (RS), its role in replication fork protection, and the significance of 53BP1 NBs in this context to provide a more comprehensive understanding of its less well-established role in DNA replication.
Collapse
Affiliation(s)
- Susan Kilgas
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Michelle L Swift
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Dipanjan Chowdhury
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
3
|
Palek M, Palkova N, Kleiblova P, Kleibl Z, Macurek L. RAD18 directs DNA double-strand break repair by homologous recombination to post-replicative chromatin. Nucleic Acids Res 2024; 52:7687-7703. [PMID: 38884202 PMCID: PMC11260465 DOI: 10.1093/nar/gkae499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/21/2024] [Accepted: 06/05/2024] [Indexed: 06/18/2024] Open
Abstract
RAD18 is an E3 ubiquitin ligase that prevents replication fork collapse by promoting DNA translesion synthesis and template switching. Besides this classical role, RAD18 has been implicated in homologous recombination; however, this function is incompletely understood. Here, we show that RAD18 is recruited to DNA lesions by monoubiquitination of histone H2A at K15 and counteracts accumulation of 53BP1. Super-resolution microscopy revealed that RAD18 localizes to the proximity of DNA double strand breaks and limits the distribution of 53BP1 to the peripheral chromatin nanodomains. Whereas auto-ubiquitination of RAD18 mediated by RAD6 inhibits its recruitment to DNA breaks, interaction with SLF1 promotes RAD18 accumulation at DNA breaks in the post-replicative chromatin by recognition of histone H4K20me0. Surprisingly, suppression of 53BP1 function by RAD18 is not involved in homologous recombination and rather leads to reduction of non-homologous end joining. Instead, we provide evidence that RAD18 promotes HR repair by recruiting the SMC5/6 complex to DNA breaks. Finally, we identified several new loss-of-function mutations in RAD18 in cancer patients suggesting that RAD18 could be involved in cancer development.
Collapse
Affiliation(s)
- Matous Palek
- Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague CZ-14220, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Natalie Palkova
- Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague CZ-14220, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Petra Kleiblova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Zdenek Kleibl
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Libor Macurek
- Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague CZ-14220, Czech Republic
| |
Collapse
|
4
|
Ngubo M, Chen Z, McDonald D, Karimpour R, Shrestha A, Yockell‐Lelièvre J, Laurent A, Besong OTO, Tsai EC, Dilworth FJ, Hendzel MJ, Stanford WL. Progeria-based vascular model identifies networks associated with cardiovascular aging and disease. Aging Cell 2024; 23:e14150. [PMID: 38576084 PMCID: PMC11258467 DOI: 10.1111/acel.14150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 04/06/2024] Open
Abstract
Hutchinson-Gilford Progeria syndrome (HGPS) is a lethal premature aging disorder caused by a de novo heterozygous mutation that leads to the accumulation of a splicing isoform of Lamin A termed progerin. Progerin expression deregulates the organization of the nuclear lamina and the epigenetic landscape. Progerin has also been observed to accumulate at low levels during normal aging in cardiovascular cells of adults that do not carry genetic mutations linked with HGPS. Therefore, the molecular mechanisms that lead to vascular dysfunction in HGPS may also play a role in vascular aging-associated diseases, such as myocardial infarction and stroke. Here, we show that HGPS patient-derived vascular smooth muscle cells (VSMCs) recapitulate HGPS molecular hallmarks. Transcriptional profiling revealed cardiovascular disease remodeling and reactive oxidative stress response activation in HGPS VSMCs. Proteomic analyses identified abnormal acetylation programs in HGPS VSMC replication fork complexes, resulting in reduced H4K16 acetylation. Analysis of acetylation kinetics revealed both upregulation of K16 deacetylation and downregulation of K16 acetylation. This correlates with abnormal accumulation of error-prone nonhomologous end joining (NHEJ) repair proteins on newly replicated chromatin. The knockdown of the histone acetyltransferase MOF recapitulates preferential engagement of NHEJ repair activity in control VSMCs. Additionally, we find that primary donor-derived coronary artery vascular smooth muscle cells from aged individuals show similar defects to HGPS VSMCs, including loss of H4K16 acetylation. Altogether, we provide insight into the molecular mechanisms underlying vascular complications associated with HGPS patients and normative aging.
Collapse
Affiliation(s)
- Mzwanele Ngubo
- The Sprott Centre for Stem Cell ResearchOttawa Hospital Research InstituteOttawaOntarioCanada
- Ottawa Institute of Systems BiologyOttawaOntarioCanada
| | - Zhaoyi Chen
- The Sprott Centre for Stem Cell ResearchOttawa Hospital Research InstituteOttawaOntarioCanada
- Department of Cellular and Molecular MedicineUniversity of OttawaOttawaOntarioCanada
| | - Darin McDonald
- Cross Cancer Institute and the Department of Experimental Oncology, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonAlbertaCanada
| | - Rana Karimpour
- Cross Cancer Institute and the Department of Experimental Oncology, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonAlbertaCanada
| | - Amit Shrestha
- The Sprott Centre for Stem Cell ResearchOttawa Hospital Research InstituteOttawaOntarioCanada
| | - Julien Yockell‐Lelièvre
- The Sprott Centre for Stem Cell ResearchOttawa Hospital Research InstituteOttawaOntarioCanada
| | - Aurélie Laurent
- The Sprott Centre for Stem Cell ResearchOttawa Hospital Research InstituteOttawaOntarioCanada
- Université de StrasbourgStrasbourgFrance
| | - Ojong Tabi Ojong Besong
- The Sprott Centre for Stem Cell ResearchOttawa Hospital Research InstituteOttawaOntarioCanada
- School of BioscienceUniversity of SkövdeSkövdeSweden
| | - Eve C. Tsai
- The Sprott Centre for Stem Cell ResearchOttawa Hospital Research InstituteOttawaOntarioCanada
- Ottawa Institute of Systems BiologyOttawaOntarioCanada
- Division of Neurosurgery, Department of Surgery, Faculty of MedicineUniversity of OttawaOttawaOntarioCanada
| | - F. Jeffrey Dilworth
- Department of Cell and Regenerative BiologyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Michael J. Hendzel
- Cross Cancer Institute and the Department of Experimental Oncology, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonAlbertaCanada
| | - William L. Stanford
- The Sprott Centre for Stem Cell ResearchOttawa Hospital Research InstituteOttawaOntarioCanada
- Ottawa Institute of Systems BiologyOttawaOntarioCanada
- Department of Cellular and Molecular MedicineUniversity of OttawaOttawaOntarioCanada
- Department of Biochemistry, Microbiology & ImmunologyUniversity of OttawaOttawaOntarioCanada
| |
Collapse
|
5
|
Atkinson J, Bezak E, Le H, Kempson I. DNA Double Strand Break and Response Fluorescent Assays: Choices and Interpretation. Int J Mol Sci 2024; 25:2227. [PMID: 38396904 PMCID: PMC10889524 DOI: 10.3390/ijms25042227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Accurately characterizing DNA double-stranded breaks (DSBs) and understanding the DNA damage response (DDR) is crucial for assessing cellular genotoxicity, maintaining genomic integrity, and advancing gene editing technologies. Immunofluorescence-based techniques have proven to be invaluable for quantifying and visualizing DSB repair, providing valuable insights into cellular repair processes. However, the selection of appropriate markers for analysis can be challenging due to the intricate nature of DSB repair mechanisms, often leading to ambiguous interpretations. This comprehensively summarizes the significance of immunofluorescence-based techniques, with their capacity for spatiotemporal visualization, in elucidating complex DDR processes. By evaluating the strengths and limitations of different markers, we identify where they are most relevant chronologically from DSB detection to repair, better contextualizing what each assay represents at a molecular level. This is valuable for identifying biases associated with each assay and facilitates accurate data interpretation. This review aims to improve the precision of DSB quantification, deepen the understanding of DDR processes, assay biases, and pathway choices, and provide practical guidance on marker selection. Each assay offers a unique perspective of the underlying processes, underscoring the need to select markers that are best suited to specific research objectives.
Collapse
Affiliation(s)
- Jake Atkinson
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia;
| | - Eva Bezak
- UniSA Allied Health and Human Performance, University of South Australia, Adelaide, SA 5095, Australia; (E.B.)
- Department of Physics, University of Adelaide, North Terrace, Adelaide, SA 5005, Australia
| | - Hien Le
- UniSA Allied Health and Human Performance, University of South Australia, Adelaide, SA 5095, Australia; (E.B.)
- Department of Radiation Oncology, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
| | - Ivan Kempson
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia;
| |
Collapse
|
6
|
Sutcu HH, Rassinoux P, Donnio LM, Neuillet D, Vianna F, Gabillot O, Mari PO, Baldeyron C, Giglia-Mari G. Decline of DNA damage response along with myogenic differentiation. Life Sci Alliance 2024; 7:e202302279. [PMID: 37993260 PMCID: PMC10665522 DOI: 10.26508/lsa.202302279] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/24/2023] Open
Abstract
DNA integrity is incessantly confronted to agents inducing DNA lesions. All organisms are equipped with a network of DNA damage response mechanisms that will repair DNA lesions and restore proper cellular activities. Despite DNA repair mechanisms have been revealed in replicating cells, still little is known about how DNA lesions are repaired in postmitotic cells. Muscle fibers are highly specialized postmitotic cells organized in syncytia and they are vulnerable to age-related degeneration and atrophy after radiotherapy treatment. We have studied the DNA repair capacity of muscle fiber nuclei and compared it with the one measured in proliferative myoblasts here. We focused on the DNA repair mechanisms that correct ionizing radiation (IR)-induced lesions, namely the base excision repair, the nonhomologous end joining, and the homologous recombination (HR). We found that in the most differentiated myogenic cells, myotubes, these DNA repair mechanisms present weakened kinetics of recruitment of DNA repair proteins to IR-damaged DNA. For base excision repair and HR, this decline can be linked to reduced steady-state levels of key proteins involved in these processes.
Collapse
Affiliation(s)
- Haser H Sutcu
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SERAMED/LRAcc, Fontenay-aux-Roses, France
| | - Phoebe Rassinoux
- Pathophysiology and Genetics of Neuron and Muscle (INMG-PGNM) CNRS UMR 5261, INSERM U1315, Université Claude Bernard Lyon 1, Lyon, France
| | - Lise-Marie Donnio
- Pathophysiology and Genetics of Neuron and Muscle (INMG-PGNM) CNRS UMR 5261, INSERM U1315, Université Claude Bernard Lyon 1, Lyon, France
| | - Damien Neuillet
- Pathophysiology and Genetics of Neuron and Muscle (INMG-PGNM) CNRS UMR 5261, INSERM U1315, Université Claude Bernard Lyon 1, Lyon, France
| | - François Vianna
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SDOS/LMDN, Saint-Paul-Lez-Durance, France
| | - Olivier Gabillot
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SERAMED/LRAcc, Fontenay-aux-Roses, France
| | - Pierre-Olivier Mari
- Pathophysiology and Genetics of Neuron and Muscle (INMG-PGNM) CNRS UMR 5261, INSERM U1315, Université Claude Bernard Lyon 1, Lyon, France
| | - Céline Baldeyron
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SERAMED/LRAcc, Fontenay-aux-Roses, France
| | - Giuseppina Giglia-Mari
- Pathophysiology and Genetics of Neuron and Muscle (INMG-PGNM) CNRS UMR 5261, INSERM U1315, Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
7
|
Besse L, Rumiac T, Reynaud-Angelin A, Messaoudi C, Soler MN, Lambert SAE, Pennaneach V. Protocol for automated multivariate quantitative-image-based cytometry analysis by fluorescence microscopy of asynchronous adherent cells. STAR Protoc 2023; 4:102446. [PMID: 37453067 PMCID: PMC10365954 DOI: 10.1016/j.xpro.2023.102446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/31/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023] Open
Abstract
Here, we present a protocol for multivariate quantitative-image-based cytometry (QIBC) analysis by fluorescence microscopy of asynchronous adherent cells. We describe steps for the preparation, treatment, and fixation of cells, sample staining, and imaging for QIBC. We then detail image analysis with our open source Fiji script developed for QIBC and present multiparametric data visualization. Our QIBC Fiji script integrates modern artificial-intelligence-based tools, applying deep learning, for robust automated nuclei segmentation with minimal user adjustments, a major asset for efficient QIBC analysis. For complete details on the use and execution of this protocol, please refer to Besse et al. (2023).1.
Collapse
Affiliation(s)
- Laetitia Besse
- Institut Curie, Université PSL, CNRS UAR2016, Inserm US43, Université Paris-Saclay, Multimodal Imaging Center, 91400 Orsay, France
| | - Typhaine Rumiac
- Institut Curie, Université PSL, CNRS UMR3348, Orsay, France; Université Paris-Saclay, CNRS UMR3348, Orsay, France; Equipe Labélisée Ligue Nationale Contre Le Cancer, 91400 Orsay, France; Inovarion, 75005 Paris, France
| | - Anne Reynaud-Angelin
- Institut Curie, Université PSL, CNRS UMR3348, Orsay, France; Université Paris-Saclay, CNRS UMR3348, Orsay, France; Equipe Labélisée Ligue Nationale Contre Le Cancer, 91400 Orsay, France
| | - Cédric Messaoudi
- Institut Curie, Université PSL, CNRS UAR2016, Inserm US43, Université Paris-Saclay, Multimodal Imaging Center, 91400 Orsay, France
| | - Marie-Noëlle Soler
- Institut Curie, Université PSL, CNRS UAR2016, Inserm US43, Université Paris-Saclay, Multimodal Imaging Center, 91400 Orsay, France
| | - Sarah A E Lambert
- Institut Curie, Université PSL, CNRS UMR3348, Orsay, France; Université Paris-Saclay, CNRS UMR3348, Orsay, France; Equipe Labélisée Ligue Nationale Contre Le Cancer, 91400 Orsay, France.
| | - Vincent Pennaneach
- Institut Curie, Université PSL, CNRS UMR3348, Orsay, France; Université Paris-Saclay, CNRS UMR3348, Orsay, France; Equipe Labélisée Ligue Nationale Contre Le Cancer, 91400 Orsay, France.
| |
Collapse
|
8
|
Abate NG, Hendzel MJ. Heterogeneity of Organization of Subcompartments in DSB Repair Foci. Front Genet 2022; 13:887088. [PMID: 35923694 PMCID: PMC9340495 DOI: 10.3389/fgene.2022.887088] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/26/2022] [Indexed: 11/13/2022] Open
Abstract
Cells assemble compartments around DNA double-strand breaks (DSBs). The assembly of this compartment is dependent on the phosphorylation of histone H2AX, the binding of MDC1 to phosphorylated H2AX, and the assembly of downstream signaling and repair components. The decision on whether to use homologous recombination or nonhomologous end-joining repair depends on competition between 53BP1 and BRCA1. A major point of control appears to be DNA replication and associated changes in the epigenetic state. This includes dilution of histone H4 dimethylation and an increase in acetylation of lysine residues on H2A and H4 that impair 53BP1 binding. In this article, we examined more closely the spatial relationship between 53BP1 and BRCA1 within the cell cycle. We find that 53BP1 can associate with early S-phase replicated chromatin and that the relative concentration of BRCA1 in DSB-associated compartments correlates with increased BRCA1 nuclear abundance as cells progress into and through S phase. In most cases during S phase, both BRCA1 and 53BP1 are recruited to these compartments. This occurs for both IR-induced DSBs and breaks targeted to an integrated LacO array through a LacI-Fok1-mCherry fusion protein. Having established that the array system replicates this heterogeneity, we further examined the spatial relationship between DNA repair components. This enabled us to precisely locate the DNA containing the break and map other proteins relative to that DNA. We find evidence for at least three subcompartments. The damaged DNA, single-stranded DNA generated from end resection of the array, and nuclease CtIP all localized to the center of the compartment. BRCA1 and 53BP1 largely occupied discrete regions of the focus. One of BRCA1 or 53BP1 overlaps with the array, while the other is more peripherally located. The array-overlapping protein occupied a larger volume than the array, CtIP, or single-stranded DNA (ssDNA). Rad51 often occupied a much larger volume than the array itself and was sometimes observed to be depleted in the array volume where the ssDNA exclusively localizes. These results highlight the complexity of molecular compartmentalization within DSB repair compartments.
Collapse
|
9
|
Lee D, Apelt K, Lee SO, Chan HR, Luijsterburg MS, Leung JWC, Miller K. ZMYM2 restricts 53BP1 at DNA double-strand breaks to favor BRCA1 loading and homologous recombination. Nucleic Acids Res 2022; 50:3922-3943. [PMID: 35253893 PMCID: PMC9023290 DOI: 10.1093/nar/gkac160] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 02/11/2022] [Accepted: 02/22/2022] [Indexed: 12/14/2022] Open
Abstract
An inability to repair DNA double-strand breaks (DSBs) threatens genome integrity and can contribute to human diseases, including cancer. Mammalian cells repair DSBs mainly through homologous recombination (HR) and nonhomologous end-joining (NHEJ). The choice between these pathways is regulated by the interplay between 53BP1 and BRCA1, whereby BRCA1 excludes 53BP1 to promote HR and 53BP1 limits BRCA1 to facilitate NHEJ. Here, we identify the zinc-finger proteins (ZnF), ZMYM2 and ZMYM3, as antagonizers of 53BP1 recruitment that facilitate HR protein recruitment and function at DNA breaks. Mechanistically, we show that ZMYM2 recruitment to DSBs and suppression of break-associated 53BP1 requires the SUMO E3 ligase PIAS4, as well as SUMO binding by ZMYM2. Cells deficient for ZMYM2/3 display genome instability, PARP inhibitor and ionizing radiation sensitivity and reduced HR repair. Importantly, depletion of 53BP1 in ZMYM2/3-deficient cells rescues BRCA1 recruitment to and HR repair of DSBs, suggesting that ZMYM2 and ZMYM3 primarily function to restrict 53BP1 engagement at breaks to favor BRCA1 loading that functions to channel breaks to HR repair. Identification of DNA repair functions for these poorly characterized ZnF proteins may shed light on their unknown contributions to human diseases, where they have been reported to be highly dysregulated, including in several cancers.
Collapse
Affiliation(s)
- Doohyung Lee
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Katja Apelt
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Seong-Ok Lee
- Department of Radiation Oncology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Hsin-Ru Chan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Martijn S Luijsterburg
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Justin W C Leung
- Department of Radiation Oncology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Kyle M Miller
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
- Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
10
|
Passos CDS, Cohen RE, Yao T. Laser Microirradiation and Real-time Recruitment Assays Using an Engineered Biosensor. Bio Protoc 2022; 12:e4337. [PMID: 35592609 PMCID: PMC8918221 DOI: 10.21769/bioprotoc.4337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 11/05/2021] [Accepted: 01/18/2022] [Indexed: 12/29/2022] Open
Abstract
Double-strand breaks (DSBs) are lesions in DNA that, if not properly repaired, can cause genomic instability, oncogenesis, and cell death. Multiple chromatin posttranslational modifications (PTMs) play a role in the DNA damage response to DSBs. Among these, RNF168-mediated ubiquitination of lysines 13 or 15 at the N-terminal tail of histone H2A (H2AK13/15Ub) is essential for the recruitment of effectors of both the non-homologous end joining (NHEJ) and the homologous recombination (HR) repair pathways. Thus, tools and techniques to track the spatiotemporal dynamics of H2AK13/15 ubiquitination at DNA DSBs are important to facilitate studies of DNA repair. Previous work from other groups used the minimal focus-forming region (FFR) of the NHEJ effector 53BP1 to detect H2AK15Ub generated upon damage induced by gamma or laser irradiation in live cells. However, 53BP1-FFR only binds nucleosomes modified with both H2AK15Ub and dimethylation of lysine 20 on histone H4 (H4K20me2); thus, 53BP1-FFR does not recognize H2AK13Ub-nucleosomes or nucleosomes that contain H2AK15Ub but lack methylation of H4K20 (H4K20me0). To overcome this limitation, we developed an avidity-based sensor that binds H2AK13/15Ub without dependence on the methylation status of histone H4K20. This sensor, called Reader1.0, detects DNA damage-associated H2AK13/15Ub in live cells with high sensitivity and selectivity. Here, we present a protocol to detect the formation of H2AK13/15Ub at laser-induced DSBs using Reader1.0 as a live-cell reporter for this histone PTM. Graphic abstract.
Collapse
Affiliation(s)
| | - Robert E. Cohen
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA,
*For correspondence: ;
| | - Tingting Yao
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA,
*For correspondence: ;
| |
Collapse
|
11
|
Panagopoulos A, Altmeyer M. When the RAP (80) fades out, you can hear BRCA1 RING. EMBO Rep 2021; 22:e54116. [PMID: 34726332 PMCID: PMC8647006 DOI: 10.15252/embr.202154116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 10/13/2021] [Indexed: 11/09/2022] Open
Abstract
The tumor suppressor protein BRCA1 plays an important role in DNA repair by homologous recombination. Despite being encoded by the first familial breast and ovarian cancer gene identified, how BRCA1 is recruited to sites of DNA damage to execute its repair functions has remained poorly understood. Several recent studies highlight the role of its constitutive interaction partner BARD1 in this process. In this issue, parallel work by Sherker et al (2021) focused on a second route of BRCA1 recruitment, connected to the BRCA1‐A complex protein RAP80. Studying BRCA1 recruitment in RAP80‐deficient cells exposed a critical role for the BRCA1 RING domain and its associated ubiquitin ligase activity. Given that tumors expressing RING‐less BRCA1 isoforms can become resistant to therapy, targeting the RAP80 recruitment axis in such tumors might restore effective treatment.
Collapse
Affiliation(s)
- Andreas Panagopoulos
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Matthias Altmeyer
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| |
Collapse
|
12
|
Russi M, Marson D, Fermeglia A, Aulic S, Fermeglia M, Laurini E, Pricl S. The fellowship of the RING: BRCA1, its partner BARD1 and their liaison in DNA repair and cancer. Pharmacol Ther 2021; 232:108009. [PMID: 34619284 DOI: 10.1016/j.pharmthera.2021.108009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 08/22/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022]
Abstract
The breast cancer type 1 susceptibility protein (BRCA1) and its partner - the BRCA1-associated RING domain protein 1 (BARD1) - are key players in a plethora of fundamental biological functions including, among others, DNA repair, replication fork protection, cell cycle progression, telomere maintenance, chromatin remodeling, apoptosis and tumor suppression. However, mutations in their encoding genes transform them into dangerous threats, and substantially increase the risk of developing cancer and other malignancies during the lifetime of the affected individuals. Understanding how BRCA1 and BARD1 perform their biological activities therefore not only provides a powerful mean to prevent such fatal occurrences but can also pave the way to the development of new targeted therapeutics. Thus, through this review work we aim at presenting the major efforts focused on the functional characterization and structural insights of BRCA1 and BARD1, per se and in combination with all their principal mediators and regulators, and on the multifaceted roles these proteins play in the maintenance of human genome integrity.
Collapse
Affiliation(s)
- Maria Russi
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Domenico Marson
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Alice Fermeglia
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Suzana Aulic
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Maurizio Fermeglia
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Erik Laurini
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Sabrina Pricl
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy; Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland.
| |
Collapse
|
13
|
Spegg V, Altmeyer M. Biomolecular condensates at sites of DNA damage: More than just a phase. DNA Repair (Amst) 2021; 106:103179. [PMID: 34311273 PMCID: PMC7612016 DOI: 10.1016/j.dnarep.2021.103179] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 12/12/2022]
Abstract
Protein recruitment to DNA break sites is an integral part of the DNA damage response (DDR). Elucidation of the hierarchy and temporal order with which DNA damage sensors as well as repair and signaling factors assemble around chromosome breaks has painted a complex picture of tightly regulated macromolecular interactions that build specialized compartments to facilitate repair and maintenance of genome integrity. While many of the underlying interactions, e.g. between repair factors and damage-induced histone marks, can be explained by lock-and-key or induced fit binding models assuming fixed stoichiometries, structurally less well defined interactions, such as the highly dynamic multivalent interactions implicated in phase separation, also participate in the formation of multi-protein assemblies in response to genotoxic stress. Although much remains to be learned about these types of cooperative and highly dynamic interactions and their functional roles, the rapidly growing interest in material properties of biomolecular condensates and in concepts from polymer chemistry and soft matter physics to understand biological processes at different scales holds great promises. Here, we discuss nuclear condensates in the context of genome integrity maintenance, highlighting the cooperative potential between clustered stoichiometric binding and phase separation. Rather than viewing them as opposing scenarios, their combined effects can balance structural specificity with favorable physicochemical properties relevant for the regulation and function of multilayered nuclear condensates.
Collapse
Affiliation(s)
- Vincent Spegg
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Matthias Altmeyer
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
14
|
Rall-Scharpf M, Friedl TWP, Biechonski S, Denkinger M, Milyavsky M, Wiesmüller L. Sex-specific differences in DNA double-strand break repair of cycling human lymphocytes during aging. Aging (Albany NY) 2021; 13:21066-21089. [PMID: 34506302 PMCID: PMC8457596 DOI: 10.18632/aging.203519] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/10/2021] [Indexed: 12/15/2022]
Abstract
The gender gap in life expectancy and cancer incidence suggests differences in the aging process between the sexes. Genomic instability has been recognized as a key factor in aging, but little is known about sex-specific differences. Therefore, we analyzed DNA double-strand break (DSB) repair in cycling human peripheral blood lymphocytes (PBL) from male and female donors of different age. Reporter-based DSB repair analyses revealed differential regulation of pathway usage in PBL from male and female donors with age: Non-homologous end joining (NHEJ) was inversely regulated in men and women; the activity of pathways requiring end processing and strand annealing steps such as microhomology-mediated end joining (MMEJ) declined with age in women but not in men. Screening candidate proteins identified the NHEJ protein KU70 as well as the end resection regulatory factors ATM and BLM showing reduced expression during aging in women. Consistently, the regulatory factor BLM contributed to the MMEJ proficiency in young but not in old women as demonstrated by knockdown analysis. In conclusion, we show that DSB repair is subject to changes upon aging and age-related changes in DSB repair are distinct in men and women.
Collapse
Affiliation(s)
| | - Thomas W P Friedl
- Department of Obstetrics and Gynecology, Ulm University, Ulm, Germany
| | - Shahar Biechonski
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
| | - Michael Denkinger
- Institute for Geriatric Research Unit, Agaplesion Bethesda Hospital, Ulm University, Ulm, Germany
| | - Michael Milyavsky
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
| | - Lisa Wiesmüller
- Department of Obstetrics and Gynecology, Ulm University, Ulm, Germany
| |
Collapse
|
15
|
Cong K, Peng M, Kousholt AN, Lee WTC, Lee S, Nayak S, Krais J, VanderVere-Carozza PS, Pawelczak KS, Calvo J, Panzarino NJ, Turchi JJ, Johnson N, Jonkers J, Rothenberg E, Cantor SB. Replication gaps are a key determinant of PARP inhibitor synthetic lethality with BRCA deficiency. Mol Cell 2021; 81:3128-3144.e7. [PMID: 34216544 PMCID: PMC9089372 DOI: 10.1016/j.molcel.2021.06.011] [Citation(s) in RCA: 178] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 04/19/2021] [Accepted: 06/09/2021] [Indexed: 01/04/2023]
Abstract
Mutations in BRCA1 or BRCA2 (BRCA) is synthetic lethal with poly(ADP-ribose) polymerase inhibitors (PARPi). Lethality is thought to derive from DNA double-stranded breaks (DSBs) necessitating BRCA function in homologous recombination (HR) and/or fork protection (FP). Here, we report instead that toxicity derives from replication gaps. BRCA1- or FANCJ-deficient cells, with common repair defects but distinct PARPi responses, reveal gaps as a distinguishing factor. We further uncouple HR, FP, and fork speed from PARPi response. Instead, gaps characterize BRCA-deficient cells, are diminished upon resistance, restored upon resensitization, and, when exposed, augment PARPi toxicity. Unchallenged BRCA1-deficient cells have elevated poly(ADP-ribose) and chromatin-associated PARP1, but aberrantly low XRCC1 consistent with defects in backup Okazaki fragment processing (OFP). 53BP1 loss resuscitates OFP by restoring XRCC1-LIG3 that suppresses the sensitivity of BRCA1-deficient cells to drugs targeting OFP or generating gaps. We highlight gaps as a determinant of PARPi toxicity changing the paradigm for synthetic lethal interactions.
Collapse
Affiliation(s)
- Ke Cong
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Min Peng
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Arne Nedergaard Kousholt
- Division of Molecular Pathology, Oncode Institute, the Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Wei Ting C Lee
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Silviana Lee
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Sumeet Nayak
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - John Krais
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | | | | | - Jennifer Calvo
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Nicholas J Panzarino
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - John J Turchi
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; NERx Biosciences, 212 W. 10th St., Suite A480, Indianapolis, IN 46202, USA
| | - Neil Johnson
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Jos Jonkers
- Division of Molecular Pathology, Oncode Institute, the Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Eli Rothenberg
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Sharon B Cantor
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|