1
|
Chen Y, Zhang J, Yang J, Zhao J, Guo X, Zhang J, Gan J, Zhao W, Chen S, Zhang X, Lin Y, Jin J. Exploring the cancerous nexus: the pivotal and diverse roles of USP39 in cancer development. Discov Oncol 2025; 16:715. [PMID: 40347416 PMCID: PMC12065690 DOI: 10.1007/s12672-025-02480-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 04/24/2025] [Indexed: 05/12/2025] Open
Abstract
The ubiquitin-proteasome system enables post-transcriptional protein modification and is a major pathway for the degradation of most of them in eukaryotic cells. Among these, the ubiquitin-specific protease (USP) family is the most extensively studied. As an important member of the USP family, ubiquitin-specific protease 39 (USP39) plays an essential role in RNA splicing and protein regulation. This review comprehensively summarizes the structural characteristics and molecular functions of USP39, emphasizing its pivotal role in the regulation of cellular processes. Dysregulation of USP39 is closely associated with the progression of various cancers through mechanisms such as immune evasion, modulation of oncogenic signaling pathways, and altered RNA splicing. These processes impact key aspects of cancer biology, including proliferation, metastasis, and therapy resistance, underscoring the broad implications of USP39 in tumor progression. Recent studies position USP39 as a promising target for cancer treatment. Future research should explore its upstream regulatory networks, develop small-molecule inhibitors, and evaluate its potential for precision oncology. This review integrates the latest insight into USP39, providing a foundation for its clinical application in cancer therapy.
Collapse
Affiliation(s)
- Yujing Chen
- School of Pharmacy, Guilin Medical University, Guangxi, 541199, Guilin, People's Republic of China
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, Guangxi, China
| | - Jingyi Zhang
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, Guangxi, China
- Institute of Integrated Traditional Chinese and Western Medicine, Jining Medical University, Jining, Shandong, China
| | - Jinfeng Yang
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, Guangxi, China
| | - Jiawei Zhao
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, Guangxi, China
- Guangxi Health Commission Key Laboratory of Tumor Immunology and Receptor-Targeted Drug Basic Research, Guilin Medical University, Guilin, Guangxi, China
| | - Xiaotong Guo
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, Guangxi, China
- Guangxi Health Commission Key Laboratory of Tumor Immunology and Receptor-Targeted Drug Basic Research, Guilin Medical University, Guilin, Guangxi, China
| | - Juzheng Zhang
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, Guangxi, China
- Guangxi Health Commission Key Laboratory of Tumor Immunology and Receptor-Targeted Drug Basic Research, Guilin Medical University, Guilin, Guangxi, China
| | - Jinfeng Gan
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, Guangxi, China
- Guangxi Health Commission Key Laboratory of Tumor Immunology and Receptor-Targeted Drug Basic Research, Guilin Medical University, Guilin, Guangxi, China
| | - Weijia Zhao
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, Guangxi, China
- Guangxi Health Commission Key Laboratory of Tumor Immunology and Receptor-Targeted Drug Basic Research, Guilin Medical University, Guilin, Guangxi, China
| | - Siqi Chen
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, Guangxi, China
- Department of Oral Bioscience, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Xinwen Zhang
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, Guangxi, China
| | - Yi Lin
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, Guangxi, China.
- Department of Ultrasound, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China.
| | - Jiamin Jin
- School of Pharmacy, Guilin Medical University, Guangxi, 541199, Guilin, People's Republic of China.
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, Guangxi, China.
- Guangxi Health Commission Key Laboratory of Tumor Immunology and Receptor-Targeted Drug Basic Research, Guilin Medical University, Guilin, Guangxi, China.
- Department of Ultrasound, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China.
| |
Collapse
|
2
|
Tao Y, Xu X, Shen R, Miao X, He S. Roles of ubiquitin‑specific protease 13 in normal physiology and tumors (Review). Oncol Lett 2024; 27:58. [PMID: 38192665 PMCID: PMC10773187 DOI: 10.3892/ol.2023.14191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/24/2023] [Indexed: 01/10/2024] Open
Abstract
Ubiquitin-specific protease 13 (USP13) is one of the most important deubiquitinases involved in various diseases. As deubiquitinases are components of the deubiquitination process, a significant post-translational modification, they are potential treatment targets for different diseases. With recent technological developments, the structure of USP13 and its pathological and physiological functions have been investigated. However, USP13 expression and function differ in various diseases, especially in tumors, and the associated mechanisms are complex and remain to be fully investigated. The present review summarized the recent discoveries and the current understanding of the USP13 function in tumors.
Collapse
Affiliation(s)
- Yun Tao
- Department of Pathology, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu 226000, P.R. China
- Department of Clinical Laboratory, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226000, P.R. China
| | - Xiaohong Xu
- Department of Hematological Oncology, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu 226000, P.R. China
| | - Rong Shen
- Department of Pathology, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu 226000, P.R. China
| | - Xiaobing Miao
- Department of Pathology, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu 226000, P.R. China
| | - Song He
- Department of Pathology, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu 226000, P.R. China
| |
Collapse
|
3
|
Li J, Wan T, Liu C, Liu H, Ke D, Li L. ANGPTL2 aggravates LPS-induced septic cardiomyopathy via NLRP3-mediated inflammasome in a DUSP1-dependent pathway. Int Immunopharmacol 2023; 123:110701. [PMID: 37531825 DOI: 10.1016/j.intimp.2023.110701] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/04/2023] [Accepted: 07/20/2023] [Indexed: 08/04/2023]
Abstract
Angiopoietin-like protein 2 (ANGPTL2) was implicated in various cardiovascular diseases; however, its role in lipopolysaccharide (LPS)-related septic cardiomyopathy remains unclear. Herein, mice were exposed to LPS to generate septic cardiomyopathy, and adeno-associated viral vector was employed to overexpress ANGPTL2 in the myocardium. Besides, mice were treated with adenoviral vector to knock down ANGPTL2 in hearts. ANGPTL2 expressions in hearts and cardiomyocytes were upregulated by LPS challenge. ANGPTL2 overexpression aggravated, while ANGPTL2 silence ameliorated LPS-associated cardiac impairment and inflammation. Mechanically, we found that ANGPTL2 activated NLRP3 inflammasome via suppressing DUSP1 signaling, and NLRP3 knockdown abrogated the detrimental role of ANGPTL2 in aggravating LPS-induced cardiac inflammation. Furthermore, DUSP1 overexpression significantly inhibited ANGPTL2-mediated NLRP3 activation, and subsequently improved LPS-related cardiac dysfunction. In summary, ANGPTL2 exacerbated septic cardiomyopathy via activating NLRP3-mediated inflammation in a DUSP1-dependent manner, and our study uncovered a promising therapeutic target in preventing septic cardiomyopathy.
Collapse
Affiliation(s)
- Jun Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, Hubei, China
| | - Ting Wan
- Department of Gynecology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Cheng Liu
- Department of Cardiology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China; Shenzhen Cardiovascular Minimally Invasive Medical Engineering Technology Research and Development Center, Shenzhen 518020, Guangdong, China
| | - Huadong Liu
- Department of Cardiology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China; Shenzhen Cardiovascular Minimally Invasive Medical Engineering Technology Research and Development Center, Shenzhen 518020, Guangdong, China
| | - Dong Ke
- Department of Gastrointestinal Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China.
| | - Luocheng Li
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China.
| |
Collapse
|
4
|
Guo M, Wei J, Zhou Y, Qin Q. Antiviral immunity of grouper MAP kinase phosphatase 1 to Singapore grouper iridovirus infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 143:104674. [PMID: 36889370 DOI: 10.1016/j.dci.2023.104674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/23/2023] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
Singapore grouper iridovirus (SGIV), with various mechanisms for evading and modulating host, has inflicted heavy economic losses in the grouper aquaculture. MAP kinase phosphatase 1 (MKP-1) regulates mitogen-activated protein kinases (MAPKs) to mediate the innate immune response. Here, we cloned EcMKP-1, an MKP-1 homolog from the orange-spotted grouper Epinephelus coioides, and investigated its role in the infection of SGIV. In juvenile grouper, EcMKP-1 was highly upregulated and peaked at different times after injection with lipopolysaccharide, polyriboinosinic polyribocytidylic acid and SGIV. EcMKP-1 expression in heterologous fathead minnow cells was able to suppress SGIV infection and replication. Furthermore, EcMKP-1 was a negative regulator of c-Jun N-terminal kinase (JNK) phosphorylation early in SGIV infection. EcMKP-1 decreased the apoptotic percentage and caspase-3 activity during the late stage of SGIV replication. Our results demonstrate critical functions of EcMKP-1 in antiviral immunity, JNK dephosphorylation and anti-apoptosis during SGIV infection.
Collapse
Affiliation(s)
- Minglan Guo
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China; CAS-HKUST Sanya Joint Laboratory of Marine Science Research, Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Ocean Eco-Environmental Engineering, SCSIO, Sanya, 572000, PR China
| | - Jingguang Wei
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, PR China; Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Yongcan Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, PR China
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, PR China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266000, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), 528478, PR China.
| |
Collapse
|
5
|
Cao L, Li J, Zhang J, Huang H, Gui F, Xu W, Zhang L, Bi S. Beta-glucan enhanced immune response to Newcastle disease vaccine and changed mRNA expression of spleen in chickens. Poult Sci 2022; 102:102414. [PMID: 36565635 PMCID: PMC9801214 DOI: 10.1016/j.psj.2022.102414] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/21/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
The present study was performed to investigate the effect of oral administration of β-glucan (G70), a product obtained from the cell wall of yeast, on Newcastle disease virus (NDV)-specific hemagglutination inhibition (HI) titers, lymphocyte proliferation, and the role of T lymphocyte subpopulations in chickens treated with live NDV vaccine. In addition, the influence of β-glucan on splenic gene expression was investigated by transcriptome sequencing. The results revealed that the supplementation of β-glucan boosted the titer of serum NDV HI increased the NDV stimulation index of lymphocytes in peripheral blood and intestinal tract, and promoted the differentiation of T lymphocytes into CD4+ T cells. The RNA sequencing (RNA-seq) analysis demonstrated that G70 upregulated the mRNA expressions related to G-protein coupled receptor and MHC class I polypeptide, and downregulated the mRNA expressions related to cathelicidin and beta-defensin. The immunomodulatory effect of G70 might function through mitogen-activated protein kinase signaling pathway. To sum up, G70 could boost the immunological efficacy of live NDV vaccine in chickens and could be applied as a potential adjuvant candidate in the poultry industry.
Collapse
Affiliation(s)
- Liting Cao
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, Chongqing, 402460, P. R. China
| | - Jun Li
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, Chongqing, 402460, P. R. China
| | - Jianrong Zhang
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, Chongqing, 402460, P. R. China
| | - Huan Huang
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, Chongqing, 402460, P. R. China
| | - Fuxing Gui
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, Chongqing, 402460, P. R. China
| | - Wei Xu
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, P. R. China
| | - Li Zhang
- Immunology Research Center, Medical Research Institute, Southwest University, Rongchang, Chongqing 402460, P. R. China
| | - Shicheng Bi
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, Chongqing, 402460, P. R. China,Correspondence author:
| |
Collapse
|