1
|
Lee J, Zou J, Binti Mazli WNA, Chin N, Jarnik M, Saidi L, Xu Y, Replogle J, Ward M, Bonifacino J, Zheng W, Hao L, Ye Y. CHIP protects lysosomes from CLN4 mutant-induced membrane damages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.18.638932. [PMID: 40027688 PMCID: PMC11870535 DOI: 10.1101/2025.02.18.638932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Understanding how cells mitigate lysosomal damage is critical for unraveling pathogenic mechanisms of lysosome-related diseases. Here we use organelle-specific proteomics in iPSC-derived neurons (i3Neuron) and an in vitro lysosome-damaging assay to demonstrate that lysosome damage, caused by the aggregation of Ceroid Lipofuscinosis Neuronal 4 (CLN4)-linked DNAJC5 mutants on lysosomal membranes, serves as a critical pathogenic linchpin in CLN4-associated neurodegeneration. Intriguingly, in non-neuronal cells, a ubiquitin-dependent microautophagy mechanism downregulates CLN4 aggregates to counteract CLN4-associated lysotoxicity. Genome-wide CRISPR screens identify the ubiquitin ligase CHIP as a central microautophagy regulator that confers ubiquitin-dependent lysosome protection. Importantly, CHIP's lysosome protection function is transferrable, as ectopic CHIP improves lysosomal function in CLN4 i3Neurons, and effectively alleviates lipofuscin accumulation and neurodegeneration in a Drosophila CLN4 disease model. Our study establishes CHIP-mediated microautophagy as a key organelle damage guardian that preserves lysosome integrity, offering new insights into therapeutic development for CLN4 and other lysosome-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Juhyung Lee
- Laboratory of Molecular Biology, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jizhong Zou
- iPSC Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Natalie Chin
- Laboratory of Molecular Biology, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michal Jarnik
- Neurosciences and Cellular and Structural Biology Division, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Layla Saidi
- Laboratory of Molecular Biology, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yue Xu
- Laboratory of Molecular Biology, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - John Replogle
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael Ward
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Juan Bonifacino
- Neurosciences and Cellular and Structural Biology Division, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wei Zheng
- Therapeutic Development Branch, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20850, USA
| | - Ling Hao
- Department of Chemistry and Biochemistry, the University of Maryland, College Park, MD 20742, USA
| | - Yihong Ye
- Laboratory of Molecular Biology, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
2
|
Montresor S, Pigazzini ML, Baskaran S, Sleiman M, Adhikari G, Basilicata L, Secker L, Jacob N, Ehlert Y, Kelkar A, Kalsi GK, Kulkarni N, Spellerberg P, Kirstein J. HSP110 is a modulator of amyloid beta (Aβ) aggregation and proteotoxicity. J Neurochem 2025; 169:e16214. [PMID: 39180255 PMCID: PMC11657929 DOI: 10.1111/jnc.16214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 07/01/2024] [Accepted: 08/13/2024] [Indexed: 08/26/2024]
Abstract
Chaperones safeguard protein homeostasis by promoting folding and preventing aggregation. HSP110 is a cytosolic chaperone that functions as a nucleotide exchange factor for the HSP70 cycle. Together with HSP70 and a J-domain protein (JDP), HSP110 maintains protein folding and resolubilizes aggregates. Interestingly, HSP110 is vital for the HSP70/110/JDP-mediated disaggregation of amyloidogenic proteins implicated in neurodegenerative diseases (i.e., α-synuclein, HTT, and tau). However, despite its abundance, HSP110 remains still an enigmatic chaperone, and its functional spectrum is not very well understood. Of note, the disaggregation activity of neurodegenerative disease-associated amyloid fibrils showed both beneficial and detrimental outcomes in vivo. To gain a more comprehensive understanding of the chaperone HSP110 in vivo, we analyzed its role in neuronal proteostasis and neurodegeneration in C. elegans. Specifically, we investigated the role of HSP110 in the regulation of amyloid beta peptide (Aβ) aggregation using an established Aβ-C. elegans model that mimics Alzheimer's disease pathology. We generated a novel C. elegans model that over-expresses hsp-110 pan-neuronally, and we also depleted hsp-110 by RNAi-mediated knockdown. We assessed Aβ aggregation in vivo and in situ by fluorescence lifetime imaging. We found that hsp-110 over-expression exacerbated Aβ aggregation and appeared to reduce the conformational variability of the Aβ aggregates, whereas hsp-110 depletion reduced aggregation more significantly in the IL2 neurons, which marked the onset of Aβ aggregation. HSP-110 also plays a central role in growth and fertility as its over-expression compromises nematode physiology. In addition, we found that HSP-110 modulation affects the autophagy pathway. While hsp-110 over-expression impairs the autophagic flux, a depletion enhances it. Thus, HSP-110 regulates multiple nodes of the proteostasis network to control amyloid protein aggregation, disaggregation, and autophagic clearance.
Collapse
Affiliation(s)
| | - Maria Lucia Pigazzini
- Leibniz Institute for Molecular PharmacologyBerlinGermany
- Present address:
EMBL HeidelbergMeyerhofstrasse 169117HeidelbergGermany
| | | | - Mira Sleiman
- Department of Cell BiologyUniversity of BremenBremenGermany
- Leibniz Institute on Aging—Fritz‐Lipmann‐InstituteJenaGermany
| | | | | | - Luca Secker
- Department of Cell BiologyUniversity of BremenBremenGermany
| | - Natascha Jacob
- Department of Cell BiologyUniversity of BremenBremenGermany
| | - Yara Ehlert
- Department of Cell BiologyUniversity of BremenBremenGermany
| | | | | | - Niraj Kulkarni
- Department of Cell BiologyUniversity of BremenBremenGermany
| | | | - Janine Kirstein
- Leibniz Institute on Aging—Fritz‐Lipmann‐InstituteJenaGermany
- Friedrich‐Schiller‐Universität, Institute for Biochemistry & BiophysicsJenaGermany
| |
Collapse
|
3
|
Tillu VA, Redpath GMI, Rae J, Ruan J, Yao Y, Cagigas ML, Whan R, Hardeman EC, Gunning PW, Ananthanarayanan V, Parton RG, Ariotti N. Precision in situ cryogenic correlative light and electron microscopy of optogenetically positioned organelles. J Cell Sci 2024; 137:jcs262163. [PMID: 39308425 DOI: 10.1242/jcs.262163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 09/12/2024] [Indexed: 11/01/2024] Open
Abstract
Unambiguous targeting of cellular structures for in situ cryo-electron microscopy in the heterogeneous, dense and compacted environment of the cytoplasm remains challenging. Here, we have developed a cryogenic correlative light and electron microscopy (cryo-CLEM) workflow that utilizes thin cells grown on a mechanically defined substratum for rapid analysis of organelles and macromolecular complexes by cryo-electron tomography (cryo-ET). We coupled these advancements with optogenetics to redistribute perinuclear-localised organelles to the cell periphery, allowing visualisation of organelles that would otherwise be positioned in cellular regions too thick for cryo-ET. This reliable and robust workflow allows for fast in situ analyses without the requirement for cryo-focused ion beam milling. Using this protocol, cells can be frozen, imaged by cryo-fluorescence microscopy and be ready for batch cryo-ET within a day.
Collapse
Affiliation(s)
- Vikas A Tillu
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, Queensland 4072, Australia
| | - Gregory M I Redpath
- EMBL Australia Node in Single Molecule Science , School of Medical Sciences, University of New South Wales Sydney, New South Wales 2033, Australia
| | - James Rae
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, Queensland 4072, Australia
| | - Juanfang Ruan
- University of New South Wales Sydney, Electron Microscope Unit , Mark Wainwright Analytical Centre, Sydney, New South Wales 2033, Australia
| | - Yin Yao
- University of New South Wales Sydney, Electron Microscope Unit , Mark Wainwright Analytical Centre, Sydney, New South Wales 2033, Australia
| | - Maria L Cagigas
- University of New South Wales Sydney, School of Medical Sciences , Kensington, Sydney, New South Wales 2033, Australia
| | - Renee Whan
- University of New South Wales Sydney, Katharina Gaus Light Microscopy Facility , Mark Wainwright Analytical Centre, Sydney, New South Wales 2033, Australia
| | - Edna C Hardeman
- University of New South Wales Sydney, School of Medical Sciences , Kensington, Sydney, New South Wales 2033, Australia
| | - Peter W Gunning
- University of New South Wales Sydney, School of Medical Sciences , Kensington, Sydney, New South Wales 2033, Australia
| | - Vaishnavi Ananthanarayanan
- EMBL Australia Node in Single Molecule Science , School of Medical Sciences, University of New South Wales Sydney, New South Wales 2033, Australia
| | - Robert G Parton
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, Queensland 4072, Australia
- The University of Queensland, Centre for Microscopy and Microanalysis, Brisbane, Queensland 4072, Australia
| | - Nicholas Ariotti
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, Queensland 4072, Australia
- University of New South Wales Sydney, Electron Microscope Unit , Mark Wainwright Analytical Centre, Sydney, New South Wales 2033, Australia
- University of New South Wales Sydney, School of Medical Sciences , Kensington, Sydney, New South Wales 2033, Australia
| |
Collapse
|
4
|
Soeda Y, Yoshimura H, Bannai H, Koike R, Shiiba I, Takashima A. Intracellular tau fragment droplets serve as seeds for tau fibrils. Structure 2024; 32:1793-1807.e6. [PMID: 39032487 DOI: 10.1016/j.str.2024.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 05/04/2024] [Accepted: 06/25/2024] [Indexed: 07/23/2024]
Abstract
Intracellular tau aggregation requires a local protein concentration increase, referred to as "droplets". However, the cellular mechanism for droplet formation is poorly understood. Here, we expressed OptoTau, a P301L mutant tau fused with CRY2olig, a light-sensitive protein that can form homo-oligomers. Under blue light exposure, OptoTau increased tau phosphorylation and was sequestered in aggresomes. Suppressing aggresome formation by nocodazole formed tau granular clusters in the cytoplasm. The granular clusters disappeared by discontinuing blue light exposure or 1,6-hexanediol treatment suggesting that intracellular tau droplet formation requires microtubule collapse. Expressing OptoTau-ΔN, a species of N-terminal cleaved tau observed in the Alzheimer's disease brain, formed 1,6-hexanediol and detergent-resistant tau clusters in the cytoplasm with blue light stimulation. These intracellular stable tau clusters acted as a seed for tau fibrils in vitro. These results suggest that tau droplet formation and N-terminal cleavage are necessary for neurofibrillary tangles formation in neurodegenerative diseases.
Collapse
Affiliation(s)
- Yoshiyuki Soeda
- Laboratory for Alzheimer's Disease, Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan.
| | - Hideaki Yoshimura
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroko Bannai
- School of Advanced Science and Engineering, Department of Electrical Engineering and Biosciences, Waseda University, 2-2 Wakamatsucho, Shinjuku-Ku, Tokyo 162-0056, Japan
| | - Riki Koike
- Laboratory for Alzheimer's Disease, Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Isshin Shiiba
- Laboratory of Molecular Biochemistry, Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Akihiko Takashima
- Laboratory for Alzheimer's Disease, Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| |
Collapse
|
5
|
Kim SB, Mun BR, Kim SY, Elangovan M, Park EJ, Choi WS, Park WJ. Therapeutic effects of a novel synthetic α-secretase. Front Aging Neurosci 2024; 16:1383905. [PMID: 38912519 PMCID: PMC11191342 DOI: 10.3389/fnagi.2024.1383905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/08/2024] [Indexed: 06/25/2024] Open
Abstract
Excessive accumulation of amyloid-β (Aβ) has been associated with the pathogenesis of Alzheimer's disease (AD). Clinical studies have further proven that elimination of Aβ can be a viable therapeutic option. In the current study, we conceptualized a fusion membrane protein, referred to as synthetic α-secretase (SAS), that can cleave amyloid precursor protein (APP) and Aβ specifically at the α-site. In mammalian cells, SAS indeed cleaved APP and Aβ at the α-site. Overexpression of SAS in the hippocampus was achieved by direct injection of recombinant adeno-associated virus serotype 9 (AAV9) that expresses SAS (AAV9-SAS) into the bilateral ventricles of mouse brains. SAS enhanced the non-amyloidogenic processing of APP, thus reducing the levels of soluble Aβ and plaques in the 5xFAD mice. In addition, SAS significantly attenuated the cognitive deficits in 5xFAD mice, as demonstrated by novel object recognition and Morris water maze tests. Unlike other Aβ-cleaving proteases, SAS has highly strict substrate specificity. We propose that SAS can be an efficient modality to eliminate excessive Aβ from diseased brains.
Collapse
Affiliation(s)
- Sung Bin Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Bo-Ram Mun
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Sung Yoon Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Muthukumar Elangovan
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Euy Jun Park
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Won-Seok Choi
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Woo Jin Park
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| |
Collapse
|
6
|
Kim JY, Yang JE, Mitchell JW, English LA, Yang SZ, Tenpas T, Dent EW, Wildonger J, Wright ER. Handling Difficult Cryo-ET Samples: A Study with Primary Neurons from Drosophila melanogaster. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:2127-2148. [PMID: 37966978 PMCID: PMC11168236 DOI: 10.1093/micmic/ozad125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/01/2023] [Accepted: 10/18/2023] [Indexed: 11/17/2023]
Abstract
Cellular neurobiology has benefited from recent advances in the field of cryo-electron tomography (cryo-ET). Numerous structural and ultrastructural insights have been obtained from plunge-frozen primary neurons cultured on electron microscopy grids. With most primary neurons having been derived from rodent sources, we sought to expand the breadth of sample availability by using primary neurons derived from 3rd instar Drosophila melanogaster larval brains. Ultrastructural abnormalities were encountered while establishing this model system for cryo-ET, which were exemplified by excessive membrane blebbing and cellular fragmentation. To optimize neuronal samples, we integrated substrate selection, micropatterning, montage data collection, and chemical fixation. Efforts to address difficulties in establishing Drosophila neurons for future cryo-ET studies in cellular neurobiology also provided insights that future practitioners can use when attempting to establish other cell-based model systems.
Collapse
Affiliation(s)
- Joseph Y. Kim
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jie E. Yang
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Cryo-Electron Microscopy Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA
- Midwest Center for Cryo-Electron Tomography, Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Josephine W. Mitchell
- Department of Chemistry and Biochemistry, Kalamazoo College, Kalamazoo, MI 49006, USA
| | - Lauren A. English
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Sihui Z. Yang
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Tanner Tenpas
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Erik W. Dent
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Jill Wildonger
- Departments of Pediatrics and Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Elizabeth R. Wright
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Cryo-Electron Microscopy Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA
- Midwest Center for Cryo-Electron Tomography, Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI 53715, USA
| |
Collapse
|
7
|
Louros N, Schymkowitz J, Rousseau F. Mechanisms and pathology of protein misfolding and aggregation. Nat Rev Mol Cell Biol 2023; 24:912-933. [PMID: 37684425 DOI: 10.1038/s41580-023-00647-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2023] [Indexed: 09/10/2023]
Abstract
Despite advances in machine learning-based protein structure prediction, we are still far from fully understanding how proteins fold into their native conformation. The conventional notion that polypeptides fold spontaneously to their biologically active states has gradually been replaced by our understanding that cellular protein folding often requires context-dependent guidance from molecular chaperones in order to avoid misfolding. Misfolded proteins can aggregate into larger structures, such as amyloid fibrils, which perpetuate the misfolding process, creating a self-reinforcing cascade. A surge in amyloid fibril structures has deepened our comprehension of how a single polypeptide sequence can exhibit multiple amyloid conformations, known as polymorphism. The assembly of these polymorphs is not a random process but is influenced by the specific conditions and tissues in which they originate. This observation suggests that, similar to the folding of native proteins, the kinetics of pathological amyloid assembly are modulated by interactions specific to cells and tissues. Here, we review the current understanding of how intrinsic protein conformational propensities are modulated by physiological and pathological interactions in the cell to shape protein misfolding and aggregation pathology.
Collapse
Affiliation(s)
- Nikolaos Louros
- Switch Laboratory, VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Joost Schymkowitz
- Switch Laboratory, VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium.
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.
| | - Frederic Rousseau
- Switch Laboratory, VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium.
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.
| |
Collapse
|
8
|
Bai Y, Zhang S, Dong H, Liu Y, Liu C, Zhang X. Advanced Techniques for Detecting Protein Misfolding and Aggregation in Cellular Environments. Chem Rev 2023; 123:12254-12311. [PMID: 37874548 DOI: 10.1021/acs.chemrev.3c00494] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Protein misfolding and aggregation, a key contributor to the progression of numerous neurodegenerative diseases, results in functional deficiencies and the creation of harmful intermediates. Detailed visualization of this misfolding process is of paramount importance for improving our understanding of disease mechanisms and for the development of potential therapeutic strategies. While in vitro studies using purified proteins have been instrumental in delivering significant insights into protein misfolding, the behavior of these proteins in the complex milieu of living cells often diverges significantly from such simplified environments. Biomedical imaging performed in cell provides cellular-level information with high physiological and pathological relevance, often surpassing the depth of information attainable through in vitro methods. This review highlights a variety of methodologies used to scrutinize protein misfolding within biological systems. This includes optical-based methods, strategies leaning on mass spectrometry, in-cell nuclear magnetic resonance, and cryo-electron microscopy. Recent advancements in these techniques have notably deepened our understanding of protein misfolding processes and the features of the resulting misfolded species within living cells. The progression in these fields promises to catalyze further breakthroughs in our comprehension of neurodegenerative disease mechanisms and potential therapeutic interventions.
Collapse
Affiliation(s)
- Yulong Bai
- Department of Chemistry, Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Shengnan Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Hui Dong
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of the Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Yu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Xin Zhang
- Department of Chemistry, Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| |
Collapse
|
9
|
Kim JY, Yang JE, Mitchell JW, English LA, Yang SZ, Tenpas T, Dent EW, Wildonger J, Wright ER. Handling difficult cryo-ET samples: A study with primary neurons from Drosophila melanogaster. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.10.548468. [PMID: 37502991 PMCID: PMC10369871 DOI: 10.1101/2023.07.10.548468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Cellular neurobiology has benefited from recent advances in the field of cryo-electron tomography (cryo-ET). Numerous structural and ultrastructural insights have been obtained from plunge-frozen primary neurons cultured on electron microscopy grids. With most primary neurons been derived from rodent sources, we sought to expand the breadth of sample availability by using primary neurons derived from 3rd instar Drosophila melanogaster larval brains. Ultrastructural abnormalities were encountered while establishing this model system for cryo-ET, which were exemplified by excessive membrane blebbing and cellular fragmentation. To optimize neuronal samples, we integrated substrate selection, micropatterning, montage data collection, and chemical fixation. Efforts to address difficulties in establishing Drosophila neurons for future cryo-ET studies in cellular neurobiology also provided insights that future practitioners can use when attempting to establish other cell-based model systems.
Collapse
Affiliation(s)
- Joseph Y. Kim
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Jie E. Yang
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Cryo-Electron Microscopy Research Center, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Midwest Center for Cryo-Electron Tomography, Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Josephine W. Mitchell
- Department of Chemistry and Biochemistry, Kalamazoo College, Kalamazoo, MI, 49006, USA
| | - Lauren A. English
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Sihui Z. Yang
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - Tanner Tenpas
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Erik W. Dent
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Jill Wildonger
- Departments of Pediatrics and Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Elizabeth R. Wright
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Cryo-Electron Microscopy Research Center, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Midwest Center for Cryo-Electron Tomography, Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI, 53715, USA
| |
Collapse
|
10
|
Costa-Laparra I, Juárez-Escoto E, Vicario C, Moratalla R, García-Sanz P. APOE ε4 allele, along with G206D- PSEN1 mutation, alters mitochondrial networks and their degradation in Alzheimer's disease. Front Aging Neurosci 2023; 15:1087072. [PMID: 37455931 PMCID: PMC10340123 DOI: 10.3389/fnagi.2023.1087072] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 06/13/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction Alzheimer's disease remains the most common neurodegenerative disorder, depicted mainly by memory loss and the presence in the brain of senile plaques and neurofibrillary tangles. This disease is related to several cellular alterations like the loss of synapses, neuronal death, disruption of lipid homeostasis, mitochondrial fragmentation, or raised oxidative stress. Notably, changes in the autophagic pathway have turned out to be a key factor in the early development of the disease. The aim of this research is to determine the impact of the APOE allele ε4 and G206D-PSEN1 on the underlying mechanisms of Alzheimer's disease. Methods Fibroblasts from Alzheimer's patients with APOE 3/4 + G206D-PSEN1 mutation and homozygous APOE ε4 were used to study the effects of APOE polymorphism and PSEN1 mutation on the autophagy pathway, mitochondrial network fragmentation, superoxide anion levels, lysosome clustering, and p62/SQSTM1 levels. Results We observed that the APOE allele ε4 in homozygosis induces mitochondrial network fragmentation that correlates with an increased colocalization with p62/SQSTM1, probably due to an inefficient autophagy. Moreover, G206D-PSEN1 mutation causes an impairment of the integrity of mitochondrial networks, triggering high superoxide anion levels and thus making APOE 3/4 + PSEN1 fibroblasts more vulnerable to cell death induced by oxidative stress. Of note, PSEN1 mutation induces accumulation and clustering of lysosomes that, along with an increase of global p62/SQSTM1, could compromise lysosomal function and, ultimately, its degradation. Conclusion The findings suggest that all these modifications could eventually contribute to the neuronal degeneration that underlies the pathogenesis of Alzheimer's disease. Further research in this area may help to develop targeted therapies for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Irene Costa-Laparra
- Neurobiology of the Basal Ganglia Laboratory, Department of Functional Systems and Neurobiology, Instituto Cajal, Spanish National Research Council (CSIC), Madrid, Spain
| | - Elena Juárez-Escoto
- Neurobiology of the Basal Ganglia Laboratory, Department of Functional Systems and Neurobiology, Instituto Cajal, Spanish National Research Council (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Carlos Vicario
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Stem Cells, Neurogenesis and Neurodegeneration Laboratory, Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute, Spanish National Research Council (CSIC), Madrid, Spain
| | - Rosario Moratalla
- Neurobiology of the Basal Ganglia Laboratory, Department of Functional Systems and Neurobiology, Instituto Cajal, Spanish National Research Council (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Patricia García-Sanz
- Neurobiology of the Basal Ganglia Laboratory, Department of Functional Systems and Neurobiology, Instituto Cajal, Spanish National Research Council (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
11
|
Song Q, Bi L, Jiao J, Shang J, Li Q, Shabuerjiang L, Bai M, Liu X. Zhachong Shisanwei Pill resists ischemic stroke by lysosome pathway based on proteomics and bioinformatics. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115766. [PMID: 36183948 DOI: 10.1016/j.jep.2022.115766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/05/2022] [Accepted: 09/25/2022] [Indexed: 05/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zhachong Shisanwei Pill (ZSP) is a commonly used Mongolian medicine in treating cerebrovascular diseases and plays a role in the clinical treatment of ischemic stroke (IS). AIM OF THE STUDY Based on determining the protective effect of ZSP on cerebral ischemia, they adopted the proteomics method to explore the mechanism of ZSP against IS. MATERIALS AND METHODS Rats with middle cerebral artery occlusion (MCAO) model were prepared by wire embolization method, and divided into sham group, model group, ZSP high-dose group, medium-dose group, low-dose group and positive drug group. We collected the brain tissue of rats for 12 h after modeling. Neurological deficit score and cerebral infarction volume ratio evaluated pharmacodynamics, and we selected the optimal dose for subsequent experiments. Proteomics was used to screen out possible ZSP anti-IS mediated pathways and differentially expression proteins. Network pharmacology was used to verify the correlation between diseases and drugs. Hematoxylin-eosin (HE) staining and transmission electron microscope (TEM) were used to explore further the pharmacodynamic effect of ZSP against IS and its possible mechanism. RESULTS The cerebral infarction rate and neurological function score in rats showed that the medium-dose ZSP group had the best efficacy. Proteomics results showed that the anti-IS action of ZSP was mainly through lysosome pathway. LAMP2, AP3M1, and SCARB2 were the differentially changed proteins in this pathway. Network pharmacology verified this. HE staining and TEM results showed that ZSP could improve the pathological state of neurons in MCAO rats and reduce the number of lysosomes in MCAO rats. Western blot (WB) results showed that compared with the model group, the protein expression levels of LAMP2 and AP3M1 in the ZSP group were significantly down-regulated, and the protein expression levels of SCARB2 were significantly up-regulated. CONCLUSION This study confirms that ZSP regulates the lysosomal pathway, which may protect IS by down-regulating LAMP2 and AP3M1 and up-regulating SCARB2.
Collapse
Affiliation(s)
- Qi Song
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 100029, Beijing, China.
| | - Lei Bi
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 100029, Beijing, China.
| | - Jiakang Jiao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 100029, Beijing, China.
| | - Jinfeng Shang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 100029, Beijing, China.
| | - Qiannan Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 100029, Beijing, China.
| | - Lizha Shabuerjiang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 100029, Beijing, China.
| | - Meirong Bai
- Key Laboratory of Mongolian Medicine Research and Development Engineering, Ministry of Education, Inner Mongolia Minzu University, 028000, Tongliao, China.
| | - Xin Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 100029, Beijing, China.
| |
Collapse
|
12
|
Ferdosi S, Stukalov A, Hasan M, Tangeysh B, Brown TR, Wang T, Elgierari EM, Zhao X, Huang Y, Alavi A, Lee-McMullen B, Chu J, Figa M, Tao W, Wang J, Goldberg M, O'Brien ES, Xia H, Stolarczyk C, Weissleder R, Farias V, Batzoglou S, Siddiqui A, Farokhzad OC, Hornburg D. Enhanced Competition at the Nano-Bio Interface Enables Comprehensive Characterization of Protein Corona Dynamics and Deep Coverage of Proteomes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2206008. [PMID: 35986672 DOI: 10.1002/adma.202206008] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/11/2022] [Indexed: 06/15/2023]
Abstract
Introducing engineered nanoparticles (NPs) into a biofluid such as blood plasma leads to the formation of a selective and reproducible protein corona at the particle-protein interface, driven by the relationship between protein-NP affinity and protein abundance. This enables scalable systems that leverage protein-nano interactions to overcome current limitations of deep plasma proteomics in large cohorts. Here the importance of the protein to NP-surface ratio (P/NP) is demonstrated and protein corona formation dynamics are modeled, which determine the competition between proteins for binding. Tuning the P/NP ratio significantly modulates the protein corona composition, enhancing depth and precision of a fully automated NP-based deep proteomic workflow (Proteograph). By increasing the binding competition on engineered NPs, 1.2-1.7× more proteins with 1% false discovery rate are identified on the surface of each NP, and up to 3× more proteins compared to a standard plasma proteomics workflow. Moreover, the data suggest P/NP plays a significant role in determining the in vivo fate of nanomaterials in biomedical applications. Together, the study showcases the importance of P/NP as a key design element for biomaterials and nanomedicine in vivo and as a powerful tuning strategy for accurate, large-scale NP-based deep proteomic studies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Amir Alavi
- Seer, Inc., Redwood City, CA, 94065, USA
| | | | | | - Mike Figa
- Seer, Inc., Redwood City, CA, 94065, USA
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Jian Wang
- Seer, Inc., Redwood City, CA, 94065, USA
| | | | | | | | | | - Ralph Weissleder
- Department of Systems Biology, Harvard Medical School, 200 Longwood Ave, Boston, MA, 02115, USA
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, MA, 02114, USA
| | - Vivek Farias
- Sloan School and Operations Research Center, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | | | | | - Omid C Farokhzad
- Seer, Inc., Redwood City, CA, 94065, USA
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | | |
Collapse
|
13
|
Scerra G, De Pasquale V, Scarcella M, Caporaso MG, Pavone LM, D'Agostino M. Lysosomal positioning diseases: beyond substrate storage. Open Biol 2022; 12:220155. [PMID: 36285443 PMCID: PMC9597170 DOI: 10.1098/rsob.220155] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Lysosomal storage diseases (LSDs) comprise a group of inherited monogenic disorders characterized by lysosomal dysfunctions due to undegraded substrate accumulation. They are caused by a deficiency in specific lysosomal hydrolases involved in cellular catabolism, or non-enzymatic proteins essential for normal lysosomal functions. In LSDs, the lack of degradation of the accumulated substrate and its lysosomal storage impairs lysosome functions resulting in the perturbation of cellular homeostasis and, in turn, the damage of multiple organ systems. A substantial number of studies on the pathogenesis of LSDs has highlighted how the accumulation of lysosomal substrates is only the first event of a cascade of processes including the accumulation of secondary metabolites and the impairment of cellular trafficking, cell signalling, autophagic flux, mitochondria functionality and calcium homeostasis, that significantly contribute to the onset and progression of these diseases. Emerging studies on lysosomal biology have described the fundamental roles of these organelles in a variety of physiological functions and pathological conditions beyond their canonical activity in cellular waste clearance. Here, we discuss recent advances in the knowledge of cellular and molecular mechanisms linking lysosomal positioning and trafficking to LSDs.
Collapse
Affiliation(s)
- Gianluca Scerra
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Valeria De Pasquale
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino 1, 80137 Naples, Italy
| | - Melania Scarcella
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Maria Gabriella Caporaso
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Luigi Michele Pavone
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Massimo D'Agostino
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| |
Collapse
|
14
|
Riemenschneider H, Guo Q, Bader J, Frottin F, Farny D, Kleinberger G, Haass C, Mann M, Hartl FU, Baumeister W, Hipp MS, Meissner F, Fernández‐Busnadiego R, Edbauer D. Gel-like inclusions of C-terminal fragments of TDP-43 sequester stalled proteasomes in neurons. EMBO Rep 2022; 23:e53890. [PMID: 35438230 PMCID: PMC9171420 DOI: 10.15252/embr.202153890] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 03/25/2022] [Accepted: 03/30/2022] [Indexed: 12/11/2022] Open
Abstract
Aggregation of the multifunctional RNA-binding protein TDP-43 defines large subgroups of amyotrophic lateral sclerosis and frontotemporal dementia and correlates with neurodegeneration in both diseases. In disease, characteristic C-terminal fragments of ~25 kDa ("TDP-25") accumulate in cytoplasmic inclusions. Here, we analyze gain-of-function mechanisms of TDP-25 combining cryo-electron tomography, proteomics, and functional assays. In neurons, cytoplasmic TDP-25 inclusions are amorphous, and photobleaching experiments reveal gel-like biophysical properties that are less dynamic than nuclear TDP-43. Compared with full-length TDP-43, the TDP-25 interactome is depleted of low-complexity domain proteins. TDP-25 inclusions are enriched in 26S proteasomes adopting exclusively substrate-processing conformations, suggesting that inclusions sequester proteasomes, which are largely stalled and no longer undergo the cyclic conformational changes required for proteolytic activity. Reporter assays confirm that TDP-25 impairs proteostasis, and this inhibitory function is enhanced by ALS-causing TDP-43 mutations. These findings support a patho-physiological relevance of proteasome dysfunction in ALS/FTD.
Collapse
Affiliation(s)
| | - Qiang Guo
- Department of Molecular Structural BiologyMax Planck Institute of BiochemistryMartinsriedGermany
- State Key Laboratory of Protein and Plant Gene ResearchSchool of Life Sciences and Peking‐Tsinghua Center for Life SciencesPeking UniversityBeijingChina
| | - Jakob Bader
- Department of Proteomics and Signal TransductionMax Planck Institute for BiochemistryMartinsriedGermany
| | - Frédéric Frottin
- Department of Cellular BiochemistryMax Planck Institute for BiochemistryMartinsriedGermany
- Institute for Integrative Biology of the Cell (I2BC)Université Paris‐SaclayCEACNRSGif‐sur‐YvetteFrance
| | - Daniel Farny
- German Center for Neurodegenerative Diseases (DZNE), MunichMunichGermany
| | - Gernot Kleinberger
- German Center for Neurodegenerative Diseases (DZNE), MunichMunichGermany
| | - Christian Haass
- German Center for Neurodegenerative Diseases (DZNE), MunichMunichGermany
- Chair of Metabolic BiochemistryFaculty of MedicineBiomedical Center (BMC)Ludwig‐Maximilians‐Universität MunichMunichGermany
- Munich Cluster of Systems Neurology (SyNergy)MunichGermany
| | - Matthias Mann
- Department of Proteomics and Signal TransductionMax Planck Institute for BiochemistryMartinsriedGermany
| | - F. Ulrich Hartl
- Department of Cellular BiochemistryMax Planck Institute for BiochemistryMartinsriedGermany
- Munich Cluster of Systems Neurology (SyNergy)MunichGermany
| | - Wolfgang Baumeister
- Department of Molecular Structural BiologyMax Planck Institute of BiochemistryMartinsriedGermany
| | - Mark S Hipp
- Department of Cellular BiochemistryMax Planck Institute for BiochemistryMartinsriedGermany
- Department of Biomedical Sciences of Cells and SystemsUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
- School of Medicine and Health SciencesCarl von Ossietzky University OldenburgOldenburgGermany
| | - Felix Meissner
- Department of Proteomics and Signal TransductionMax Planck Institute for BiochemistryMartinsriedGermany
- Department of Systems Immunology and ProteomicsMedical FacultyInstitute of Innate ImmunityUniversity of BonnGermany
| | - Rubén Fernández‐Busnadiego
- Department of Molecular Structural BiologyMax Planck Institute of BiochemistryMartinsriedGermany
- Institute of NeuropathologyUniversity Medical Center GöttingenGöttingenGermany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC)University of GöttingenGöttingenGermany
| | - Dieter Edbauer
- German Center for Neurodegenerative Diseases (DZNE), MunichMunichGermany
- Munich Cluster of Systems Neurology (SyNergy)MunichGermany
- Graduate School of Systemic Neurosciences (GSN)Ludwig‐Maximilians‐University MunichMunichGermany
| |
Collapse
|
15
|
Simonsen A, Wollert T. Don't forget to be picky – selective autophagy of protein aggregates in neurodegenerative diseases. Curr Opin Cell Biol 2022; 75:102064. [DOI: 10.1016/j.ceb.2022.01.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/12/2022] [Accepted: 01/22/2022] [Indexed: 12/16/2022]
|
16
|
Geng M, Zhao F, Lu H, Fang L, Wang J, Liu C, Min W. Insights into the hippocampus proteome and phosphorylation modification alterations in C57BL/6 revealed the memory improvement mechanisms of a walnut-derived peptide. Food Res Int 2022; 156:111311. [DOI: 10.1016/j.foodres.2022.111311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/23/2022] [Accepted: 04/26/2022] [Indexed: 12/21/2022]
|