1
|
Biyani M, Isogai Y, Sharma K, Maeda S, Akashi H, Sugai Y, Nakano M, Kodera N, Biyani M, Nakajima M. High-speed atomic force microscopy and 3D modeling reveal the structural dynamics of ADAR1 complexes. Nat Commun 2025; 16:4757. [PMID: 40419486 DOI: 10.1038/s41467-025-59987-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 05/09/2025] [Indexed: 05/28/2025] Open
Abstract
Targeting abnormal dysregulation of adenosine-to-inosine deamination by ADAR enzymes offers a promising therapeutic strategy in cancer research. However, the development of effective inhibitors is impeded by the incomplete structural information on ADAR1 complexes. In this study, we employ a combination of computational 3D modeling and high-speed atomic force microscopy to elucidate the atomic and molecular dynamics of ADAR1. Two distinct interface regions (IFx and IFy) on the surface of the deaminase domain and oligomerization structural models are identified. Single-molecule-level insights into the structural dynamics of ADAR1 reveal the oligomerization of ADAR1 monomers through the self-assembly of deaminase domains. In the presence of the substrate dsRNA, the N-terminal region, including RNA-binding domains, of ADAR1 dimer exhibits a controlled flexible conformation and promotes a stable dimeric interaction with dsRNA for RNA editing. These findings provide the basis for the development of targeted inhibitors to regulate ADAR1 activity in therapeutic applications.
Collapse
Affiliation(s)
- Madhu Biyani
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan.
| | - Yasuhiro Isogai
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, Toyama, Japan
| | - Kirti Sharma
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan
| | - Shoei Maeda
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan
| | - Hinako Akashi
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan
| | - Yui Sugai
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan
| | - Masataka Nakano
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan
| | - Noriyuki Kodera
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan
| | - Manish Biyani
- BioSeeds Corporation, Ishikawa Create Labo, Nomi City, Ishikawa, Japan.
- Graduate School of Science and Technology, Kwansei Gakuin University, Sanda, Japan.
| | - Miki Nakajima
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
2
|
Sugiyama M, Yurtsever A, Uenodan N, Nabae Y, Fukuma T, Hayamizu Y. Hierarchical Assembly of Hemin-Peptide Catalytic Systems on Graphite Surfaces. ACS NANO 2025; 19:13760-13767. [PMID: 39957144 PMCID: PMC12004920 DOI: 10.1021/acsnano.4c15373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/22/2025] [Accepted: 01/24/2025] [Indexed: 02/18/2025]
Abstract
The formation of molecular hybrid systems with cofactors and peptides on graphite electrodes has recently been demonstrated. The design of peptide sequences is crucial for forming robust catalytic molecular systems on electrodes. However, the relationship between peptide sequences, molecular structure, and catalytic performance has not been fully explored. In this study, we employed peptides with simple dipeptide repeats, which effectively immobilize hemin, to construct a stable catalytic system and investigated the molecular basis of their self-assembly and catalytic activity by varying the sequence. Among peptides containing the dipeptide sequences (YH, VH, and LH), YH demonstrated the most efficient immobilization of hemin, which is catalytically active in electrochemical reactions. Using advanced molecular visualization techniques, specifically frequency modulation atomic force microscopy (FM-AFM), we characterized the well-ordered structures of these peptides on graphite electrodes, revealing their molecular-scale organization. Our findings in electrochemical characterizations include a quantitative evaluation of the surface density of hemin immobilized by self-assembled peptides and the catalytic activity of the peptide-hemin hybrid system under electrochemical conditions in the presence of H2O2. The strong peptide-peptide and peptide-hemin interactions, facilitated by π-π interactions of tyrosine residues, contribute to the system's stability and efficiency. The dipeptide repeats serve as a useful platform to investigate the role of important amino acids, beyond histidine, in stably immobilizing cofactors. These results highlight the potential for developing durable and efficient catalytic interfaces in electrochemical applications.
Collapse
Affiliation(s)
- Marie Sugiyama
- Department
of Materials Science and Engineering, School
of Materials and Chemical Technology, Institute of Science Tokyo, Tokyo 152-8550, Japan
| | - Ayhan Yurtsever
- Nano
Life Science Institute (WPI-NanoLSI), Kanazawa
University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Nina Uenodan
- Department
of Materials Science and Engineering, School
of Materials and Chemical Technology, Institute of Science Tokyo, Tokyo 152-8550, Japan
| | - Yuta Nabae
- Department
of Materials Science and Engineering, School
of Materials and Chemical Technology, Institute of Science Tokyo, Tokyo 152-8550, Japan
| | - Takeshi Fukuma
- Nano
Life Science Institute (WPI-NanoLSI), Kanazawa
University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Yuhei Hayamizu
- Department
of Materials Science and Engineering, School
of Materials and Chemical Technology, Institute of Science Tokyo, Tokyo 152-8550, Japan
| |
Collapse
|
3
|
Uyeda TQP, Yamazaki Y, Kijima ST, Noguchi TQP, Ngo KX. Multiple Mechanisms to Regulate Actin Functions: "Fundamental" Versus Lineage-Specific Mechanisms and Hierarchical Relationships. Biomolecules 2025; 15:279. [PMID: 40001582 PMCID: PMC11853071 DOI: 10.3390/biom15020279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Eukaryotic actin filaments play a central role in numerous cellular functions, with each function relying on the interaction of actin filaments with specific actin-binding proteins. Understanding the mechanisms that regulate these interactions is key to uncovering how actin filaments perform diverse roles at different cellular locations. Several distinct classes of actin regulatory mechanisms have been proposed and experimentally supported. However, these mechanisms vary in their nature and hierarchy. For instance, some operate under the control of others, highlighting hierarchical relationships. Additionally, while certain mechanisms are fundamental and ubiquitous across eukaryotes, others are lineage-specific. Here, we emphasize the fundamental importance and functional significance of the following actin regulatory mechanisms: the biochemical regulation of actin nucleators, the ATP hydrolysis-dependent aging of actin filaments, thermal fluctuation- and mechanical strain-dependent conformational changes of actin filaments, and cooperative conformational changes induced by actin-binding proteins.
Collapse
Affiliation(s)
- Taro Q. P. Uyeda
- Department of Pure and Applied Physics, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555, Shinjuku, Japan
| | - Yosuke Yamazaki
- RIKEN Center for Biosystems Dynamics Research, Yokohama 230-0045, Kanagawa, Japan;
| | - Saku T. Kijima
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8566, Ibaraki, Japan;
| | - Taro Q. P. Noguchi
- Department of Chemical Science and Engineering, National Institute of Technology, Miyakonojo College, Miyakonojo 885-0006, Miyazaki, Japan;
| | - Kien Xuan Ngo
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Ishikawa, Japan;
| |
Collapse
|
4
|
Homma H, Ngo KX, Yoshioka Y, Tanaka H, Inotsume M, Fujita K, Ando T, Okazawa H. PQBP3/NOL7 is an intrinsically disordered protein. Biochem Biophys Res Commun 2024; 736:150453. [PMID: 39126896 DOI: 10.1016/j.bbrc.2024.150453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024]
Abstract
PQBP3 is a protein binding to polyglutamine tract sequences that are expanded in a group of neurodegenerative diseases called polyglutamine diseases. The function of PQBP3 was revealed recently as an inhibitor protein of proteasome-dependent degradation of Lamin B1 that is shifted from nucleolus to peripheral region of nucleus to keep nuclear membrane stability. Here, we address whether PQBP3 is an intrinsically disordered protein (IDP) like other polyglutamine binding proteins including PQBP1, PQBP5 and VCP. Multiple bioinformatics analyses predict that N-terminal region of PQBP3 is unstructured. High-speed atomic force microscopy (HS-AFM) reveals that N-terminal region of PQBP3 is dynamically changed in the structure consistently with the predictions of the bioinformatics analyses. These data support that PQBP3 is also an IDP.
Collapse
Affiliation(s)
- Hidenori Homma
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Kien Xuan Ngo
- Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Yuki Yoshioka
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Hikari Tanaka
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Maiko Inotsume
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Kyota Fujita
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan; Research Center for Child Mental Development, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Toshio Ando
- Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Hitoshi Okazawa
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
| |
Collapse
|
5
|
Ngo KX, Vu HT, Umeda K, Trinh MN, Kodera N, Uyeda T. Deciphering the actin structure-dependent preferential cooperative binding of cofilin. eLife 2024; 13:RP95257. [PMID: 39093938 PMCID: PMC11296705 DOI: 10.7554/elife.95257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024] Open
Abstract
The mechanism underlying the preferential and cooperative binding of cofilin and the expansion of clusters toward the pointed-end side of actin filaments remains poorly understood. To address this, we conducted a principal component analysis based on available filamentous actin (F-actin) and C-actin (cofilins were excluded from cofilactin) structures and compared to monomeric G-actin. The results strongly suggest that C-actin, rather than F-ADP-actin, represented the favourable structure for binding preference of cofilin. High-speed atomic force microscopy explored that the shortened bare half helix adjacent to the cofilin clusters on the pointed end side included fewer actin protomers than normal helices. The mean axial distance (MAD) between two adjacent actin protomers along the same long-pitch strand within shortened bare half helices was longer (5.0-6.3 nm) than the MAD within typical helices (4.3-5.6 nm). The inhibition of torsional motion during helical twisting, achieved through stronger attachment to the lipid membrane, led to more pronounced inhibition of cofilin binding and cluster formation than the presence of inorganic phosphate (Pi) in solution. F-ADP-actin exhibited more naturally supertwisted half helices than F-ADP.Pi-actin, explaining how Pi inhibits cofilin binding to F-actin with variable helical twists. We propose that protomers within the shorter bare helical twists, either influenced by thermal fluctuation or induced allosterically by cofilin clusters, exhibit characteristics of C-actin-like structures with an elongated MAD, leading to preferential and cooperative binding of cofilin.
Collapse
Affiliation(s)
- Kien Xuan Ngo
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa UniversityKanazawaJapan
| | - Huong T Vu
- Centre for Mechanochemical Cell Biology, Warwick Medical SchoolCoventryUnited Kingdom
| | - Kenichi Umeda
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa UniversityKanazawaJapan
| | - Minh-Nhat Trinh
- School of Electrical and Electronic Engineering, Hanoi University of Science and TechnologyHanoiViet Nam
| | - Noriyuki Kodera
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa UniversityKanazawaJapan
| | - Taro Uyeda
- Department of Physics, Faculty of Advanced Science and Engineering, Waseda University, ShinjukuTokyoJapan
| |
Collapse
|
6
|
Wang K, Okada H, Wloka C, Bi E. Unraveling the mechanisms and evolution of a two-domain module in IQGAP proteins for controlling eukaryotic cytokinesis. Cell Rep 2023; 42:113510. [PMID: 38041816 PMCID: PMC10809011 DOI: 10.1016/j.celrep.2023.113510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/17/2023] [Accepted: 11/13/2023] [Indexed: 12/04/2023] Open
Abstract
The IQGAP family of proteins plays a crucial role in cytokinesis across diverse organisms, but the underlying mechanisms are not fully understood. In this study, we demonstrate that IQGAPs in budding yeast, fission yeast, and human cells use a two-domain module to regulate their localization as well as the assembly and disassembly of the actomyosin ring during cytokinesis. Strikingly, the calponin homology domains (CHDs) in these IQGAPs bind to distinct cellular F-actin structures with varying specificity, whereas the non-conserved domains immediately downstream of the CHDs in these IQGAPs all target the division site, but differ in timing, localization strength, and binding partners. We also demonstrate that human IQGAP3 acts in parallel to septins and myosin-IIs to mediate the role of anillin in cytokinesis. Collectively, our findings highlight the two-domain mechanism by which IQGAPs regulate cytokinesis in distantly related organisms as well as their evolutionary conservation and divergence.
Collapse
Affiliation(s)
- Kangji Wang
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA
| | - Hiroki Okada
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA
| | - Carsten Wloka
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA; Experimental Ophthalmology, Department of Ophthalmology, Charité - Universitätsmedizin Berlin, A Corporate Member of Freie Universität, Humboldt-University, The Berlin Institute of Health, Berlin, Germany
| | - Erfei Bi
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA.
| |
Collapse
|
7
|
Fukuda S, Ando T. Technical advances in high-speed atomic force microscopy. Biophys Rev 2023; 15:2045-2058. [PMID: 38192344 PMCID: PMC10771405 DOI: 10.1007/s12551-023-01171-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/19/2023] [Indexed: 01/10/2024] Open
Abstract
It has been 30 years since the outset of developing high-speed atomic force microscopy (HS-AFM), and 15 years have passed since its establishment in 2008. This advanced microscopy is capable of directly visualizing individual biological macromolecules in dynamic action and has been widely used to answer important questions that are inaccessible by other approaches. The number of publications on the bioapplications of HS-AFM has rapidly increased in recent years and has already exceeded 350. Although less visible than these biological studies, efforts have been made for further technical developments aimed at enhancing the fundamental performance of HS-AFM, such as imaging speed, low sample disturbance, and scan size, as well as expanding its functionalities, such as correlative microscopy, temperature control, buffer exchange, and sample manipulations. These techniques can expand the range of HS-AFM applications. After summarizing the key technologies underlying HS-AFM, this article focuses on recent technical advances and discusses next-generation HS-AFM.
Collapse
Affiliation(s)
- Shingo Fukuda
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-Machi, Kanazawa, 920-1192 Japan
| | - Toshio Ando
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-Machi, Kanazawa, 920-1192 Japan
| |
Collapse
|