1
|
Pang S, Li Z, Liu A, Luo ZH, Yin H, Fan S, Shi J, Liu N, Pan S, Yang YJ, Zhang GJ, Chen J. A Novel Oxo-Palmatine Derivative 2q as Potent Reversal Agents Against Alzheimer's Disease. Drug Dev Res 2025; 86:e70073. [PMID: 40079275 DOI: 10.1002/ddr.70073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/14/2025] [Accepted: 03/02/2025] [Indexed: 03/15/2025]
Abstract
Palmatine (PAL), as an active ingredient in traditional Chinese medicine, had been demonstrated efficacy in ameliorating the manifestations of AD. Our research group has previously designed and synthesized the novel oxo-PAL derivative 2q and found that it has exhibited notable neuroprotective properties. However, compound 2q therapeutic impact on AD remains uncertain. In the current investigation, our findings demonstrated that compound 2q displayed significant anti-AβOs activity in vitro by using xCELLigence analysis, and showed a high likelihood of crossing the blood-brain barrier. Furthermore, administration of compound 2q yielded a notable amelioration in Aβ accumulation and hyperphosphorylation of Tau in 3×Tg mice. Additionally, it was observed that compound 2q potentially enhanced the pathological characteristics of AD by targeting Potassium/Sodium Hyperpolarization-Activated Cyclic Nucleotide-Gated Channel 2 (HCN2). In conclusion, compound 2q emerged as a promising candidate for AD treatment, as it effectively restored AD-associated pathological impairments. Furthermore, it has been identified as a potential target of HCN2, thereby offering novel avenues for the development of treatments for AD.
Collapse
Affiliation(s)
- Shuo Pang
- The Laboratory of Neurological Disorders and Brain Cognition, Beijing Pediatric Research Institute, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Zhuo Li
- Department of Neuropathology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ao Liu
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhuo-Hui Luo
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Heqing Yin
- The Laboratory of Neurological Disorders and Brain Cognition, Beijing Pediatric Research Institute, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Songqiao Fan
- The Laboratory of Neurological Disorders and Brain Cognition, Beijing Pediatric Research Institute, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Junjie Shi
- The Laboratory of Neurological Disorders and Brain Cognition, Beijing Pediatric Research Institute, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Ning Liu
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuo Pan
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ya-Jun Yang
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guo-Jun Zhang
- The Laboratory of Neurological Disorders and Brain Cognition, Beijing Pediatric Research Institute, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China
| | - Jun Chen
- The Laboratory of Neurological Disorders and Brain Cognition, Beijing Pediatric Research Institute, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Cheng M, Lu D, Li K, Wang Y, Tong X, Qi X, Yan C, Ji K, Wang J, Wang W, Lv H, Zhang X, Kong W, Zhang J, Ma J, Li K, Wang Y, Feng J, Wei P, Li Q, Shen C, Fu XD, Ma Y, Zhang X. Mitochondrial respiratory complex IV deficiency recapitulates amyotrophic lateral sclerosis. Nat Neurosci 2025; 28:748-756. [PMID: 40069360 DOI: 10.1038/s41593-025-01896-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 01/17/2025] [Indexed: 03/23/2025]
Abstract
Amyotrophic lateral sclerosis (ALS) is categorized into ~10% familial and ~90% sporadic cases. While familial ALS is caused by mutations in many genes of diverse functions, the underlying pathogenic mechanisms of ALS, especially in sporadic ALS (sALS), are largely unknown. Notably, about half of the cases with sALS showed defects in mitochondrial respiratory complex IV (CIV). To determine the causal role of this defect in ALS, we used transcription activator-like effector-based mitochondrial genome editing to introduce mutations in CIV subunits in rat neurons. Our results demonstrate that neuronal CIV deficiency is sufficient to cause a number of ALS-like phenotypes, including cytosolic TAR DNA-binding protein 43 redistribution, selective motor neuron loss and paralysis. These results highlight CIV deficiency as a potential cause of sALS and shed light on the specific vulnerability of motor neurons, marking an important advance in understanding and therapeutic development of sALS.
Collapse
Affiliation(s)
- Man Cheng
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Dan Lu
- State Key Laboratory of Respiratory Health and Multimorbidity, National Center of Technology Innovation for Animal Model and National Human Diseases Animal Model Resource Center, NHC Key Laboratory of Comparative Medicine, Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kexin Li
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yan Wang
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Xiwen Tong
- Key Laboratory for Nucleic Acid Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xiaolong Qi
- State Key Laboratory of Respiratory Health and Multimorbidity, National Center of Technology Innovation for Animal Model and National Human Diseases Animal Model Resource Center, NHC Key Laboratory of Comparative Medicine, Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chuanzhu Yan
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Kunqian Ji
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Junlin Wang
- Department of Neurology, Xiangya Hospital, Central South University, National Regional Center for Neurological Diseases, Nanchang, China
| | - Wei Wang
- Key Laboratory for Nucleic Acid Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Huijiao Lv
- State Key Laboratory of Respiratory Health and Multimorbidity, National Center of Technology Innovation for Animal Model and National Human Diseases Animal Model Resource Center, NHC Key Laboratory of Comparative Medicine, Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Medical Primate Research Center and Neuroscience Center, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Beijing, China
| | - Xu Zhang
- State Key Laboratory of Respiratory Health and Multimorbidity, National Center of Technology Innovation for Animal Model and National Human Diseases Animal Model Resource Center, NHC Key Laboratory of Comparative Medicine, Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weining Kong
- Medical Primate Research Center and Neuroscience Center, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Beijing, China
| | - Jian Zhang
- Key Laboratory for Nucleic Acid Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jiaxin Ma
- Medical Primate Research Center and Neuroscience Center, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Beijing, China
| | - Keru Li
- State Key Laboratory of Respiratory Health and Multimorbidity, National Center of Technology Innovation for Animal Model and National Human Diseases Animal Model Resource Center, NHC Key Laboratory of Comparative Medicine, Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yaheng Wang
- State Key Laboratory of Respiratory Health and Multimorbidity, National Center of Technology Innovation for Animal Model and National Human Diseases Animal Model Resource Center, NHC Key Laboratory of Comparative Medicine, Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingyu Feng
- Key Laboratory for Nucleic Acid Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Panpan Wei
- Key Laboratory for Nucleic Acid Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Qiushuang Li
- Key Laboratory for Nucleic Acid Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Chengyong Shen
- Department of Neurobiology of the First Affiliated Hospital, Institute of Translational Medicine, School of Medicine, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University, Hangzhou, China
| | - Xiang-Dong Fu
- Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, China
| | - Yuanwu Ma
- State Key Laboratory of Respiratory Health and Multimorbidity, National Center of Technology Innovation for Animal Model and National Human Diseases Animal Model Resource Center, NHC Key Laboratory of Comparative Medicine, Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- Medical Primate Research Center and Neuroscience Center, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Beijing, China.
| | - Xiaorong Zhang
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.
- Key Laboratory for Nucleic Acid Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
3
|
Luo ZH, Guo JS, Pang S, Dong W, Ma JX, Zhang L, Qi XL, Guan FF, Gao S, Gao X, Liu N, Pan S, Chen W, Zhang X, Zhang LF, Yang YJ. Discovery of FO-4-15, a novel 1,2,4-oxadiazole derivative, ameliorates cognitive impairments in 3×Tg mice by activating the mGluR1/CaMKIIα pathway. Acta Pharmacol Sin 2025; 46:66-80. [PMID: 39152295 PMCID: PMC11696799 DOI: 10.1038/s41401-024-01362-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 07/18/2024] [Indexed: 08/19/2024]
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder characterized by cognitive impairments. Despite the limited efficacy of current treatments for AD, the 1,2,4-oxadiazole structure has garnered significant attention in medicinal chemistry due to its potential impact on mGluR1 and its association with AD therapy. In this study, a series of novel 1,2,4-oxadiazole derivatives were designed, synthesized, and evaluated for the neuroprotective effects in human neuroblastoma (SH-SY5Y) cells. Among all the derivatives tested, FO-4-15 (5f) existed the lowest cytotoxicity and the highest protective effect against H2O2. Based on these in vitro results, FO-4-15 was administered to 3×Tg mice and significantly improved the cognitive impairments of the AD mice. Pathological analysis showed that FO-4-15 significantly reduced Aβ accumulation, Tau hyper-phosphorylation, and synaptic impairments in the 3×Tg mice. Dysfunction of the CaMKIIα/Fos signaling pathway in 3×Tg mice was found to be restored by FO-4-15 and the necessity of the CaMKIIα/Fos for FO-4-15 was subsequently confirmed by the use of a CaMKIIα inhibitor in vitro. Beyond that, mGluR1 was identified to be a potential target of FO-4-15, and the interaction of FO-4-15 and mGluR1 was displayed by Ca2+ flow increase, molecular docking, and interaction energy analysis. The target of FO-4-15 was further confirmed in vitro by JNJ16259685, a nonselective inhibitor of mGluR1. These findings suggest that FO-4-15 may hold promise as a potential treatment for Alzheimer's disease.
Collapse
Affiliation(s)
- Zhuo-Hui Luo
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China, Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Jiang-Shan Guo
- Beijing Key Laboratory of Active Substance Discovery and Drug Ability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Shuo Pang
- The Laboratory of Neurological Disorders and Brain Cognition, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Wei Dong
- Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Jia-Xin Ma
- Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Li Zhang
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China, Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Xiao-Long Qi
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China, Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Fei-Fei Guan
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China, Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Shan Gao
- Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Xiang Gao
- Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Ning Liu
- Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Shuo Pan
- Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Wei Chen
- Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Xu Zhang
- Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Lian-Feng Zhang
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China, Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100021, China.
| | - Ya-Jun Yang
- Beijing Key Laboratory of Active Substance Discovery and Drug Ability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
4
|
Seneff S, Kyriakopoulos AM, Nigh G. Is autism a PIN1 deficiency syndrome? A proposed etiological role for glyphosate. J Neurochem 2024; 168:2124-2146. [PMID: 38808598 DOI: 10.1111/jnc.16140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/30/2024]
Abstract
Autism is a neurodevelopmental disorder, the prevalence of which has increased dramatically in the United States over the past two decades. It is characterized by stereotyped behaviors and impairments in social interaction and communication. In this paper, we present evidence that autism can be viewed as a PIN1 deficiency syndrome. Peptidyl-prolyl cis/trans isomerase, NIMA-Interacting 1 (PIN1) is a peptidyl-prolyl cis/trans isomerase, and it has widespread influences in biological organisms. Broadly speaking, PIN1 deficiency is linked to many neurodegenerative diseases, whereas PIN1 over-expression is linked to cancer. Death-associated protein kinase 1 (DAPK1) strongly inhibits PIN1, and the hormone melatonin inhibits DAPK1. Melatonin deficiency is strongly linked to autism. It has recently been shown that glyphosate exposure to rats inhibits melatonin synthesis as a result of increased glutamate release from glial cells and increased expression of metabotropic glutamate receptors. Glyphosate's inhibition of melatonin leads to a reduction in PIN1 availability in neurons. In this paper, we show that PIN1 deficiency can explain many of the unique morphological features of autism, including increased dendritic spine density, missing or thin corpus callosum, and reduced bone density. We show how PIN1 deficiency disrupts the functioning of powerful high-level signaling molecules, such as nuclear factor erythroid 2-related factor 2 (NRF2) and p53. Dysregulation of both of these proteins has been linked to autism. Severe depletion of glutathione in the brain resulting from chronic exposure to oxidative stressors and extracellular glutamate leads to oxidation of the cysteine residue in PIN1, inactivating the protein and further contributing to PIN1 deficiency. Impaired autophagy leads to increased sensitivity of neurons to ferroptosis. It is imperative that further research be conducted to experimentally validate whether the mechanisms described here take place in response to chronic glyphosate exposure and whether this ultimately leads to autism.
Collapse
Affiliation(s)
- Stephanie Seneff
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | | - Greg Nigh
- Immersion Health, Portland, Oregon, USA
| |
Collapse
|
5
|
Cui Y, Rolova T, Fagerholm SC. The role of integrins in brain health and neurodegenerative diseases. Eur J Cell Biol 2024; 103:151441. [PMID: 39002282 DOI: 10.1016/j.ejcb.2024.151441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/15/2024] Open
Abstract
Integrins are heterodimeric membrane proteins expressed on the surface of most cells. They mediate adhesion and signaling processes relevant for a wealth of physiological processes, including nervous system development and function. Interestingly, integrins are also recognized therapeutic targets for inflammatory diseases, such as multiple sclerosis. Here, we discuss the role of integrins in brain development and function, as well as in neurodegenerative diseases affecting the brain (Alzheimer's disease, multiple sclerosis, stroke). Furthermore, we discuss therapeutic targeting of these adhesion receptors in inflammatory diseases of the brain.
Collapse
Affiliation(s)
- Yunhao Cui
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki 00790, Finland
| | - Taisia Rolova
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki 00290, Finland
| | - Susanna C Fagerholm
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki 00790, Finland.
| |
Collapse
|
6
|
Mrozowska M, Górnicki T, Olbromski M, Partyńska AI, Dzięgiel P, Rusak A. New insights into the role of tetraspanin 6, 7, and 8 in physiology and pathology. Cancer Med 2024; 13:e7390. [PMID: 39031113 PMCID: PMC11258570 DOI: 10.1002/cam4.7390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/24/2024] [Accepted: 06/02/2024] [Indexed: 07/22/2024] Open
Abstract
BACKGROUND The tetraspanin (TSPAN) family comprises 33 membrane receptors involved in various physiological processes in humans. Tetrasapanins are surface proteins expressed in cells of various organisms. They are localised to the cell membrane by four transmembrane domains (TM4SF). These domains bind several cell surface receptors and signalling proteins to tetraspanin-enriched lipid microdomains (TERM or TEM). Tetraspanins play a critical role in anchoring many proteins. They also act as a scaffold for cell signalling proteins. AIM To summarise how tetraspanins 6, 7 and 8 contribute to the carcinogenesis process in different types of cancer. METHODS To provide a comprehensive review of the role of tetraspanins 6, 7 and 8 in cancer biology, we conducted a thorough search in PubMed, Embase and performed manual search of reference list to collect and extract data. DISCUSSION The assembly of tetraspanins covers an area of approximately 100-400 nm. Tetraspanins are involved in various biological processes such as membrane fusion, aggregation, proliferation, adhesion, cell migration and differentiation. They can also regulate integrins, cell surface receptors and signalling molecules. Tetraspanins form direct bonds with proteins and other members of the tetraspanin family, forming a hierarchical network of interactions and are thought to be involved in cell and membrane compartmentalisation. Tetraspanins have been implicated in cancer progression and have been shown to have multiple binding partners and to promote cancer progression and metastasis. Clinical studies have documented a correlation between the level of tetraspanin expression and the prediction of cancer progression, including breast and lung cancer. CONCLUSIONS Tetraspanins are understudied in almost all cell types and their functions are not clearly defined. Fortunately, it has been possible to identify the basic mechanisms underlying the biological role of these proteins. Therefore, the purpose of this review is to describe the roles of tetraspanins 6, 7 and 8.
Collapse
Affiliation(s)
- Monika Mrozowska
- Division of Histology and Embryology, Department of Human Morphology and EmbryologyWroclaw Medical UniversityWroclawPoland
| | - Tomasz Górnicki
- Division of Histology and Embryology, Department of Human Morphology and EmbryologyWroclaw Medical UniversityWroclawPoland
| | - Mateusz Olbromski
- Division of Histology and Embryology, Department of Human Morphology and EmbryologyWroclaw Medical UniversityWroclawPoland
| | - Aleksandra Izabela Partyńska
- Division of Histology and Embryology, Department of Human Morphology and EmbryologyWroclaw Medical UniversityWroclawPoland
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and EmbryologyWroclaw Medical UniversityWroclawPoland
- Department of Human Biology, Faculty of PhysiotherapyWroclaw University of Health and Sport SciencesWroclawPoland
| | - Agnieszka Rusak
- Division of Histology and Embryology, Department of Human Morphology and EmbryologyWroclaw Medical UniversityWroclawPoland
| |
Collapse
|
7
|
Guan F, Gao S, Sheng H, Ma Y, Chen W, Qi X, Zhang X, Gao X, Pang S, Zhang L, Zhang L. Trim46 knockout impaired neuronal architecture and caused hypoactive behavior in rats. Dev Dyn 2024; 253:659-676. [PMID: 38193537 DOI: 10.1002/dvdy.687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/16/2023] [Accepted: 12/10/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND Tripartite motif (TRIM46) is a relatively novel protein that belongs to tripartite motif family. TRIM46 organizes parallel microtubule arrays on the axons, which are important for neuronal polarity and axonal function. TRIM46 is highly expressed in the brain, but its biological function in adults has not yet been determined. RESULTS Trim46 knockout (KO) rat line was established using CRISPR/cas9. Trim46 KO rats had smaller hippocampus sizes, fewer neuronal dendritic arbors and dendritic spines, and shorter and more distant axon initial segment. Furthermore, the protein interaction between endogenous TRIM46 and FK506 binding protein 5 (FKBP5) in brain tissues was determined; Trim46 KO increased hippocampal FKBP5 protein levels and decreased hippocampal protein kinase B (Akt) phosphorylation, gamma-aminobutyric acid type A receptor subunit alpha1 (GABRA1) and glutamate ionotropic receptor NMDA type subunit 1 (NMDAR1) protein levels. Trim46 KO rats exhibited hypoactive behavioral changes such as reduced spontaneous activity, social interaction, sucrose preference, impaired prepulse inhibition (PPI), and short-term reference memory. CONCLUSIONS These results demonstrate the significant impact of Trim46 KO on brain structure and behavioral function. This study revealed a novel potential association of TRIM46 with dendritic development and neuropsychiatric behavior, providing new insights into the role of TRIM46 in the brain.
Collapse
Affiliation(s)
- Feifei Guan
- Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing, China
| | - Shan Gao
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing, China
| | - Hanxuan Sheng
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yuanwu Ma
- Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing, China
| | - Wei Chen
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaolong Qi
- Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xu Zhang
- Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiang Gao
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing, China
| | - Shuo Pang
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing, China
| | - Lianfeng Zhang
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing, China
| | - Li Zhang
- Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
8
|
Rodnyy AY, Kondaurova EM, Tsybko AS, Popova NK, Kudlay DA, Naumenko VS. The brain serotonin system in autism. Rev Neurosci 2024; 35:1-20. [PMID: 37415576 DOI: 10.1515/revneuro-2023-0055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/10/2023] [Indexed: 07/08/2023]
Abstract
Autism spectrum disorders (ASDs) are among the most common neurodevelopmental diseases. These disorders are characterized by lack of social interaction, by repetitive behavior, and often anxiety and learning disabilities. The brain serotonin (5-HT) system is known to be crucially implicated in a wide range of physiological functions and in the control of different kinds of normal and pathological behavior. A growing number of studies indicate the involvement of the brain 5-HT system in the mechanisms underlying both ASD development and ASD-related behavioral disorders. There are some review papers describing the role of separate key players of the 5-HT system in an ASD and/or autistic-like behavior. In this review, we summarize existing data on the participation of all members of the brain 5-HT system, namely, 5-HT transporter, tryptophan hydroxylase 2, MAOA, and 5-HT receptors, in autism in human and various animal models. Additionally, we describe the most recent studies involving modern techniques for in vivo regulation of gene expression that are aimed at identifying exact roles of 5-HT receptors, MAOA, and 5-HT transporter in the mechanisms underlying autistic-like behavior. Altogether, results of multiple research articles show that the brain 5-HT system intimately partakes in the control of some types of ASD-related behavior, and that specific changes in a function of a certain 5-HT receptor, transporter, and/or enzyme may normalize this aberrant behavior. These data give hope that some of clinically used 5-HT-related drugs have potential for ASD treatment.
Collapse
Affiliation(s)
- Alexander Ya Rodnyy
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Akad. Lavrentyeva Ave. 10, Novosibirsk 630090, Russia
| | - Elena M Kondaurova
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Akad. Lavrentyeva Ave. 10, Novosibirsk 630090, Russia
| | - Anton S Tsybko
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Akad. Lavrentyeva Ave. 10, Novosibirsk 630090, Russia
| | - Nina K Popova
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Akad. Lavrentyeva Ave. 10, Novosibirsk 630090, Russia
| | - Dmitry A Kudlay
- NRC Institute of Immunology FMBA of Russia, Kashirskoe Highway 24, Moscow 115522, Russia
- Sechenov's University, 8-2 Trubetskaya Str., Moscow 119991, Russia
| | - Vladimir S Naumenko
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Akad. Lavrentyeva Ave. 10, Novosibirsk 630090, Russia
| |
Collapse
|