1
|
Jaiswal AK, Raj A, Kushawaha AK, Maji B, Bhatt H, Verma S, Katiyar S, Ansari A, Bisen AC, Tripathi A, Siddiqi MI, Bhatta RS, Trivedi R, Sashidhara KV. Design, synthesis and biological evaluation of new class of pyrazoles-dihydropyrimidinone derivatives as bone anabolic agents. Bioorg Chem 2025; 157:108216. [PMID: 39952063 DOI: 10.1016/j.bioorg.2025.108216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/22/2025] [Accepted: 01/25/2025] [Indexed: 02/17/2025]
Abstract
This study explores a series of twenty-four newly synthesized pyrzole-dihydropyrimidinone hybrids as potential bone anabolic agents. Initially, an alkaline phosphatase assay, a common marker of bone formation, was used to screen all compounds for their ability to stimulate osteogenic potential. Initial screening identified three promising candidates (5f, 5u and 5w) that were subsequently confirmed to be non-toxic to osteoblasts. Further investigation revealed that compound 5w displayed the most potent osteoanabolic effect, promoting osteoblast differentiation and upregulating mRNAs expression of osteogenic gene. Based on the promising in vitro and in vivo activity, structure-activity relationship (SAR) analysis revealed a furan ring on the dihydropyrimidinone unit and electron-donating groups on the N-phenyl ring of the pyrazole moiety to be crucial for osteogenic activity. Additionally, molecular docking, favorable pharmacokinetic properties and In silico ADME predictions suggest potential oral bioavailability. These findings establish the pyrazole-dihydropyrimidinone scaffold as a promising hit for developing a new class of orally active bone anabolic agents.
Collapse
Affiliation(s)
- Arvind Kumar Jaiswal
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Anuj Raj
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, U.P., India; Division of Endocrinology, CSIR-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Ajay Kishor Kushawaha
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Bhaskar Maji
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, U.P., India; Division of Endocrinology, CSIR-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Hemlata Bhatt
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, U.P., India
| | - Shikha Verma
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, U.P., India; Division of Endocrinology, CSIR-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Sarita Katiyar
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, U.P., India
| | - Alisha Ansari
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, U.P., India
| | - Amol Chhatrapati Bisen
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, U.P., India; Sophisticated Analytical Instrument Facility & Research, CSIR-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow 226031, U.P., India; Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Arsh Tripathi
- Biochemistry & Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Mohammad Imran Siddiqi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, U.P., India; Biochemistry & Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Rabi Sankar Bhatta
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, U.P., India; Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Ritu Trivedi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, U.P., India; Division of Endocrinology, CSIR-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow 226031, India.
| | - Koneni V Sashidhara
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, U.P., India; Sophisticated Analytical Instrument Facility & Research, CSIR-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow 226031, U.P., India.
| |
Collapse
|
2
|
Barbieri A, Pitzurra L, Loos B, Jansen IDC. Effects of Hyaluronic Acid on Three Different Cell Types of the Periodontium in a Novel Multi-Culture Cell Plate: An Exploratory Study. Biomolecules 2025; 15:152. [PMID: 39858546 PMCID: PMC11764015 DOI: 10.3390/biom15010152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/06/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Hyaluronic acid (HA) has received considerable attention in the reconstruction of lost periodontal tissues. HA has been proposed to play a role in cell proliferation, differentiation, migration, and cell-matrix as well as cell-cell interactions. Although various studies have been conducted, further research is needed to expand our knowledge based on HA such as its effects on cell proliferation and osteogenic differentiation. The aim of this study is to assess, in single- and multi-culture plate models, the effect of HA on the proliferation, viability, and function of periodontal ligament fibroblasts, osteoblasts, and gingival epithelial cells. A novel multi-culture cell plate was chosen to simulate a cell-cell communication as close as possible to a real clinical condition in an in vitro setting. We found that HA exclusively enhanced epithelial cell proliferation, while intercellular communication stimulated the proliferation and osteogenic potential of the osteoblasts, independently from HA use. The proliferation and function of the periodontal ligament fibroblasts were not changed by HA or the cellular interplay. The use of multi-culture plates could represent a promising method to investigate and compare dental biomaterials in experiments mimicking an in vivo environment.
Collapse
Affiliation(s)
- Alessio Barbieri
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, 1081 LA Amsterdam, The Netherlands; (L.P.); (B.L.)
| | | | | | - Ineke D. C. Jansen
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, 1081 LA Amsterdam, The Netherlands; (L.P.); (B.L.)
| |
Collapse
|
3
|
Vazifehdoust S, Shalizar-Jalali A, Nourani MR, Moosazadeh Moghaddam M, Yazdanian M. Improvement of osteogenesis and antibacterial properties of a bioactive glass/gelatin-based scaffold using zoledronic acid and CM11 peptide. VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2024; 15:487-498. [PMID: 39564474 PMCID: PMC11571045 DOI: 10.30466/vrf.2024.2020333.4136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/07/2024] [Indexed: 11/21/2024]
Abstract
This study aimed to investigate the effects of zoledronic acid (ZA) and antibacterial CM11 peptide on the osteoinduction and antibacterial properties of bioactive glass (BG). The bioactive glass/gelatin (BG/Gel) composite was synthesized using the sol-gel method. The 2-x minimum inhibitory concentration of the peptide and 4.00 mg mL-1 of ZA were added to the BG/Gel during fabrication. The BG/Gel composite morphological and structural characteristics and anti-bacterial activities were analyzed using Fourier transform infra-red spectroscopy, scanning electron microscopy and disk diffusion test, respectively. The release of the peptide and ZA from BG/Gel was measured using ultra-violet spectroscopy. After 14 days, the effects of the peptide/ ZA-containing BG/Gel (PZ-BG/Gel) on the growth and differentiation of mesenchymal stem cells were evaluated using 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide, calcium and alkaline phosphatase assays, immunocytochemical staining for osteocalcin (OCN) and real-time polymerase chain reaction for OCN, type I collagen, bone morphogenetic protein 2 and Runt-related transcription factor-2 genes. The disk diffusion test showed the anti-microbial activity of the scaffold against multi-drug-resistant isolates of Pseudomonas aeruginosa and Staphylococcus aureus. Analyses showed a significantly higher level of stem cells differentiation into the osteo-genic cells in PZ-BG/Gel scaffold compared to BG/Gel scaffold alone. Accordingly, osteoblast markers were significantly increased in comparison with the control. In conclusion, the osteo-induction and antibacterial properties of BG-based scaffold can be improved using ZA and CM11.
Collapse
Affiliation(s)
- Soheil Vazifehdoust
- PhD Candidate, Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Ali Shalizar-Jalali
- Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Mohammad Reza Nourani
- Tissue Engineering and Regenerative Medicine Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mehrdad Moosazadeh Moghaddam
- Tissue Engineering and Regenerative Medicine Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohsen Yazdanian
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Gharibshahian M, Salehi M, Kamalabadi-Farahani M, Alizadeh M. Magnesium-oxide-enhanced bone regeneration: 3D-printing of gelatin-coated composite scaffolds with sustained Rosuvastatin release. Int J Biol Macromol 2024; 266:130995. [PMID: 38521323 DOI: 10.1016/j.ijbiomac.2024.130995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/11/2024] [Accepted: 03/17/2024] [Indexed: 03/25/2024]
Abstract
Critical-size bone defects are one of the main challenges in bone tissue regeneration that determines the need to use angiogenic and osteogenic agents. Rosuvastatin (RSV) is a class of cholesterol-lowering drugs with osteogenic potential. Magnesium oxide (MgO) is an angiogenesis component affecting apatite formation. This study aims to evaluate 3D-printed Polycaprolactone/β-tricalcium phosphate/nano-hydroxyapatite/ MgO (PCL/β-TCP/nHA/MgO) scaffolds as a carrier for MgO and RSV in bone regeneration. For this purpose, PCL/β-TCP/nHA/MgO scaffolds were fabricated with a 3D-printing method and coated with gelatin and RSV. The biocompatibility and osteogenicity of scaffolds were examined with MTT, ALP, and Alizarin red staining. Finally, the scaffolds were implanted in a bone defect of rat's calvaria, and tissue regeneration was investigated after 3 months. Our results showed that the simultaneous presence of RSV and MgO improved biocompatibility, wettability, degradation rate, and ALP activity but decreased mechanical strength. PCL/β-TCP/nHA/MgO/gelatin-RSV scaffolds produced sustained release of MgO and RSV within 30 days. CT images showed that PCL/β-TCP/nHA/MgO/gelatin-RSV scaffolds filled approximately 86.83 + 4.9 % of the defects within 3 months and improved angiogenesis, woven bone, and osteogenic genes expression. These results indicate the potential of PCL/β-TCP/nHA/MgO/gelatin-RSV scaffolds as a promising tool for bone regeneration and clinical trials.
Collapse
Affiliation(s)
- Maliheh Gharibshahian
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Majid Salehi
- Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, Iran; Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mohammad Kamalabadi-Farahani
- Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, Iran; Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Morteza Alizadeh
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
5
|
Kim JY, Song HJ, Cheon S, An S, Lee CS, Kim SH. Comparison of three different lactic acid bacteria-fermented proteins on RAW 264.7 osteoclast and MC3T3-E1 osteoblast differentiation. Sci Rep 2023; 13:21575. [PMID: 38062113 PMCID: PMC10703878 DOI: 10.1038/s41598-023-49024-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 12/03/2023] [Indexed: 12/18/2023] Open
Abstract
Osteoporosis is a state of bone weakening caused by an imbalance in osteoblast and osteoclast activity. In this study, the anti-osteoporotic effects of three proteins fermented by lactic acid bacteria (LAB) were assessed. Commercial proteins sodium caseinate (SC), whey protein isolate (WPI), and soy protein isolate (SPI) were fermented by LAB strains for 48 h. The fermented products (F-SC, F-WPI, and F-SPI, respectively) were used in an in vitro osteoclast and osteoblast-like cell model to assess their effects on bone health. Despite no difference in the results of TRAP staining of RANKL-induced osteoclastogenesis, F-WPI and F-SPI were effective in normalizing the altered gene expression of osteoclastogenesis markers such as TRAP, Nfatc1, RANK, and ATP6v0d. F-SPI was also effective in modulating osteoblasts by enhancing the expression of the osteoblastogenesis markers T1Col, Col2a, and OSX to levels higher than those in the SPI group, indicating that protein characteristics could be enhanced through bacterial fermentation. Moreover, these boosted effects of F-SPI may be involved with isoflavone-related metabolism during LAB-fermentation of SPI. These results demonstrate the potential of LAB-fermented proteins as dietary supplements to prevent bone loss. However, further understanding of its effects on balancing osteoblasts and osteoclasts and the underlying mechanisms is needed.
Collapse
Affiliation(s)
- Jae-Young Kim
- College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
- Institute of Life Science and Natural Resources, Korea University, Seoul, 02841, Republic of Korea
| | - Hyun Ji Song
- College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Sejin Cheon
- College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Seokyoung An
- College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Chul Sang Lee
- College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
- Institute of Life Science and Natural Resources, Korea University, Seoul, 02841, Republic of Korea
| | - Sae Hun Kim
- College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
- Institute of Life Science and Natural Resources, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
6
|
Lau LN, Cho JH, Jo YH, Yeo ISL. Biological effects of gamma-ray sterilization on 3 mol% yttria-stabilized tetragonal zirconia polycrystal: An in vitro study. J Prosthet Dent 2023; 130:936.e1-936.e9. [PMID: 37802736 DOI: 10.1016/j.prosdent.2023.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 10/08/2023]
Abstract
STATEMENT OF PROBLEM Selecting the sterilization method is important because sterilization can alter the surface chemistry of implant materials, including zirconia, and influence their cellular biocompatibility. Studies on the biological effects of sterilization on implant materials are lacking. PURPOSE The purpose of this in vitro study was to evaluate the biocompatibility of gamma-ray irradiated 3 mol% yttria-stabilized tetragonal zirconia polycrystal (3Y-TZP) compared with unirradiated titanium, 3Y-TZP, and pure gold. MATERIAL AND METHODS Disk-shaped specimens each of commercially pure grade 4 titanium, 3Y-TZP, gamma-rayed 3Y-TZP, and pure gold were prepared and evaluated for osteogenic potential by using a clonal murine cell line of immature osteoblasts derived from mice (MC3T3-E1 cells). The surface topography (n=3), chemical analysis of the disks (n=3), and cell morphology cultured on these surfaces were examined using scanning electron microscopy, confocal laser scanning microscopy, and energy dispersive spectroscopy. Cellular biocompatibility was analyzed for 1 and 3 days after seeding. Cell adhesion and spreading were evaluated using confocal laser scanning microscopy (n=3). Cell proliferation was evaluated using methyl thiazolyl tetrazolium assay (n=3). Kruskal-Wallis and Bonferroni corrections were used to evaluate the statistical significance of the intergroup differences (α=.05). RESULTS Gamma-ray sterilization of 3Y-TZP showed significantly higher surface roughness compared with titanium and gold (P<.002). On day 1, the proliferation and adhesion of MC3T3-E1 cells cultured on gamma-rayed 3Y-TZP were significantly higher than those cultured on gold (P<.05); however, cell spreading was significantly lower than that of titanium on days 1 and 3 (P<.05). On day 3, cell proliferation of gamma-rayed 3Y-TZP was significantly lower than that of unirradiated 3Y-TZP (P<.05). Cell adhesion of gamma-rayed 3Y-TZP was slightly lower than that of zirconia and titanium but without significant difference (P>.05). CONCLUSIONS Gamma-rayed zirconia exhibited increased surface roughness compared with titanium and significantly decreased bioactivity compared with titanium and zirconia. The use of gamma-ray sterilization on zirconia is not promising regarding biocompatibility, and the effect of this sterilization method on implant materials warrants further investigation.
Collapse
Affiliation(s)
- Le Na Lau
- Graduate student, Department of Prosthodontics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Jun-Ho Cho
- Clinical Instructor, Department of Prosthodontics, Seoul National University Dental Hospital, Seoul, Republic of Korea
| | - Ye-Hyeon Jo
- Senior Researcher, Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - In-Sung Luke Yeo
- Professor, Department of Prosthodontics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea..
| |
Collapse
|
7
|
Hatt LP, van der Heide D, Armiento AR, Stoddart MJ. β-TCP from 3D-printed composite scaffolds acts as an effective phosphate source during osteogenic differentiation of human mesenchymal stromal cells. Front Cell Dev Biol 2023; 11:1258161. [PMID: 37965582 PMCID: PMC10641282 DOI: 10.3389/fcell.2023.1258161] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/12/2023] [Indexed: 11/16/2023] Open
Abstract
Introduction: Human bone marrow-derived mesenchymal stromal cells (hBM-MSCs) are often combined with calcium phosphate (CaP)-based 3D-printed scaffolds with the goal of creating a bone substitute that can repair segmental bone defects. In vitro, the induction of osteogenic differentiation traditionally requires, among other supplements, the addition of β-glycerophosphate (BGP), which acts as a phosphate source. The aim of this study is to investigate whether phosphate contained within the 3D-printed scaffolds can effectively be used as a phosphate source during hBM-MSC in vitro osteogenesis. Methods: hBM-MSCs are cultured on 3D-printed discs composed of poly (lactic-co-glycolic acid) (PLGA) and β-tricalcium phosphate (β-TCP) for 28 days under osteogenic conditions, with and without the supplementation of BGP. The effects of BGP removal on various cellular parameters, including cell metabolic activity, alkaline phosphatase (ALP) presence and activity, proliferation, osteogenic gene expression, levels of free phosphate in the media and mineralisation, are assessed. Results: The removal of exogenous BGP increases cell metabolic activity, ALP activity, proliferation, and gene expression of matrix-related (COL1A1, IBSP, SPP1), transcriptional (SP7, RUNX2/SOX9, PPARγ) and phosphate-related (ALPL, ENPP1, ANKH, PHOSPHO1) markers in a donor dependent manner. BGP removal leads to decreased free phosphate concentration in the media and maintained of mineral deposition staining. Discussion: Our findings demonstrate the detrimental impact of exogenous BGP on hBM-MSCs cultured on a phosphate-based material and propose β-TCP embedded within 3D-printed scaffold as a sufficient phosphate source for hBM-MSCs during osteogenesis. The presented study provides novel insights into the interaction of hBM-MSCs with 3D-printed CaP based materials, an essential aspect for the advancement of bone tissue engineering strategies aimed at repairing segmental defects.
Collapse
Affiliation(s)
- Luan P. Hatt
- AO Research Institute Davos, Davos, Switzerland
- Institute for Biomechanics, ETH Zürich, Zürich, Switzerland
| | - Daphne van der Heide
- AO Research Institute Davos, Davos, Switzerland
- Institute for Biomechanics, ETH Zürich, Zürich, Switzerland
| | | | | |
Collapse
|
8
|
Hatt LP, Wirth S, Ristaniemi A, Ciric DJ, Thompson K, Eglin D, Stoddart MJ, Armiento AR. Micro-porous PLGA/ β-TCP/TPU scaffolds prepared by solvent-based 3D printing for bone tissue engineering purposes. Regen Biomater 2023; 10:rbad084. [PMID: 37936893 PMCID: PMC10627288 DOI: 10.1093/rb/rbad084] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/14/2023] [Accepted: 08/31/2023] [Indexed: 11/09/2023] Open
Abstract
The 3D printing process of fused deposition modelling is an attractive fabrication approach to create tissue-engineered bone substitutes to regenerate large mandibular bone defects, but often lacks desired surface porosity for enhanced protein adsorption and cell adhesion. Solvent-based printing leads to the spontaneous formation of micropores on the scaffold's surface upon solvent removal, without the need for further post processing. Our aim is to create and characterize porous scaffolds using a new formulation composed of mechanically stable poly(lactic-co-glycol acid) and osteoconductive β-tricalcium phosphate with and without the addition of elastic thermoplastic polyurethane prepared by solvent-based 3D-printing technique. Large-scale regenerative scaffolds can be 3D-printed with adequate fidelity and show porosity at multiple levels analysed via micro-computer tomography, scanning electron microscopy and N2 sorption. Superior mechanical properties compared to a commercially available calcium phosphate ink are demonstrated in compression and screw pull out tests. Biological assessments including cell activity assay and live-dead staining prove the scaffold's cytocompatibility. Osteoconductive properties are demonstrated by performing an osteogenic differentiation assay with primary human bone marrow mesenchymal stromal cells. We propose a versatile fabrication process to create porous 3D-printed scaffolds with adequate mechanical stability and osteoconductivity, both important characteristics for segmental mandibular bone reconstruction.
Collapse
Affiliation(s)
- Luan P Hatt
- AO Research Institute Davos, 7270 Davos Platz, Switzerland
- Institute for Biomechanics, ETH Zürich, 8093 Zürich, Switzerland
| | - Sylvie Wirth
- AO Research Institute Davos, 7270 Davos Platz, Switzerland
- Institute for Biomechanics, ETH Zürich, 8093 Zürich, Switzerland
| | | | - Daniel J Ciric
- AO Research Institute Davos, 7270 Davos Platz, Switzerland
| | - Keith Thompson
- AO Research Institute Davos, 7270 Davos Platz, Switzerland
- UCB Pharma, SL1 3WE Slough, UK
| | - David Eglin
- AO Research Institute Davos, 7270 Davos Platz, Switzerland
- Mines Saint-Étienne, Université de Lyon, Université Jean Monnet, INSERM, U1059, 42023 Sainbiose, Saint-Étienne, France
| | - Martin J Stoddart
- AO Research Institute Davos, 7270 Davos Platz, Switzerland
- Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, 79106 Freiburg, Germany
| | - Angela R Armiento
- AO Research Institute Davos, 7270 Davos Platz, Switzerland
- UCB Pharma, SL1 3WE Slough, UK
| |
Collapse
|
9
|
da Cruz MB, Marques JF, Silva N, Madeira S, Carvalho Ó, Silva FS, Caramês J, Mata A. Human Gingival Fibroblast and Osteoblast Behavior on Groove-Milled Zirconia Implant Surfaces. MATERIALS 2022; 15:ma15072481. [PMID: 35407819 PMCID: PMC9000173 DOI: 10.3390/ma15072481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 12/25/2022]
Abstract
Two type of cells representing periodontal hard tissues (osteoblasts) and soft tissues (fibroblasts) were evaluated in response to microgroove-milled zirconia surfaces. A total of 90 zirconia discs were randomly assigned to four width-standardized milling microgroove-textured groups and a control group without grooves (UT). The sandblast and acid-etch protocol were applied to all samples. Both cell lines were cultured on zirconia discs from 1 day up to 14 days. Cell morphology and adhesion were evaluated after 1 day of culturing. Cell viability and proliferation of the cells were measured. Alkaline phosphatase activity, collagen I, osteopontin, interleukin 1β and interleukin 8 secretions were assessed at predefined times. The results obtained were presented in the form of bar graphs as means and standard deviations. Multi comparisons between groups were evaluated using two-away ANOVA or Mann−Whitney tests, and a p-value < 0.05 was established. Group comparisons with regard to cell viability, proliferation and secretion of collagen I, interleukin-1β and interleukin 8 revealed no statistically significant differences. The alkaline phosphatase activity and osteopontin secretion were significantly higher in the group with a large groove compared to the small one and the control group. Nevertheless, the viability of gingival and bone cells did not appear to be affected by the milled microgroove texture compared to the conventional sandblasted and acid-etched texture, but they seem to influence osteoblasts’ cellular differentiation.
Collapse
Affiliation(s)
- Mariana Brito da Cruz
- Universidade de Lisboa, Faculdade de Medicina Dentária, Unidade de Investigação em Ciências Orais e Biomédicas (UICOB), LIBPhys-FTC UID/FIS/04559/2013, Rua Professora Teresa Ambrósio, 1600-277 Lisboa, Portugal; (J.F.M.); (J.C.); (A.M.)
- Correspondence: ; Tel.: +351-911-042-881
| | - Joana Faria Marques
- Universidade de Lisboa, Faculdade de Medicina Dentária, Unidade de Investigação em Ciências Orais e Biomédicas (UICOB), LIBPhys-FTC UID/FIS/04559/2013, Rua Professora Teresa Ambrósio, 1600-277 Lisboa, Portugal; (J.F.M.); (J.C.); (A.M.)
| | - Neusa Silva
- Universidade de Lisboa, Faculdade de Medicina Dentária, Unidade de Investigação em Ciências Orais e Biomédicas (UICOB), Rua Professora Teresa Ambrósio, 1600-277 Lisboa, Portugal;
| | - Sara Madeira
- Center for Microelectromechanical Systems (CMEMS), Department of Mechanical Engineering, University of Minho, 4800-058 Guimarães, Portugal; (S.M.); (Ó.C.); (F.S.S.)
| | - Óscar Carvalho
- Center for Microelectromechanical Systems (CMEMS), Department of Mechanical Engineering, University of Minho, 4800-058 Guimarães, Portugal; (S.M.); (Ó.C.); (F.S.S.)
| | - Filipe Samuel Silva
- Center for Microelectromechanical Systems (CMEMS), Department of Mechanical Engineering, University of Minho, 4800-058 Guimarães, Portugal; (S.M.); (Ó.C.); (F.S.S.)
| | - João Caramês
- Universidade de Lisboa, Faculdade de Medicina Dentária, Unidade de Investigação em Ciências Orais e Biomédicas (UICOB), LIBPhys-FTC UID/FIS/04559/2013, Rua Professora Teresa Ambrósio, 1600-277 Lisboa, Portugal; (J.F.M.); (J.C.); (A.M.)
- Universidade de Lisboa, Faculdade de Medicina Dentária, Bone Physiology Research Group, Rua Professora Teresa Ambrósio, 1600-277 Lisboa, Portugal
| | - António Mata
- Universidade de Lisboa, Faculdade de Medicina Dentária, Unidade de Investigação em Ciências Orais e Biomédicas (UICOB), LIBPhys-FTC UID/FIS/04559/2013, Rua Professora Teresa Ambrósio, 1600-277 Lisboa, Portugal; (J.F.M.); (J.C.); (A.M.)
- Universidade de Lisboa, Faculdade de Medicina Dentária, Cochrane Portugal, Instituto de Saúde Baseada na Evidência (ISBE), Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| |
Collapse
|