1
|
Before the "cytokine storm": Boosting efferocytosis as an effective strategy against SARS-CoV-2 infection and associated complications. Cytokine Growth Factor Rev 2022; 63:108-118. [PMID: 35039221 PMCID: PMC8741331 DOI: 10.1016/j.cytogfr.2022.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/06/2022] [Indexed: 12/13/2022]
Abstract
The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is responsible for the ongoing COVID-19 pandemic, and causes many health complications, including major lung diseases. Besides investigations into the virology of SARS-CoV-2, understanding the immunological routes underlying the clinical manifestations of COVID-19 is important for developing effective therapeutic interventions. The clearance of SARS-CoV-2-infected apoptotic cells by professional efferocytes, through a process termed as 'efferocytosis', is essential for maintaining tissue homeostasis, and reducing the chances of health complications caused by SARS-CoV-2 infection. In this review, we focus on the cellular events leading to engagement of the SARS-CoV-2 with type 2 alveolar cells, and how SARS-COV-2 infection impairs the macrophage anti-inflammatory programming. We also discuss accounts of impaired efferocytosis, and the “cytokine storm” which occur concomitantly with the SARS-CoV-2 infection. Finally, we propose how targeting impaired efferocytosis, due to the SARS-CoV-2 infection, may be a beneficial therapeutic strategy to combat COVID-19, and its complications.
Collapse
|
2
|
Madenspacher JH, Morrell ED, Gowdy KM, McDonald JG, Thompson BM, Muse G, Martinez J, Thomas S, Mikacenic C, Nick JA, Abraham E, Garantziotis S, Stapleton RD, Meacham JM, Thomassen MJ, Janssen WJ, Cook DN, Wurfel MM, Fessler MB. Cholesterol 25-hydroxylase promotes efferocytosis and resolution of lung inflammation. JCI Insight 2020; 5:137189. [PMID: 32343675 DOI: 10.1172/jci.insight.137189] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/23/2020] [Indexed: 12/12/2022] Open
Abstract
Alveolar macrophages (AM) play a central role in initiation and resolution of lung inflammation, but the integration of these opposing core functions is poorly understood. AM expression of cholesterol 25-hydroxylase (CH25H), the primary biosynthetic enzyme for 25-hydroxycholesterol (25HC), far exceeds the expression of macrophages in other tissues, but no role for CH25H has been defined in lung biology. As 25HC is an agonist for the antiinflammatory nuclear receptor, liver X receptor (LXR), we speculated that CH25H might regulate inflammatory homeostasis in the lung. Here, we show that, of natural oxysterols or sterols, 25HC is induced in the inflamed lung of mice and humans. Ch25h-/- mice fail to induce 25HC and LXR target genes in the lung after LPS inhalation and exhibit delayed resolution of airway neutrophilia, which can be rescued by systemic treatment with either 25HC or synthetic LXR agonists. LXR-null mice also display delayed resolution, suggesting that native oxysterols promote resolution. During resolution, Ch25h is induced in macrophages upon their encounter with apoptotic cells and is required for LXR-dependent prevention of AM lipid overload, induction of Mertk, efferocytic resolution of airway neutrophilia, and induction of TGF-β. CH25H/25HC/LXR is, thus, an inducible metabolic axis that programs AMs for efferocytic resolution of inflammation.
Collapse
Affiliation(s)
- Jennifer H Madenspacher
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences (NIEHS), NIH, Research Triangle Park, North Carolina, USA
| | - Eric D Morrell
- Section of Pulmonary, Critical Care, and Sleep Medicine, Harborview Medical Center, Seattle, Washington, USA
| | - Kymberly M Gowdy
- Division of Pulmonary, Critical Care and Sleep Medicine, and.,Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Jeffrey G McDonald
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Bonne M Thompson
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ginger Muse
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences (NIEHS), NIH, Research Triangle Park, North Carolina, USA
| | - Jennifer Martinez
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences (NIEHS), NIH, Research Triangle Park, North Carolina, USA
| | - Seddon Thomas
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences (NIEHS), NIH, Research Triangle Park, North Carolina, USA
| | - Carmen Mikacenic
- Section of Pulmonary, Critical Care, and Sleep Medicine, Harborview Medical Center, Seattle, Washington, USA
| | - Jerry A Nick
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Edward Abraham
- Department of Medicine, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Stavros Garantziotis
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences (NIEHS), NIH, Research Triangle Park, North Carolina, USA
| | - Renee D Stapleton
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Julie M Meacham
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences (NIEHS), NIH, Research Triangle Park, North Carolina, USA
| | - Mary Jane Thomassen
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - William J Janssen
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Donald N Cook
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences (NIEHS), NIH, Research Triangle Park, North Carolina, USA
| | - Mark M Wurfel
- Section of Pulmonary, Critical Care, and Sleep Medicine, Harborview Medical Center, Seattle, Washington, USA
| | - Michael B Fessler
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences (NIEHS), NIH, Research Triangle Park, North Carolina, USA
| |
Collapse
|
3
|
Robb CT, Regan KH, Dorward DA, Rossi AG. Key mechanisms governing resolution of lung inflammation. Semin Immunopathol 2016; 38:425-48. [PMID: 27116944 PMCID: PMC4896979 DOI: 10.1007/s00281-016-0560-6] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 04/14/2016] [Indexed: 12/11/2022]
Abstract
Innate immunity normally provides excellent defence against invading microorganisms. Acute inflammation is a form of innate immune defence and represents one of the primary responses to injury, infection and irritation, largely mediated by granulocyte effector cells such as neutrophils and eosinophils. Failure to remove an inflammatory stimulus (often resulting in failed resolution of inflammation) can lead to chronic inflammation resulting in tissue injury caused by high numbers of infiltrating activated granulocytes. Successful resolution of inflammation is dependent upon the removal of these cells. Under normal physiological conditions, apoptosis (programmed cell death) precedes phagocytic recognition and clearance of these cells by, for example, macrophages, dendritic and epithelial cells (a process known as efferocytosis). Inflammation contributes to immune defence within the respiratory mucosa (responsible for gas exchange) because lung epithelia are continuously exposed to a multiplicity of airborne pathogens, allergens and foreign particles. Failure to resolve inflammation within the respiratory mucosa is a major contributor of numerous lung diseases. This review will summarise the major mechanisms regulating lung inflammation, including key cellular interplays such as apoptotic cell clearance by alveolar macrophages and macrophage/neutrophil/epithelial cell interactions. The different acute and chronic inflammatory disease states caused by dysregulated/impaired resolution of lung inflammation will be discussed. Furthermore, the resolution of lung inflammation during neutrophil/eosinophil-dominant lung injury or enhanced resolution driven via pharmacological manipulation will also be considered.
Collapse
Affiliation(s)
- C T Robb
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh Medical School, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - K H Regan
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh Medical School, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - D A Dorward
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh Medical School, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - A G Rossi
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh Medical School, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK.
| |
Collapse
|
4
|
McCubbrey AL, Nelson JD, Stolberg VR, Blakely PK, McCloskey L, Janssen WJ, Freeman CM, Curtis JL. MicroRNA-34a Negatively Regulates Efferocytosis by Tissue Macrophages in Part via SIRT1. THE JOURNAL OF IMMUNOLOGY 2015; 196:1366-75. [PMID: 26718338 DOI: 10.4049/jimmunol.1401838] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 11/19/2015] [Indexed: 01/22/2023]
Abstract
Apoptotic cell (AC) clearance (efferocytosis) is an evolutionarily conserved process essential for immune health, particularly to maintain self-tolerance. Despite identification of many recognition receptors and intracellular signaling components of efferocytosis, its negative regulation remains incompletely understood and has not previously been known to involve microRNAs (miRs). In this article, we show that miR-34a (gene ID 407040), well recognized as a p53-dependent tumor suppressor, mediates coordinated negative regulation of efferocytosis by resident murine and human tissue macrophages (Mø). The miR-34a expression varied greatly between Mø from different tissues, correlating inversely with their capacity for AC uptake. Transient or genetic knockdown of miR-34a increased efferocytosis, whereas miR-34a overexpression decreased efferocytosis, without altering recognition of live, necrotic, or Ig-opsonized cells. The inhibitory effect of miR-34a was mediated both by reduced expression of Axl, a receptor tyrosine kinase known to recognize AC, and of the deacetylase silent information regulator T1, which had not previously been linked to efferocytosis by tissue Mø. Exposure to AC downregulated Mø miR-34a expression, resulting in a positive feedback loop that increased subsequent capacity to engulf AC. These findings demonstrate that miR-34a both specifically regulates and is regulated by efferocytosis. Given the ability of efferocytosis to polarize ingesting Mø uniquely and to reduce their host-defense functions, dynamic negative regulation by miR-34a provides one means of fine-tuning Mø behavior toward AC in specific tissue environments with differing potentials for microbial exposure.
Collapse
Affiliation(s)
- Alexandra L McCubbrey
- Graduate Program in Immunology, University of Michigan Health System, Ann Arbor, MI 48109
| | - Joshua D Nelson
- Division of Pulmonary & Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109
| | | | - Pennelope K Blakely
- Department of Neurology, University of Michigan Health System, Ann Arbor, MI 48109
| | - Lisa McCloskey
- Division of Pulmonary & Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109
| | - William J Janssen
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045; Department of Medicine, National Jewish Health, Denver, CO 80262; and
| | - Christine M Freeman
- Division of Pulmonary & Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109; Research Service, VA Ann Arbor Healthcare System, Ann Arbor, MI 48105
| | - Jeffrey L Curtis
- Graduate Program in Immunology, University of Michigan Health System, Ann Arbor, MI 48109; Division of Pulmonary & Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109; Pulmonary and Critical Care Medicine Section, VA Ann Arbor Healthcare System, Ann Arbor, MI 48105
| |
Collapse
|
5
|
Crisafulli C, Drago A, Calabrò M, Spina E, Serretti A. A molecular pathway analysis informs the genetic background at risk for schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2015; 59:21-30. [PMID: 25554435 DOI: 10.1016/j.pnpbp.2014.12.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 12/22/2014] [Accepted: 12/23/2014] [Indexed: 01/01/2023]
Abstract
BACKGROUND Schizophrenia is a complex mental disorder marked by severely impaired thinking, delusional thoughts, hallucinations and poor emotional responsiveness. The biological mechanisms that lead to schizophrenia may be related to the genetic background of patients. Thus, a genetic perspective may help to unravel the molecular pathways disrupted in schizophrenia. METHODS In the present work, we used a molecular pathway analysis to identify the molecular pathways associated with schizophrenia. We collected data of genetic loci previously associated with schizophrenia, identified the genes located in those positions and created the metabolic pathways that are related to those genes' products. These pathways were tested for enrichment (a number of SNPs associated with the phenotype significantly higher than expected by chance) in a sample of schizophrenic patients and controls (4486 and 4477, respectively). RESULTS The molecular pathway that resulted from the identification of all the genes located in the loci previously found to be associated with schizophrenia was found to be enriched, as expected (permutated p(10(6))=9.9999e-06).We found 60 SNPs amongst 30 different genes with a strong association with schizophrenia. The genes are related to the pathways related to neurodevelopment, apoptosis, vesicle traffic, immune response and MAPK cascade. CONCLUSIONS The pathway related to the toll-like receptor family seemed to play a central role in the modulation/connection of various pathways whose disruption leads to schizophrenia. This pathway is related to the innate immune system, further stressing the role of immunological-related events in increasing the risk to schizophrenia.
Collapse
Affiliation(s)
- Concetta Crisafulli
- Department of Biomedical Science and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Antonio Drago
- Department of Biomedical and Neuromotor Sciences - DIBINEM, University of Bologna, Bologna, Italy; I.R.C.C.S. "San Giovanni di Dio", Fatebenefratelli, Brescia, Italy.
| | - Marco Calabrò
- Department of Biomedical Science and Morphological and Functional Images, University of Messina, Messina, Italy; Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy; IRCCS Centro Neurolesi "Bonino-Pulejo", Messina, Italy
| | - Edoardo Spina
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Alessandro Serretti
- Department of Biomedical and Neuromotor Sciences - DIBINEM, University of Bologna, Bologna, Italy
| |
Collapse
|
6
|
Review: Where is the maternofetal interface? Placenta 2014; 35 Suppl:S74-80. [DOI: 10.1016/j.placenta.2013.10.014] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 10/24/2013] [Accepted: 10/24/2013] [Indexed: 11/22/2022]
|
7
|
Abstract
In healthy individuals, billions of cells die by apoptosis each day. Clearance of these apoptotic cells, termed "efferocytosis," must be efficient to prevent secondary necrosis and the release of proinflammatory cell contents that disrupt tissue homeostasis and potentially foster autoimmunity. During inflammation, most apoptotic cells are cleared by macrophages; the efferocytic process actively induces a macrophage phenotype that favors tissue repair and suppression of inflammation. Several chronic lung diseases, particularly airways diseases such as chronic obstructive lung disease, asthma, and cystic fibrosis, are characterized by an increased lung burden of uningested apoptotic cells. Alveolar macrophages from individuals with these chronic airways diseases have decreased efferocytosis relative to alveolar macrophages from healthy subjects. These two findings have led to the hypothesis that impaired apoptotic cell clearance may contribute causally to sustained lung inflammation and that therapies to enhance efferocytosis might be beneficial. This review of the English-language scientific literature (2006 to mid-2012) explains how such existing therapies as corticosteroids, statins, and macrolides may act in part by augmenting apoptotic cell clearance. However, efferocytosis can also impede host defenses against lung infection. Thus, determining whether novel therapies to augment efferocytosis should be developed and in whom they should be used lies at the heart of efforts to differentiate specific phenotypes within complex chronic lung diseases to provide appropriately personalized therapies.
Collapse
Affiliation(s)
| | - Jeffrey L Curtis
- Graduate Program in Immunology, VA Ann Arbor Healthcare System, Ann Arbor, MI; Division of Pulmonary and Critical Care Medicine, VA Ann Arbor Healthcare System, Ann Arbor, MI; Department of Internal Medicine, University of Michigan Health System; and the Pulmonary and Critical Care Medicine Section, VA Ann Arbor Healthcare System, Ann Arbor, MI.
| |
Collapse
|
8
|
McCubbrey AL, Sonstein J, Ames TM, Freeman CM, Curtis JL. Glucocorticoids relieve collectin-driven suppression of apoptotic cell uptake in murine alveolar macrophages through downregulation of SIRPα. THE JOURNAL OF IMMUNOLOGY 2012; 189:112-9. [PMID: 22615206 DOI: 10.4049/jimmunol.1200984] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The lung environment actively inhibits apoptotic cell (AC) uptake by alveolar macrophages (AMøs) via lung collectin signaling through signal regulatory protein α (SIRPα). Even brief glucocorticoid (GC) treatment during maturation of human blood monocyte-derived or murine bone marrow-derived macrophages (Møs) increases their AC uptake. Whether GCs similarly impact differentiated tissue Møs and the mechanisms for this rapid response are unknown and important to define, given the widespread therapeutic use of inhaled GCs. We found that the GC fluticasone rapidly and dose-dependently increased AC uptake by murine AMøs without a requirement for protein synthesis. Fluticasone rapidly suppressed AMø expression of SIRPα mRNA and surface protein, and also activated a more delayed, translation-dependent upregulation of AC recognition receptors that was not required for the early increase in AC uptake. Consistent with a role for SIRPα suppression in rapid GC action, murine peritoneal Møs that had not been exposed to lung collectins showed delayed, but not rapid, increase in AC uptake. However, pretreatment of peritoneal Møs with the lung collectin surfactant protein D inhibited AC uptake, and fluticasone treatment rapidly reversed this inhibition. Thus, GCs act not only by upregulating AC recognition receptors during Mø maturation but also via a novel rapid downregulation of SIRPα expression by differentiated tissue Møs. Release of AMøs from inhibition of AC uptake by lung collectins may, in part, explain the beneficial role of inhaled GCs in inflammatory lung diseases, especially emphysema, in which there is both increased lung parenchymal cell apoptosis and defective AC uptake by AMøs.
Collapse
Affiliation(s)
- Alexandra L McCubbrey
- Graduate Program in Immunology, University of Michigan Health System, Ann Arbor, MI 48109, USA
| | | | | | | | | |
Collapse
|