1
|
Cumin C, Gee L, Litfin T, Muchabaiwa R, Martin G, Cooper O, Heinzelmann-Schwarz V, Lange T, von Itzstein M, Jacob F, Everest-Dass A. Highly Sensitive Spatial Glycomics at Near-Cellular Resolution by On-Slide Derivatization and Mass Spectrometry Imaging. Anal Chem 2024; 96:11163-11171. [PMID: 38953530 PMCID: PMC11256013 DOI: 10.1021/acs.analchem.3c05984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/04/2024]
Abstract
Glycans on proteins and lipids play important roles in maturation and cellular interactions, contributing to a variety of biological processes. Aberrant glycosylation has been associated with various human diseases including cancer; however, elucidating the distribution and heterogeneity of glycans in complex tissue samples remains a major challenge. Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) is routinely used to analyze the spatial distribution of a variety of molecules including N-glycans directly from tissue surfaces. Sialic acids are nine carbon acidic sugars that often exist as the terminal sugars of glycans and are inherently difficult to analyze using MALDI-MSI due to their instability prone to in- and postsource decay. Here, we report on a rapid and robust method for stabilizing sialic acid on N-glycans in FFPE tissue sections. The established method derivatizes and identifies the spatial distribution of α2,3- and α2,6-linked sialic acids through complete methylamidation using methylamine and PyAOP ((7-azabenzotriazol-1-yloxy)tripyrrolidinophosphonium hexafluorophosphate). Our in situ approach increases the glycans detected and enhances the coverage of sialylated species. Using this streamlined, sensitive, and robust workflow, we rapidly characterize and spatially localize N-glycans in human tumor tissue sections. Additionally, we demonstrate this method's applicability in imaging mammalian cell suspensions directly on slides, achieving cellular resolution with minimal sample processing and cell numbers. This workflow reveals the cellular locations of distinct N-glycan species, shedding light on the biological and clinical significance of these biomolecules in human diseases.
Collapse
Affiliation(s)
- Cécile Cumin
- Institute
for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia
- Ovarian
Cancer Research, University Hospital Basel,
University of Basel, Basel 4001, Switzerland
| | - Lindsay Gee
- Institute
for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Thomas Litfin
- Institute
for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Ropafadzo Muchabaiwa
- Institute
for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Gael Martin
- Institute
for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Oren Cooper
- Institute
for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Viola Heinzelmann-Schwarz
- Ovarian
Cancer Research, University Hospital Basel,
University of Basel, Basel 4001, Switzerland
- Hospital
for Women, Department of Gynaecology and Gynaecological Oncology, University Hospital Basel and University of Basel, Basel 4001, Switzerland
| | - Tobias Lange
- Institute
of Anatomy and Experimental Morphology, University Cancer Center Hamburg
(UCCH), University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
- Institute
of Anatomy I, Comprehensive Cancer Center Central Germany (CCCG), Jena University Hospital, Jena 07740, Germany
| | - Mark von Itzstein
- Institute
for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Francis Jacob
- Ovarian
Cancer Research, University Hospital Basel,
University of Basel, Basel 4001, Switzerland
| | - Arun Everest-Dass
- Institute
for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia
| |
Collapse
|
2
|
Nelson RS, Dammer EB, Santiago JV, Seyfried NT, Rangaraju S. Brain Cell Type-Specific Nuclear Proteomics Is Imperative to Resolve Neurodegenerative Disease Mechanisms. Front Neurosci 2022; 16:902146. [PMID: 35784845 PMCID: PMC9243337 DOI: 10.3389/fnins.2022.902146] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/30/2022] [Indexed: 01/19/2023] Open
Abstract
Neurodegenerative diseases (NDs) involve complex cellular mechanisms that are incompletely understood. Emerging findings have revealed that disruption of nuclear processes play key roles in ND pathogenesis. The nucleus is a nexus for gene regulation and cellular processes that together, may underlie pathomechanisms of NDs. Furthermore, many genetic risk factors for NDs encode proteins that are either present in the nucleus or are involved in nuclear processes (for example, RNA binding proteins, epigenetic regulators, or nuclear-cytoplasmic transport proteins). While recent advances in nuclear transcriptomics have been significant, studies of the nuclear proteome in brain have been relatively limited. We propose that a comprehensive analysis of nuclear proteomic alterations of various brain cell types in NDs may provide novel biological and therapeutic insights. This may be feasible because emerging technical advances allow isolation and investigation of intact nuclei from post-mortem frozen human brain tissue with cell type-specific and single-cell resolution. Accordingly, nuclei of various brain cell types harbor unique protein markers which can be used to isolate cell-type specific nuclei followed by down-stream proteomics by mass spectrometry. Here we review the literature providing a rationale for investigating proteomic changes occurring in nuclei in NDs and then highlight the potential for brain cell type-specific nuclear proteomics to enhance our understanding of distinct cellular mechanisms that drive ND pathogenesis.
Collapse
Affiliation(s)
- Ruth S. Nelson
- Department of Neurology, Emory University, Atlanta, GA, United States
| | - Eric B. Dammer
- Department of Biochemistry, Emory University, Atlanta, GA, United States
| | | | | | - Srikant Rangaraju
- Department of Neurology, Emory University, Atlanta, GA, United States,*Correspondence: Srikant Rangaraju
| |
Collapse
|
3
|
Jouroukhin Y, Zhu X, Shevelkin AV, Hasegawa Y, Abazyan B, Saito A, Pevsner J, Kamiya A, Pletnikov MV. Adolescent Δ 9-Tetrahydrocannabinol Exposure and Astrocyte-Specific Genetic Vulnerability Converge on Nuclear Factor-κB-Cyclooxygenase-2 Signaling to Impair Memory in Adulthood. Biol Psychiatry 2019; 85:891-903. [PMID: 30219209 PMCID: PMC6525084 DOI: 10.1016/j.biopsych.2018.07.024] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/19/2018] [Accepted: 07/30/2018] [Indexed: 11/19/2022]
Abstract
BACKGROUND Although several studies have linked adolescent cannabis use to long-term cognitive dysfunction, there are negative reports as well. The fact that not all users develop cognitive impairment suggests a genetic vulnerability to adverse effects of cannabis, which are attributed to action of Δ9-tetrahydrocannabinol (Δ9-THC), a cannabis constituent and partial agonist of brain cannabinoid receptor 1. As both neurons and glial cells express cannabinoid receptor 1, genetic vulnerability could influence Δ9-THC-induced signaling in a cell type-specific manner. METHODS Here we use an animal model of inducible expression of dominant-negative disrupted in schizophrenia 1 (DN-DISC1) selectively in astrocytes to evaluate the molecular mechanisms, whereby an astrocyte genetic vulnerability could interact with adolescent Δ9-THC exposure to impair recognition memory in adulthood. RESULTS Selective expression of DN-DISC1 in astrocytes and adolescent treatment with Δ9-THC synergistically affected recognition memory in adult mice. Similar deficits in recognition memory were observed following knockdown of endogenous Disc1 in hippocampal astrocytes in mice treated with Δ9-THC during adolescence. At the molecular level, DN-DISC1 and Δ9-THC synergistically activated the nuclear factor-κB-cyclooxygenase-2 pathway in astrocytes and decreased immunoreactivity of parvalbumin-positive presynaptic inhibitory boutons around pyramidal neurons of the hippocampal CA3 area. The cognitive abnormalities were prevented in DN-DISC1 mice exposed to Δ9-THC by simultaneous adolescent treatment with the cyclooxygenase-2 inhibitor, NS398. CONCLUSIONS Our data demonstrate that individual vulnerability to cannabis can be exclusively mediated by astrocytes. Results of this work suggest that genetic predisposition within astrocytes can exaggerate Δ9-THC-produced cognitive impairments via convergent inflammatory signaling, suggesting possible targets for preventing adverse effects of cannabis within susceptible individuals.
Collapse
Affiliation(s)
- Yan Jouroukhin
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Xiaolei Zhu
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Alexey V Shevelkin
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Yuto Hasegawa
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Bagrat Abazyan
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Atsushi Saito
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jonathan Pevsner
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland; Kennedy Krieger Institute, Baltimore, Maryland
| | - Atsushi Kamiya
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Mikhail V Pletnikov
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
4
|
Ma C, Chang M, Lv H, Zhang ZW, Zhang W, He X, Wu G, Zhao S, Zhang Y, Wang D, Teng X, Liu C, Li Q, Klungland A, Niu Y, Song S, Tong WM. RNA m 6A methylation participates in regulation of postnatal development of the mouse cerebellum. Genome Biol 2018; 19:68. [PMID: 29855379 PMCID: PMC5984455 DOI: 10.1186/s13059-018-1435-z] [Citation(s) in RCA: 170] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 04/26/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND N6-methyladenosine (m6A) is an important epitranscriptomic mark with high abundance in the brain. Recently, it has been found to be involved in the regulation of memory formation and mammalian cortical neurogenesis. However, while it is now established that m6A methylation occurs in a spatially restricted manner, its functions in specific brain regions still await elucidation. RESULTS We identify widespread and dynamic RNA m6A methylation in the developing mouse cerebellum and further uncover distinct features of continuous and temporal-specific m6A methylation across the four postnatal developmental processes. Temporal-specific m6A peaks from P7 to P60 exhibit remarkable changes in their distribution patterns along the mRNA transcripts. We also show spatiotemporal-specific expression of m6A writers METTL3, METTL14, and WTAP and erasers ALKBH5 and FTO in the mouse cerebellum. Ectopic expression of METTL3 mediated by lentivirus infection leads to disorganized structure of both Purkinje and glial cells. In addition, under hypobaric hypoxia exposure, Alkbh5-deletion causes abnormal cell proliferation and differentiation in the cerebellum through disturbing the balance of RNA m6A methylation in different cell fate determination genes. Notably, nuclear export of the hypermethylated RNAs is enhanced in the cerebellum of Alkbh5-deficient mice exposed to hypobaric hypoxia. CONCLUSIONS Together, our findings provide strong evidence that RNA m6A methylation is controlled in a precise spatiotemporal manner and participates in the regulation of postnatal development of the mouse cerebellum.
Collapse
Affiliation(s)
- Chunhui Ma
- Department of Pathology, Institute of Basic Medical Sciences Chinese Academy of Medical Science, School of Basic Medicine Peking Union Medical College; Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, 100005 China
| | - Mengqi Chang
- Department of Pathology, Institute of Basic Medical Sciences Chinese Academy of Medical Science, School of Basic Medicine Peking Union Medical College; Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, 100005 China
| | - Hongyi Lv
- BIG Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, People’s Republic of China, Beijing, 100049 China
| | - Zhi-Wei Zhang
- Department of Pathology, Institute of Basic Medical Sciences Chinese Academy of Medical Science, School of Basic Medicine Peking Union Medical College; Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, 100005 China
| | - Weilong Zhang
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Institute and Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100021 China
| | - Xue He
- Department of Pathology, Institute of Basic Medical Sciences Chinese Academy of Medical Science, School of Basic Medicine Peking Union Medical College; Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, 100005 China
| | - Gaolang Wu
- Department of Pathology, Institute of Basic Medical Sciences Chinese Academy of Medical Science, School of Basic Medicine Peking Union Medical College; Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, 100005 China
| | - Shunli Zhao
- Department of Pathology, Institute of Basic Medical Sciences Chinese Academy of Medical Science, School of Basic Medicine Peking Union Medical College; Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, 100005 China
| | - Yao Zhang
- Department of Pathology, Institute of Basic Medical Sciences Chinese Academy of Medical Science, School of Basic Medicine Peking Union Medical College; Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, 100005 China
| | - Di Wang
- Department of Pathology, Institute of Basic Medical Sciences Chinese Academy of Medical Science, School of Basic Medicine Peking Union Medical College; Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, 100005 China
| | - Xufei Teng
- BIG Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, People’s Republic of China, Beijing, 100049 China
| | - Chunying Liu
- Department of Pathology, Institute of Basic Medical Sciences Chinese Academy of Medical Science, School of Basic Medicine Peking Union Medical College; Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, 100005 China
| | - Qing Li
- Department of Pathology, Institute of Basic Medical Sciences Chinese Academy of Medical Science, School of Basic Medicine Peking Union Medical College; Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, 100005 China
| | - Arne Klungland
- Department of Microbiology, Oslo University Hospital, Rikshospitalet, Oslo, NO-0027 Norway
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, NO-0317 Oslo, Norway
| | - Yamei Niu
- Department of Pathology, Institute of Basic Medical Sciences Chinese Academy of Medical Science, School of Basic Medicine Peking Union Medical College; Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, 100005 China
| | - Shuhui Song
- BIG Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Wei-Min Tong
- Department of Pathology, Institute of Basic Medical Sciences Chinese Academy of Medical Science, School of Basic Medicine Peking Union Medical College; Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, 100005 China
| |
Collapse
|
5
|
Chang M, Lv H, Zhang W, Ma C, He X, Zhao S, Zhang ZW, Zeng YX, Song S, Niu Y, Tong WM. Region-specific RNA m 6A methylation represents a new layer of control in the gene regulatory network in the mouse brain. Open Biol 2018; 7:rsob.170166. [PMID: 28931651 PMCID: PMC5627058 DOI: 10.1098/rsob.170166] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 08/09/2017] [Indexed: 12/22/2022] Open
Abstract
N6-methyladenosine (m6A) is the most abundant epitranscriptomic mark found on mRNA and has important roles in various physiological processes. Despite the relatively high m6A levels in the brain, its potential functions in the brain remain largely unexplored. We performed a transcriptome-wide methylation analysis using the mouse brain to depict its region-specific methylation profile. RNA methylation levels in mouse cerebellum are generally higher than those in the cerebral cortex. Heterogeneity of RNA methylation exists across different brain regions and different types of neural cells including the mRNAs to be methylated, their methylation levels and methylation site selection. Common and region-specific methylation have different preferences for methylation site selection and thereby different impacts on their biological functions. In addition, high methylation levels of fragile X mental retardation protein (FMRP) target mRNAs suggest that m6A methylation is likely to be used for selective recognition of target mRNAs by FMRP in the synapse. Overall, we provide a region-specific map of RNA m6A methylation and characterize the distinct features of specific and common methylation in mouse cerebellum and cerebral cortex. Our results imply that RNA m6A methylation is a newly identified element in the region-specific gene regulatory network in the mouse brain.
Collapse
Affiliation(s)
- Mengqi Chang
- Department of Pathology, Institute of Basic Medical Sciences and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, People's Republic of China
| | - Hongyi Lv
- BIG Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Weilong Zhang
- State Key Lab of Molecular Oncology, National Cancer Center/Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, People's Republic of China
| | - Chunhui Ma
- Department of Pathology, Institute of Basic Medical Sciences and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, People's Republic of China
| | - Xue He
- Department of Pathology, Institute of Basic Medical Sciences and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, People's Republic of China
| | - Shunli Zhao
- Department of Pathology, Institute of Basic Medical Sciences and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, People's Republic of China
| | - Zhi-Wei Zhang
- Department of Pathology, Institute of Basic Medical Sciences and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, People's Republic of China
| | - Yi-Xin Zeng
- State Key Lab of Molecular Oncology, National Cancer Center/Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, People's Republic of China
| | - Shuhui Song
- BIG Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Yamei Niu
- Department of Pathology, Institute of Basic Medical Sciences and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, People's Republic of China
| | - Wei-Min Tong
- Department of Pathology, Institute of Basic Medical Sciences and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, People's Republic of China
| |
Collapse
|
6
|
Transport protein evolution deduced from analysis of sequence, topology and structure. Curr Opin Struct Biol 2016; 38:9-17. [PMID: 27270239 DOI: 10.1016/j.sbi.2016.05.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 05/04/2016] [Accepted: 05/05/2016] [Indexed: 11/21/2022]
Abstract
The vast majority of well studied transmembrane channels, secondary carriers, primary active transporters and group translocators are believed to have arisen vis intragenic duplication events from simple channel-forming peptides with just 1-3 transmembrane α-helical segments, found ubiquitously in nature. Only a few established channel-forming proteins appear to have evolved via other pathways. The proposed pathway for the evolutionary appearance of the five types of transport proteins involved intragenic duplication of transmembrane pore-forming peptide-encoding genes, giving rise to channel proteins. These gave rise to single protein secondary carriers which upon superimposition of addition protein domains and proteins, including energy-coupling proteins and extracytoplasmic receptors, gave rise to multidomain, multicomponent carriers, primary active transporters and group translocators. Some of the largest and best characterized superfamilies of these transmembrane transport proteins are discussed from topological and evolutionary standpoints.
Collapse
|
7
|
Hargis KE, Blalock EM. Transcriptional signatures of brain aging and Alzheimer's disease: What are our rodent models telling us? Behav Brain Res 2016; 322:311-328. [PMID: 27155503 DOI: 10.1016/j.bbr.2016.05.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 04/28/2016] [Accepted: 05/03/2016] [Indexed: 12/22/2022]
Abstract
Aging is the biggest risk factor for idiopathic Alzheimer's disease (AD). Recently, the National Institutes of Health released AD research recommendations that include: appreciating normal brain aging, expanding data-driven research, using open-access resources, and evaluating experimental reproducibility. Transcriptome data sets for aging and AD in humans and animal models are available in NIH-curated, publically accessible databases. However, little work has been done to test for concordance among those molecular signatures. Here, we test the hypothesis that brain transcriptional profiles from animal models recapitulate those observed in the human condition. Raw transcriptional profile data from twenty-nine studies were analyzed to produce p-values and fold changes for young vs. aged or control vs. AD conditions. Concordance across profiles was assessed at three levels: (1) # of significant genes observed vs. # expected by chance; (2) proportion of significant genes showing directional agreement; (3) correlation among studies for magnitude of effect among significant genes. The highest concordance was found within subjects across brain regions. Normal brain aging was concordant across studies, brain regions, and species, despite profound differences in chronological aging among humans, rats and mice. Human studies of idiopathic AD were concordant across brain structures and studies, but were not concordant with the transcriptional profiles of transgenic AD mouse models. Further, the five transgenic AD mouse models that were assessed were not concordant with one another. These results suggest that normal brain aging is similar in humans and research animals, and that different transgenic AD model mice may reflect selected aspects of AD pathology.
Collapse
Affiliation(s)
- Kendra E Hargis
- University of Kentucky College of Medicine, Department of Pharmacology and Nutritional Science, Lexington, KY, United States
| | - Eric M Blalock
- University of Kentucky College of Medicine, Department of Pharmacology and Nutritional Science, Lexington, KY, United States.
| |
Collapse
|