1
|
Chen F, Wang P, Dai F, Zhang Q, Ying R, Ai L, Chen Y. Correlation Between Blood Glucose Fluctuations and Osteoporosis in Type 2 Diabetes Mellitus. Int J Endocrinol 2025; 2025:8889420. [PMID: 39949568 PMCID: PMC11824305 DOI: 10.1155/ije/8889420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 01/08/2025] [Indexed: 02/16/2025] Open
Abstract
The purpose of this review is to investigate the impacts of blood glucose fluctuations on diabetic osteoporosis, a complication of Type 2 diabetes mellitus (T2DM) that remains poorly understood. We reviewed the current evidence of the relationship between blood glucose fluctuations and diabetic osteoporosis in patients with T2DM. The findings indicate that blood glucose fluctuations may contribute to inhibiting the processes of bone formation and resorption, promoting diabetic osteoporosis and fractures in T2DM. Mechanistic studies, both in vitro and in vivo, reveal that these effects are largely mediated by oxidative stress, advanced glycation end products, inflammatory mediators, and multiple pathways inducing cell apoptosis or autophagy. Thus, maintaining the long-term stability of blood glucose levels emerges as a target to be pursued in clinical practice in order to safely reduce mean blood glucose and for its direct effects on osteoporosis and fractures in T2DM.
Collapse
Affiliation(s)
- Fuhua Chen
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ping Wang
- Department of Endocrinology, The 2nd People's Hospital of Anhui, Hefei, Anhui, China
| | - Fang Dai
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Qiu Zhang
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ruixue Ying
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Liya Ai
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yiqing Chen
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
2
|
Sroga GE, Vashishth D. In vivo glycation-interplay between oxidant and carbonyl stress in bone. JBMR Plus 2024; 8:ziae110. [PMID: 39386996 PMCID: PMC11458925 DOI: 10.1093/jbmrpl/ziae110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 06/18/2024] [Accepted: 07/28/2024] [Indexed: 10/12/2024] Open
Abstract
Metabolic syndromes (eg, obesity, type 2 diabetes (T2D), atherosclerosis, and neurodegenerative diseases) and aging, they all have a strong component of carbonyl and reductive-oxidative (redox) stress. Reactive carbonyl (RCS) and oxidant (ROS) stress species are commonly generated as products or byproducts of cellular metabolism or are derived from the environment. RCS and ROS can play a dual role in living organisms. Some RCS and ROS function as signaling molecules, which control cellular defenses against biological and environmental assaults. However, due to their high reactivity, RCS and ROS inadvertently interact with different cellular and extracellular components, which can lead to the formation of undesired posttranslational modifications of bone matrix proteins. These are advanced glycation (AGEs) and glycoxidation (AGOEs) end products generated in vivo by non-enzymatic amino-carbonyl reactions. In this review, metabolic processes involved in generation of AGEs and AGOEs within and on protein surfaces including extracellular bone matrix are discussed from the perspective of cellular metabolism and biochemistry of certain metabolic syndromes. The impact of AGEs and AGOEs on some characteristics of mineral is also discussed. Different therapeutic approaches with the potential to prevent the formation of RCS, ROS, and the resulting formation of AGEs and AGOEs driven by these chemicals are also briefly reviewed. These are antioxidants, scavenging agents of reactive species, and newly emerging technologies for the development of synthetic detoxifying systems. Further research in the area of in vivo glycation and glycoxidation should lead to the development of diverse new strategies for halting the progression of metabolic complications before irreversible damage to body tissues materializes.
Collapse
Affiliation(s)
- Grażyna E Sroga
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
- Shirley Ann Jackson PhD Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Deepak Vashishth
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
- Shirley Ann Jackson PhD Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
- Center for Engineering and Precision Medicine, Rensselaer-Icahn School of Medicine at Mount Sinai, 619 West 54th Street, New York, NY 10019, United States
| |
Collapse
|
3
|
Kwon HK, Cahill SV, Yu KE, Alder KD, Dussik CM, Jeong J, Back JH, Lee FY. Parathyroid hormone therapy improves MRSA-infected fracture healing in a murine diabetic model. Front Cell Infect Microbiol 2023; 13:1230568. [PMID: 37829606 PMCID: PMC10565816 DOI: 10.3389/fcimb.2023.1230568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/28/2023] [Indexed: 10/14/2023] Open
Abstract
Introduction Diabetes mellitus (DM) impairs fracture healing and is associated with susceptibility to infection, which further inhibits fracture healing. While intermittent parathyroid hormone (1-34) (iPTH) effectively improves fracture healing, it is unknown whether infection-associated impaired fracture healing can be rescued with PTH (teriparatide). Methods A chronic diet-induced type 2 diabetic mouse model was used to yield mice with decreased glucose tolerance and increased blood glucose levels compared to lean-fed controls. Methicillin-resistant Staphylococcus aureus (MRSA) was inoculated in a surgical tibia fracture model to simulate infected fracture, after which mice were treated with a combination of antibiotics and adjunctive teriparatide treatment. Fracture healing was assessed by Radiographic Union Scale in Tibial Fractures (RUST), micro-computed tomography (μCT), biomechanical testing, and histology. Results RUST score was significantly poorer in diabetic mice compared to their lean nondiabetic counterparts. There were concomitant reductions in micro-computed tomography (μCT) parameters of callus architecture including bone volume/total volume, trabecular thickness, and total mineral density in type 2 diabetes mellitus (T2DM) mice. Biomechanicaltesting of fractured femora demonstrated diminished torsional rigidity, stiffness, and toughness to max torque. Adjuvant teriparatide treatment with systemic antibiotic therapy improved numerous parameters of bone microarchitecture bone volume, increased connectivity density, and increased trabecular number in both the lean and T2DM group. Despite the observation that poor fracture healing in T2DM mice was further impaired by MRSA infection, adjuvant iPTH treatment significantly improved fracture healing compared to antibiotic treatment alone in infected T2DM fractures. Discussion Our results suggest that teriparatide may constitute a viable adjuvant therapeutic agent to improve bony union and bone microarchitecture to prevent the development of septic nonunion under diabetic conditions.
Collapse
Affiliation(s)
- Hyuk-Kwon Kwon
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT, United States
- Division of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Sean V. Cahill
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT, United States
| | - Kristin E. Yu
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT, United States
| | - Kareme D. Alder
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT, United States
| | - Christopher M. Dussik
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT, United States
| | - Jain Jeong
- Department of Internal Medicine, Section of Digestive Diseases, Yale School of Medicine, New Haven, CT, United States
| | - Jung Ho Back
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT, United States
| | - Francis Y. Lee
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
4
|
Development and Regeneration of Muscle, Tendon, and Myotendinous Junctions in Striated Skeletal Muscle. Int J Mol Sci 2022; 23:ijms23063006. [PMID: 35328426 PMCID: PMC8950615 DOI: 10.3390/ijms23063006] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/05/2022] [Accepted: 03/08/2022] [Indexed: 12/04/2022] Open
Abstract
Owing to a rapid increase in aging population in recent years, the deterioration of motor function in older adults has become an important social problem, and several studies have aimed to investigate the mechanisms underlying muscle function decline. Furthermore, structural maintenance of the muscle–tendon–bone complexes in the muscle attachment sites is important for motor function, particularly for joints; however, the development and regeneration of these complexes have not been studied thoroughly and require further elucidation. Recent studies have provided insights into the roles of mesenchymal progenitors in the development and regeneration of muscles and myotendinous junctions. In particular, studies on muscles and myotendinous junctions have—through the use of the recently developed scRNA-seq—reported the presence of syncytia, thereby suggesting that fibroblasts may be transformed into myoblasts in a BMP-dependent manner. In addition, the high mobility group box 1—a DNA-binding protein found in nuclei—is reportedly involved in muscle regeneration. Furthermore, studies have identified several factors required for the formation of locomotor apparatuses, e.g., tenomodulin (Tnmd) and mohawk (Mkx), which are essential for tendon maturation.
Collapse
|
5
|
Rungratanawanich W, Qu Y, Wang X, Essa MM, Song BJ. Advanced glycation end products (AGEs) and other adducts in aging-related diseases and alcohol-mediated tissue injury. Exp Mol Med 2021; 53:168-188. [PMID: 33568752 PMCID: PMC8080618 DOI: 10.1038/s12276-021-00561-7] [Citation(s) in RCA: 193] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 01/30/2023] Open
Abstract
Advanced glycation end products (AGEs) are potentially harmful and heterogeneous molecules derived from nonenzymatic glycation. The pathological implications of AGEs are ascribed to their ability to promote oxidative stress, inflammation, and apoptosis. Recent studies in basic and translational research have revealed the contributing roles of AGEs in the development and progression of various aging-related pathological conditions, such as diabetes, cardiovascular complications, gut microbiome-associated illnesses, liver or neurodegenerative diseases, and cancer. Excessive chronic and/or acute binge consumption of alcohol (ethanol), a widely consumed addictive substance, is known to cause more than 200 diseases, including alcohol use disorder (addiction), alcoholic liver disease, and brain damage. However, despite the considerable amount of research in this area, the underlying molecular mechanisms by which alcohol abuse causes cellular toxicity and organ damage remain to be further characterized. In this review, we first briefly describe the properties of AGEs: their formation, accumulation, and receptor interactions. We then focus on the causative functions of AGEs that impact various aging-related diseases. We also highlight the biological connection of AGE-alcohol-adduct formations to alcohol-mediated tissue injury. Finally, we describe the potential translational research opportunities for treatment of various AGE- and/or alcohol-related adduct-associated disorders according to the mechanistic insights presented.
Collapse
Affiliation(s)
- Wiramon Rungratanawanich
- grid.420085.b0000 0004 0481 4802Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD 20892 USA
| | - Ying Qu
- grid.420085.b0000 0004 0481 4802Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD 20892 USA
| | - Xin Wang
- Neuroapoptosis Drug Discovery Laboratory, Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, 60 Fenwood Road, Boston, MA 02115 USA
| | - Musthafa Mohamed Essa
- grid.412846.d0000 0001 0726 9430Department of Food Science and Nutrition, Aging and Dementia Research Group, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud, Muscat, Oman ,grid.412846.d0000 0001 0726 9430Aging and Dementia Research Group, Sultan Qaboos University, Muscat, Oman
| | - Byoung-Joon Song
- grid.420085.b0000 0004 0481 4802Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD 20892 USA
| |
Collapse
|
6
|
Rps27a might act as a controller of microglia activation in triggering neurodegenerative diseases. PLoS One 2020; 15:e0239219. [PMID: 32941527 PMCID: PMC7498011 DOI: 10.1371/journal.pone.0239219] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 09/01/2020] [Indexed: 01/10/2023] Open
Abstract
Neurodegenerative diseases (NDDs) are increasing serious menaces to human health in the recent years. Despite exhibiting different clinical phenotypes and selective neuronal loss, there are certain common features in these disorders, suggesting the presence of commonly dysregulated pathways. Identifying causal genes and dysregulated pathways can be helpful in providing effective treatment in these diseases. Interestingly, in spite of the considerable researches on NDDs, to the best of our knowledge, no dysregulated genes and/or pathways were reported in common across all the major NDDs so far. In this study, for the first time, we have applied the three-way interaction model, as an approach to unravel sophisticated gene interactions, to trace switch genes and significant pathways that are involved in six major NDDs. Subsequently, a gene regulatory network was constructed to investigate the regulatory communication of statistically significant triplets. Finally, KEGG pathway enrichment analysis was applied to find possible common pathways. Because of the central role of neuroinflammation and immune system responses in both pathogenic and protective mechanisms in the NDDs, we focused on immune genes in this study. Our results suggest that "cytokine-cytokine receptor interaction" pathway is enriched in all of the studied NDDs, while "osteoclast differentiation" and "natural killer cell mediated cytotoxicity" pathways are enriched in five of the NDDs each. The results of this study indicate that three pathways that include "osteoclast differentiation", "natural killer cell mediated cytotoxicity" and "cytokine-cytokine receptor interaction" are common in five, five and six NDDs, respectively. Additionally, our analysis showed that Rps27a as a switch gene, together with the gene pair {Il-18, Cx3cl1} form a statistically significant and biologically relevant triplet in the major NDDs. More specifically, we suggested that Cx3cl1 might act as a potential upstream regulator of Il-18 in microglia activation, and in turn, might be controlled with Rps27a in triggering NDDs.
Collapse
|
7
|
De Martinis M, Ginaldi L, Sirufo MM, Pioggia G, Calapai G, Gangemi S, Mannucci C. Alarmins in Osteoporosis, RAGE, IL-1, and IL-33 Pathways: A Literature Review. MEDICINA (KAUNAS, LITHUANIA) 2020; 56:medicina56030138. [PMID: 32204562 PMCID: PMC7142770 DOI: 10.3390/medicina56030138] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/10/2020] [Accepted: 03/12/2020] [Indexed: 12/13/2022]
Abstract
Alarmins are endogenous mediators released by cells following insults or cell death to alert the host’s innate immune system of a situation of danger or harm. Many of these, such as high-mobility group box-1 and 2 (HMGB1, HMGB2) and S100 (calgranulin proteins), act through RAGE (receptor for advanced glycation end products), whereas the IL-1 and IL-33 cytokines bind the IL-1 receptors type I and II, and the cellular receptor ST2, respectively. The alarmin family and their signal pathways share many similarities of cellular and tissue localization, functions, and involvement in various physiological processes and inflammatory diseases including osteoporosis. The aim of the review was to evaluate the role of alarmins in osteoporosis. A bibliographic search of the published scientific literature regarding the role of alarmins in osteoporosis was organized independently by two researchers in the following scientific databases: Pubmed, Scopus, and Web of Science. The keywords used were combined as follows: “alarmins and osteoporosis”, “RAGE and osteoporosis”, “HMGB1 and osteoporosis”, “IL-1 and osteoporosis”, “IL 33 and osteopororsis”, “S100s protein and osteoporosis”. The information was summarized and organized in the present review. We highlight the emerging roles of alarmins in various bone remodeling processes involved in the onset and development of osteoporosis, as well as their potential role as biomarkers of osteoporosis severity and progression. Findings of the research suggest a potential use of alarmins as pharmacological targets in future therapeutic strategies aimed at preventing bone loss and fragility fractures induced by aging and inflammatory diseases.
Collapse
Affiliation(s)
- Massimo De Martinis
- Department of Life, Health, & Environmental Sciences, University of L’Aquila, 6700 L’Aquila, Italy; (M.D.M.); (L.G.); (M.M.S.)
| | - Lia Ginaldi
- Department of Life, Health, & Environmental Sciences, University of L’Aquila, 6700 L’Aquila, Italy; (M.D.M.); (L.G.); (M.M.S.)
| | - Maria Maddalena Sirufo
- Department of Life, Health, & Environmental Sciences, University of L’Aquila, 6700 L’Aquila, Italy; (M.D.M.); (L.G.); (M.M.S.)
| | - Giovanni Pioggia
- National Research Council of Italy (CNR)-Institute for Biomedical Research and Innovation (IRIB), 98164 Messina, Italy;
| | - Gioacchino Calapai
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy;
| | - Sebastiano Gangemi
- School and Division of Allergy and Clinical Immunology, Department of Experimental Medicine, University of Messina, 98125 Messina, Italy;
| | - Carmen Mannucci
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy;
- Correspondence: ; Tel.: +39-090-22-12-697
| |
Collapse
|
8
|
Long-Term Local Injection of RAGE-Aptamer Suppresses the Growth of Malignant Melanoma in Nude Mice. JOURNAL OF ONCOLOGY 2019; 2019:7387601. [PMID: 31565056 PMCID: PMC6746150 DOI: 10.1155/2019/7387601] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 05/12/2019] [Accepted: 08/08/2019] [Indexed: 02/06/2023]
Abstract
Accumulating evidence has suggested the pathological role of advanced glycation end products (AGEs) and their receptor RAGE axis in aging-associated disorders, including cancers. In this study, we examined the effects of local injection of RAGE-aptamer adjacent to the tumor on G361 melanoma growth in nude mice. We further investigated the effects of RAGE-aptamer on oxidative stress generation, RAGE, vascular endothelial growth factor (VEGF), and monocyte chemoattractant protein-1 (MCP-1) gene expression in Nε-(carboxymethyl)lysine (CML)-exposed G361 melanoma cells in vitro. Local injection of RAGE-aptamer adjacent to the tumor dramatically decreased the growth of G361 melanoma in nude mice, which was associated with reduced expression of CML, RAGE, nitrotyrosine, VEGF, CD31, and von Willebrand factor, markers of endothelial cells in G361 tumors. Furthermore, RAGE-aptamer inhibited the binding of CML to V-domain of RAGE and blocked the CML-induced increases in oxidative stress generation, RAGE, VEGF, and MCP-1 mRNA levels in G361 melanoma cells. Our present findings suggest that long-term local injection of RAGE-aptamer adjacent to the tumor could inhibit melanoma growth in nude mice partly by suppressing tumor angiogenesis via blockade of the CML-RAGE interaction. Local injection of RAGE-aptamer may be a feasible therapeutic tool for the treatment of malignant melanoma.
Collapse
|
9
|
Zou Y, Xu L, Lin H. Stress overload‐induced periodontal remodelling coupled with changes in high mobility group protein B1 during tooth movement: an in‐vivo study. Eur J Oral Sci 2019; 127:396-407. [DOI: 10.1111/eos.12644] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Yuchun Zou
- Orthodontics Department School and Hospital of Stomatology Fujian Medical University Fuzhou Fujian ProvinceChina
| | - Linyu Xu
- Orthodontics Department School and Hospital of Stomatology Fujian Medical University Fuzhou Fujian ProvinceChina
| | - Hanyu Lin
- Orthodontics Department School and Hospital of Stomatology Fujian Medical University Fuzhou Fujian ProvinceChina
- Fujian Provincial Engineering Research Center of Oral Biomaterial Fujian Medical University Fuzhou Fujian Province China
| |
Collapse
|
10
|
Asadipooya K, Uy EM. Advanced Glycation End Products (AGEs), Receptor for AGEs, Diabetes, and Bone: Review of the Literature. J Endocr Soc 2019; 3:1799-1818. [PMID: 31528827 PMCID: PMC6734192 DOI: 10.1210/js.2019-00160] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/03/2019] [Indexed: 12/24/2022] Open
Abstract
Diabetes compromises bone cell metabolism and function, resulting in increased risk of fragility fracture. Advanced glycation end products (AGEs) interact with the receptor for AGEs (RAGE) and can make a meaningful contribution to bone cell metabolism and/or alter function. Searches in PubMed using the key words "advanced glycation end-product," "RAGE," "sRAGE," "bone," and "diabetes" were made to explain some of the clinical outcomes of diabetes in bone metabolism through the AGE-RAGE signaling pathway. All published clinical studies were included in tables. The AGE-RAGE signaling pathway participates in diabetic complications, including diabetic osteopathy. Some clinical results in diabetic patients, such as reduced bone density, suppressed bone turnover markers, and bone quality impairment, could be potentially due to AGE-RAGE signaling consequences. However, the AGE-RAGE signaling pathway has some helpful roles in the bone, including an increase in osteogenic function. Soluble RAGE (sRAGE), as a ligand decoy, may increase in either conditions of RAGE production or destruction, and then it cannot always reflect the AGE-RAGE signaling. Recombinant sRAGE can block the AGE-RAGE signaling pathway but is associated with some limitations, such as accessibility to AGEs, an increase in other RAGE ligands, and a long half-life (24 hours), which is associated with losing the beneficial effect of AGE/RAGE. As a result, sRAGE is not a helpful marker to assess activity of the RAGE signaling pathway. The recombinant sRAGE cannot be translated into clinical practice due to its limitations.
Collapse
Affiliation(s)
- Kamyar Asadipooya
- Division of Endocrinology and Molecular Medicine, Department of Medicine, University of Kentucky, Lexington, Kentucky
| | - Edilfavia Mae Uy
- Division of Endocrinology and Molecular Medicine, Department of Medicine, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
11
|
Davis HM, Essex AL, Valdez S, Deosthale PJ, Aref MW, Allen MR, Bonetto A, Plotkin LI. Short-term pharmacologic RAGE inhibition differentially affects bone and skeletal muscle in middle-aged mice. Bone 2019; 124:89-102. [PMID: 31028960 PMCID: PMC6543548 DOI: 10.1016/j.bone.2019.04.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/17/2019] [Accepted: 04/22/2019] [Indexed: 12/27/2022]
Abstract
Loss of bone and muscle mass are two major clinical complications among the growing list of chronic diseases that primarily affect elderly individuals. Persistent low-grade inflammation, one of the major drivers of aging, is also associated with both bone and muscle dysfunction in aging. Particularly, chronic activation of the receptor for advanced glycation end products (RAGE) and elevated levels of its ligands high mobility group box 1 (HMGB1), AGEs, S100 proteins and Aβ fibrils have been linked to bone and muscle loss in various pathologies. Further, genetic or pharmacologic RAGE inhibition has been shown to preserve both bone and muscle mass. However, whether short-term pharmacologic RAGE inhibition can prevent early bone and muscle loss in aging is unknown. To address this question, we treated young (4-mo) and middle-aged (15-mo) C57BL/6 female mice with vehicle or Azeliragon, a small-molecule RAGE inhibitor initially developed to treat Alzheimer's disease. Azeliragon did not prevent the aging-induced alterations in bone geometry or mechanics, likely due to its differential effects [direct vs. indirect] on bone cell viability/function. On the other hand, Azeliragon attenuated the aging-related body composition changes [fat and lean mass] and reversed the skeletal muscle alterations induced with aging. Interestingly, while Azeliragon induced similar metabolic changes in bone and skeletal muscle, aging differentially altered the expression of genes associated with glucose uptake/metabolism in these two tissues, highlighting a potential explanation for the differential effects of Azeliragon on bone and skeletal muscle in middle-aged mice. Overall, our findings suggest that while short-term pharmacologic RAGE inhibition did not protect against early aging-induced bone alterations, it prevented against the early effects of aging in skeletal muscle.
Collapse
Affiliation(s)
- Hannah M Davis
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, United States of America; Indiana Center for Musculoskeletal Health, Indianapolis, IN, United States of America.
| | - Alyson L Essex
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, United States of America; Indiana Center for Musculoskeletal Health, Indianapolis, IN, United States of America.
| | - Sinai Valdez
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, United States of America.
| | - Padmini J Deosthale
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, United States of America; Indiana Center for Musculoskeletal Health, Indianapolis, IN, United States of America.
| | - Mohammad W Aref
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, United States of America; Indiana Center for Musculoskeletal Health, Indianapolis, IN, United States of America.
| | - Matthew R Allen
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, United States of America; Indiana Center for Musculoskeletal Health, Indianapolis, IN, United States of America; Roudebush Veterans Administration Medical Center, Indianapolis, IN, United States of America.
| | - Andrea Bonetto
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, United States of America; Indiana Center for Musculoskeletal Health, Indianapolis, IN, United States of America; Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States of America.
| | - Lilian I Plotkin
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, United States of America; Indiana Center for Musculoskeletal Health, Indianapolis, IN, United States of America; Roudebush Veterans Administration Medical Center, Indianapolis, IN, United States of America.
| |
Collapse
|
12
|
Davis HM, Valdez S, Gomez L, Malicky P, White FA, Subler MA, Windle JJ, Bidwell JP, Bruzzaniti A, Plotkin LI. High mobility group box 1 protein regulates osteoclastogenesis through direct actions on osteocytes and osteoclasts in vitro. J Cell Biochem 2019; 120:16741-16749. [PMID: 31106449 DOI: 10.1002/jcb.28932] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 04/24/2019] [Indexed: 12/30/2022]
Abstract
Old age and Cx43 deletion in osteocytes are associated with increased osteocyte apoptosis and osteoclastogenesis. We previously demonstrated that apoptotic osteocytes release elevated concentrations of the proinflammatory cytokine, high mobility group box 1 protein (HMGB1) and apoptotic osteocyte conditioned media (CM) promotes osteoclast differentiation. Further, prevention of osteocyte apoptosis blocks osteoclast differentiation and attenuates the extracellular release of HMGB1 and RANKL. Moreover, sequestration of HMGB1, in turn, reduces RANKL production/release by MLO-Y4 osteocytic cells silenced for Cx43 (Cx43def ), highlighting the possibility that HMGB1 promotes apoptotic osteocyte-induced osteoclastogenesis. However, the role of HMGB1 signaling in osteocytes has not been well studied. Further, the mechanisms underlying its release and the receptor(s) responsible for its actions is not clear. We now report that a neutralizing HMGB1 antibody reduces osteoclast formation in RANKL/M-CSF treated bone marrow cells. In bone marrow macrophages (BMMs), toll-like receptor 4 (TLR4) inhibition with LPS-RS, but not receptor for advanced glycation end products (RAGE) inhibition with Azeliragon attenuated osteoclast differentiation. Further, inhibition of RAGE but not of TLR4 in osteoclast precursors reduced osteoclast number, suggesting that HGMB1 produced by osteoclasts directly affects differentiation by activating TLR4 in BMMs and RAGE in preosteoclasts. Our findings also suggest that increased osteoclastogenesis induced by apoptotic osteocytes CM is not mediated through HMGB1/RAGE activation and that direct HMGB1 actions in osteocytes stimulate pro-osteoclastogenic signal release from Cx43def osteocytes. Based on these findings, we propose that HMGB1 exerts dual effects on osteoclasts, directly by inducing differentiation through TLR4 and RAGE activation and indirectly by increasing pro-osteoclastogenic cytokine secretion from osteocytes.
Collapse
Affiliation(s)
- Hannah M Davis
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana.,Indiana Center for Musculoskeletal Health, Indianapolis, Indiana
| | - Sinai Valdez
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Leland Gomez
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Peter Malicky
- Department of Anesthesia, Indiana University School of Medicine, Indianapolis, Indiana
| | - Fletcher A White
- Department of Anesthesia, Indiana University School of Medicine, Indianapolis, Indiana.,Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, Indiana.,Roudebush Veterans Administration Medical Center, Indianapolis, Indiana
| | - Mark A Subler
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia
| | - Jolene J Windle
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia
| | - Joseph P Bidwell
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana.,Indiana Center for Musculoskeletal Health, Indianapolis, Indiana
| | - Angela Bruzzaniti
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana.,Indiana Center for Musculoskeletal Health, Indianapolis, Indiana.,Department of Biomedical and Applied Sciences, Indiana University School of Dentistry, Indianapolis, Indiana
| | - Lilian I Plotkin
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana.,Indiana Center for Musculoskeletal Health, Indianapolis, Indiana.,Roudebush Veterans Administration Medical Center, Indianapolis, Indiana
| |
Collapse
|
13
|
Allegra A, Musolino C, Pace E, Innao V, Di Salvo E, Ferraro M, Casciaro M, Spatari G, Tartarisco G, Allegra AG, Gangemi S. Evaluation of the AGE/sRAGE Axis in Patients with Multiple Myeloma. Antioxidants (Basel) 2019; 8:antiox8030055. [PMID: 30836666 PMCID: PMC6466542 DOI: 10.3390/antiox8030055] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/26/2019] [Accepted: 03/03/2019] [Indexed: 02/06/2023] Open
Abstract
Glycative stress influences tumor progression. The aim of the present study was to evaluate the advanced glycation end products/soluble receptor of advanced glycation end products (AGE/sRAGE) axis in patients with multiple myeloma (MM). Blood samples were taken from 19 patients affected by MM and from 16 sex-matched and age-matched healthy subjects. AGE and sRAGE axis were dosed in patients with MM and matched with controls. AGEs were measured by spectrofluorimetric methods. Blood samples for the determination of sRAGE were analyzed by ELISA. AGE levels were significantly reduced in patients with respect to controls. Instead, sRAGE was significantly elevated in patients affected by MM compared to healthy subjects. Moreover, we showed that there was a statistically significant difference in sRAGE according to the heavy and light chain. IgA lambda had significantly higher sRAGE values than IgA kappa, IgG kappa, and IgG Lambda MM patients. From our data emerges the role of the sRAGE/AGE axis in MM. Since AGE is a positive regulator of the activity of RAGE, circulating sRAGE concentrations may reflect RAGE expression and may be raised in parallel with serum AGE concentrations as a counter-system against AGE-caused tissue damage. Serum concentrations of AGE and sRAGE could therefore become potential therapeutic targets.
Collapse
Affiliation(s)
- Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, 98125 Messina, Italy.
| | - Caterina Musolino
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, 98125 Messina, Italy.
| | - Elisabetta Pace
- Institute of Biomedicine and Molecular Immunology "A. Monroy" (IBIM), National Research Council (CNR), 90146 Palermo, Italy.
| | - Vanessa Innao
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, 98125 Messina, Italy.
| | - Eleonora Di Salvo
- National Research Council of Italy (CNR)-Institute of Applied Science and Intelligent System (ISASI), 98164 Messina, Italy.
| | - Maria Ferraro
- Institute of Biomedicine and Molecular Immunology "A. Monroy" (IBIM), National Research Council (CNR), 90146 Palermo, Italy.
| | - Marco Casciaro
- School and Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy.
| | - Giovanna Spatari
- Department of Biomedical Sciences, Dental, Morphological and Functional Investigations, University of Messina, 98125 Messina, Italy.
| | - Gennaro Tartarisco
- National Research Council of Italy (CNR)-Institute of Applied Science and Intelligent System (ISASI), 98164 Messina, Italy.
| | - Andrea Gaetano Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, 98125 Messina, Italy.
| | - Sebastiano Gangemi
- School and Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy.
| |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW The receptor for advanced glycation end products (RAGE) and several of its ligands have been implicated in the onset and progression of pathologies associated with aging, chronic inflammation, and cellular stress. In particular, the role of RAGE and its ligands in bone tissue during both physiological and pathological conditions has been investigated. However, the extent to which RAGE signaling regulates bone homeostasis and disease onset remains unclear. Further, RAGE effects in the different bone cells and whether these effects are cell-type specific is unknown. The objective of the current review is to describe the literature over RAGE signaling in skeletal biology as well as discuss the clinical potential of RAGE as a diagnostic and/or therapeutic target in bone disease. RECENT FINDINGS The role of RAGE and its ligands during skeletal homeostasis, tissue repair, and disease onset/progression is beginning to be uncovered. For example, detrimental effects of the RAGE ligands, advanced glycation end products (AGEs), have been identified for osteoblast viability/activity, while others have observed that low level AGE exposure stimulates osteoblast autophagy, which subsequently promotes viability and function. Similar findings have been reported with HMGB1, another RAGE ligand, in which high levels of the ligand are associated with osteoblast/osteocyte apoptosis, whereas low level/short-term administration stimulates osteoblast differentiation/bone formation and promotes fracture healing. Additionally, elevated levels of several RAGE ligands (AGEs, HMGB1, S100 proteins) induce osteoblast/osteocyte apoptosis and stimulate cytokine production, which is associated with increased osteoclast differentiation/activity. Conversely, direct RAGE-ligand exposure in osteoclasts may have inhibitory effects. These observations support a conclusion that elevated bone resorption observed in conditions of high circulating ligands and RAGE expression are due to actions on osteoblasts/osteocytes rather than direct actions on osteoclasts, although additional work is required to substantiate the observations. Recent studies have demonstrated that RAGE and its ligands play an important physiological role in the regulation of skeletal development, homeostasis, and repair/regeneration. Conversely, elevated levels of RAGE and its ligands are clearly related with various diseases associated with increased bone loss and fragility. However, despite the recent advancements in the field, many questions regarding RAGE and its ligands in skeletal biology remain unanswered.
Collapse
Affiliation(s)
- Lilian I Plotkin
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, 635 Barnhill Dr., MS 5023, Indianapolis, IN, 46202, USA.
- Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA.
- Indiana Center for Musculoskeletal Health, Indianapolis, IN, USA.
| | - Alyson L Essex
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, 635 Barnhill Dr., MS 5023, Indianapolis, IN, 46202, USA
- Indiana Center for Musculoskeletal Health, Indianapolis, IN, USA
| | - Hannah M Davis
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, 635 Barnhill Dr., MS 5023, Indianapolis, IN, 46202, USA
- Indiana Center for Musculoskeletal Health, Indianapolis, IN, USA
| |
Collapse
|
15
|
Aoyagi H, Yamashiro K, Hirata‐Yoshihara C, Ideguchi H, Yamasaki M, Kawamura M, Yamamoto T, Kochi S, Wake H, Nishibori M, Takashiba S. HMGB1‐induced inflammatory response promotes bone healing in murine tooth extraction socket. J Cell Biochem 2018; 119:5481-5490. [DOI: 10.1002/jcb.26710] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 01/23/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Hiroaki Aoyagi
- Department of Pathophysiology—Periodontal ScienceOkayama University Graduate School of MedicineDentistry and Pharmaceutical SciencesOkayamaJapan
| | - Keisuke Yamashiro
- Department of Pathophysiology—Periodontal ScienceOkayama University Graduate School of MedicineDentistry and Pharmaceutical SciencesOkayamaJapan
| | - Chiaki Hirata‐Yoshihara
- Department of Pathophysiology—Periodontal ScienceOkayama University Graduate School of MedicineDentistry and Pharmaceutical SciencesOkayamaJapan
| | - Hidetaka Ideguchi
- Department of Pathophysiology—Periodontal ScienceOkayama University Graduate School of MedicineDentistry and Pharmaceutical SciencesOkayamaJapan
| | - Mutsuyo Yamasaki
- Department of Pathophysiology—Periodontal ScienceOkayama University Graduate School of MedicineDentistry and Pharmaceutical SciencesOkayamaJapan
| | - Mari Kawamura
- Department of Pathophysiology—Periodontal ScienceOkayama University Graduate School of MedicineDentistry and Pharmaceutical SciencesOkayamaJapan
| | - Tadashi Yamamoto
- Department of Pathophysiology—Periodontal ScienceOkayama University Graduate School of MedicineDentistry and Pharmaceutical SciencesOkayamaJapan
| | - Shinsuke Kochi
- Department of Pathophysiology—Periodontal ScienceOkayama University Graduate School of MedicineDentistry and Pharmaceutical SciencesOkayamaJapan
| | - Hidenori Wake
- Department of PharmacologyOkayama University Graduate School of MedicineDentistry and Pharmacological SciencesOkayamaJapan
| | - Masahiro Nishibori
- Department of PharmacologyOkayama University Graduate School of MedicineDentistry and Pharmacological SciencesOkayamaJapan
| | - Shogo Takashiba
- Department of Pathophysiology—Periodontal ScienceOkayama University Graduate School of MedicineDentistry and Pharmaceutical SciencesOkayamaJapan
| |
Collapse
|
16
|
Engblom C, Pfirschke C, Zilionis R, Da Silva Martins J, Bos SA, Courties G, Rickelt S, Severe N, Baryawno N, Faget J, Savova V, Zemmour D, Kline J, Siwicki M, Garris C, Pucci F, Liao HW, Lin YJ, Newton A, Yaghi OK, Iwamoto Y, Tricot B, Wojtkiewicz GR, Nahrendorf M, Cortez-Retamozo V, Meylan E, Hynes RO, Demay M, Klein A, Bredella MA, Scadden DT, Weissleder R, Pittet MJ. Osteoblasts remotely supply lung tumors with cancer-promoting SiglecF high neutrophils. Science 2018; 358:358/6367/eaal5081. [PMID: 29191879 DOI: 10.1126/science.aal5081] [Citation(s) in RCA: 274] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 08/16/2017] [Accepted: 10/17/2017] [Indexed: 12/13/2022]
Abstract
Bone marrow-derived myeloid cells can accumulate within tumors and foster cancer outgrowth. Local immune-neoplastic interactions have been intensively investigated, but the contribution of the systemic host environment to tumor growth remains poorly understood. Here, we show in mice and cancer patients (n = 70) that lung adenocarcinomas increase bone stromal activity in the absence of bone metastasis. Animal studies reveal that the cancer-induced bone phenotype involves bone-resident osteocalcin-expressing (Ocn+) osteoblastic cells. These cells promote cancer by remotely supplying a distinct subset of tumor-infiltrating SiglecFhigh neutrophils, which exhibit cancer-promoting properties. Experimentally reducing Ocn+ cell numbers suppresses the neutrophil response and lung tumor outgrowth. These observations posit osteoblasts as remote regulators of lung cancer and identify SiglecFhigh neutrophils as myeloid cell effectors of the osteoblast-driven protumoral response.
Collapse
Affiliation(s)
- Camilla Engblom
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA 02114, USA.,Graduate Program in Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Christina Pfirschke
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA 02114, USA
| | - Rapolas Zilionis
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.,Institute of Biotechnology, Vilnius University, Vilnius, LT 10257, Lithuania
| | | | - Stijn A Bos
- Department of Radiology, Massachusetts General Hospital, MA 02114, USA
| | - Gabriel Courties
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA 02114, USA
| | - Steffen Rickelt
- Howard Hughes Medical Institute, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Nicolas Severe
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Ninib Baryawno
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Julien Faget
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Virginia Savova
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - David Zemmour
- Graduate Program in Immunology, Harvard Medical School, Boston, MA 02115, USA.,Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Jaclyn Kline
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA 02114, USA
| | - Marie Siwicki
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA 02114, USA.,Graduate Program in Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Christopher Garris
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA 02114, USA.,Graduate Program in Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Ferdinando Pucci
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA 02114, USA
| | - Hsin-Wei Liao
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA 02114, USA
| | - Yi-Jang Lin
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA 02114, USA
| | - Andita Newton
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA 02114, USA
| | - Omar K Yaghi
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA 02114, USA.,Graduate Program in Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Yoshiko Iwamoto
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA 02114, USA
| | - Benoit Tricot
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA 02114, USA
| | - Gregory R Wojtkiewicz
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA 02114, USA
| | - Matthias Nahrendorf
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA 02114, USA
| | - Virna Cortez-Retamozo
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA 02114, USA
| | - Etienne Meylan
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Richard O Hynes
- Howard Hughes Medical Institute, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Marie Demay
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Allon Klein
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Miriam A Bredella
- Department of Radiology, Massachusetts General Hospital, MA 02114, USA
| | - David T Scadden
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA 02114, USA.,Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.,Department of Radiology, Massachusetts General Hospital, MA 02114, USA
| | - Mikael J Pittet
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA 02114, USA. .,Department of Radiology, Massachusetts General Hospital, MA 02114, USA
| |
Collapse
|
17
|
Syed DN, Aljohani A, Waseem D, Mukhtar H. Ousting RAGE in melanoma: A viable therapeutic target? Semin Cancer Biol 2017; 49:20-28. [PMID: 29079306 DOI: 10.1016/j.semcancer.2017.10.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 09/28/2017] [Accepted: 10/23/2017] [Indexed: 01/11/2023]
Abstract
Melanoma remains an important health concern, given the steady increase in incidence and acquisition of resistance to systemic therapies. The receptor for advanced glycation end products (RAGE) initially identified for its binding to advanced glycation end products was subsequently acknowledged as a pattern recognition receptor given its ability to recognize similar structural elements within numerous ligands. Recent studies have elucidated a plausible role of RAGE in melanoma progression through modulation of inflammatory, proliferative and invasive cellular responses. Several of its ligands including the S100 proteins and HMGB1 are being investigated for their involvement in melanoma metastasis and as potential biomarkers of the disease. Targeting RAGE signaling represents a viable therapeutic strategy which remains underexplored in cutaneous malignancies. Here we have summarized current knowledge on the functionality of RAGE with special focus on specific ligands enumerated in various in vitro and in vivo melanoma models.
Collapse
Affiliation(s)
- Deeba N Syed
- Department of Dermatology, University of Wisconsin-Madison, United States.
| | - Ahmed Aljohani
- School of Medicine and Public Health, Endocrinology and Reproductive Physiology Graduate Training Program, University of Wisconsin-Madison, Madison WI 53706, United States; King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia
| | - Durdana Waseem
- Department of Dermatology, University of Wisconsin-Madison, United States
| | - Hasan Mukhtar
- Department of Dermatology, University of Wisconsin-Madison, United States
| |
Collapse
|
18
|
Discovery of circulating proteins associated to knee radiographic osteoarthritis. Sci Rep 2017; 7:137. [PMID: 28273936 PMCID: PMC5427840 DOI: 10.1038/s41598-017-00195-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 02/14/2017] [Indexed: 11/10/2022] Open
Abstract
Currently there are no sufficiently sensitive biomarkers able to reflect changes in joint remodelling during osteoarthritis (OA). In this work, we took an affinity proteomic approach to profile serum samples for proteins that could serve as indicators for the diagnosis of radiographic knee OA. Antibody suspension bead arrays were applied to analyze serum samples from patients with OA (n = 273), control subjects (n = 76) and patients with rheumatoid arthritis (RA, n = 244). For verification, a focused bead array was built and applied to an independent set of serum samples from patients with OA (n = 188), control individuals (n = 83) and RA (n = 168) patients. A linear regression analysis adjusting for sex, age and body mass index (BMI) revealed that three proteins were significantly elevated (P < 0.05) in serum from OA patients compared to controls: C3, ITIH1 and S100A6. A panel consisting of these three proteins had an area under the curve of 0.82 for the classification of OA and control samples. Moreover, C3 and ITIH1 levels were also found to be significantly elevated (P < 0.05) in OA patients compared to RA patients. Upon validation in additional study sets, the alterations of these three candidate serum biomarker proteins could support the diagnosis of radiographic knee OA.
Collapse
|
19
|
Chen Q, Bei JJ, Liu C, Feng SB, Zhao WB, Zhou Z, Yu ZP, Du XJ, Hu HY. HMGB1 Induces Secretion of Matrix Vesicles by Macrophages to Enhance Ectopic Mineralization. PLoS One 2016; 11:e0156686. [PMID: 27243975 PMCID: PMC4887028 DOI: 10.1371/journal.pone.0156686] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 05/18/2016] [Indexed: 12/14/2022] Open
Abstract
Numerous clinical conditions have been linked to ectopic mineralization (EM). This process of pathological biomineralization is complex and not fully elucidated, but thought to be started within matrix vesicles (MVs). We hypothesized that high mobility group box 1 (HMGB1), a cytokine associated with biomineralizing process under physiological and pathological conditions, induces EM via promoting MVs secretion from macrophages. In this study, we found that HMGB1 significantly promoted secretion of MVs from macrophages and subsequently led to mineral deposition in elevated Ca/Pi medium in vitro. Transmission electron microscopy of calcifying MVs showed formation of hydroxyapatite crystals in the vesicle interior. Subcutaneous injection into mice with MVs derived from HMGB1-treated cells showed a greater potential to initiate regional mineralization. Mechanistic experiments revealed that HMGB1 activated neutral sphingomyelinase2 (nSMase2) that involved the receptor for advanced glycation end products (RAGE) and p38 MAPK (upstream of nSMase2). Inhibition of nSMase2 with GW4869 or p38 MAPK with SB-239063 prevented MVs secretion and mineral deposition. Collectively, HMGB1 induces MVs secretion from macrophages at least in part, via the RAGE/p38 MAPK/nSMase2 signaling pathway. Our findings thus reveal a novel mechanism by which HMGB1 induces ectopic mineralization.
Collapse
Affiliation(s)
- Qiang Chen
- Department of Cardiology, Southwest Hospital, Third Military Medical University, Chongqing, China
- Department of Out-patient, Naval University of Engineering, Wuhan, China
| | - Jun-Jie Bei
- Department of Cardiology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Chuan Liu
- Department of Occupational Health, Faculty of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Shi-Bin Feng
- Department of Cardiology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Wei-Bo Zhao
- Department of Cardiology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Zhou Zhou
- Department of Occupational Health, Faculty of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Zheng-Ping Yu
- Department of Occupational Health, Faculty of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Xiao-Jun Du
- Experimental Cardiology, Baker IDI Heart and Diabetes Institute, and Central Clinical School, Monash University, Melbourne, Australia
| | - Hou-Yuan Hu
- Department of Cardiology, Southwest Hospital, Third Military Medical University, Chongqing, China
- * E-mail:
| |
Collapse
|
20
|
Gallo J, Raska M, Konttinen YT, Nich C, Goodman SB. Innate immunity sensors participating in pathophysiology of joint diseases: a brief overview. J Long Term Eff Med Implants 2015; 24:297-317. [PMID: 25747032 DOI: 10.1615/jlongtermeffmedimplants.2014010825] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The innate immune system consists of functionally specialized "modules" that are activated in response to a particular set of stimuli via sensors located on the surface or inside the tissue cells. These cells screen tissues for a wide range of exogenous and endogenous danger/damage-induced signals with the aim to reject or tolerate them and maintain tissue integrity. In this line of thinking, inflammation evolved as an adaptive tool for restoring tissue homeostasis. A number of diseases are mediated by a maladaptation of the innate immune response, perpetuating chronic inflammation and tissue damage. Here, we review recent evidence on the cross talk between innate immune sensors and development of rheumatoid arthritis, osteoarthritis, and aseptic loosening of total joint replacements. In relation to the latter topic, there is a growing body of evidence that aseptic loosening and periprosthetic osteolysis results from long-term maladaptation of periprosthetic tissues to the presence of by-products continuously released from an artificial joint.
Collapse
Affiliation(s)
- Jiri Gallo
- Department of Orthopedics, University Hospital and Faculty of Medicine and Dentistry, Palacky University, Olomouc 775 20, Czech Republic
| | - Milan Raska
- Department of Immunology, Faculty of Medicine & Dentistry, Palacky University, Hnevotinska 3, 775 15 Olomouc, Czech Republic
| | - Yrjo T Konttinen
- Department of Clinical Medicine, University of Helsinki and ORTON Orthopaedic Hospital of the Invalid Foundation, Helsinki, Finland
| | - Christophe Nich
- Laboratoire de Biomecanique et Biomateriaux Osteo-Articulaires - UMR CNRS 7052, Faculte de Medecine - Universite Paris 7, Paris, France; Department of Orthopaedic Surgery, European Teaching Hospital, Assistance Publique - Hopitaux de Paris
| | - Stuart B Goodman
- Department of Orthopaedic Surgery Stanford University Medical Center Redwood City, CA
| |
Collapse
|
21
|
Molecular signaling of the HMGB1/RAGE axis contributes to cholesteatoma pathogenesis. J Mol Med (Berl) 2014; 93:305-14. [PMID: 25385222 PMCID: PMC4333301 DOI: 10.1007/s00109-014-1217-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 09/25/2014] [Accepted: 10/01/2014] [Indexed: 12/19/2022]
Abstract
Abstract Cholesteatoma represents progressive expansion of the keratinizing squamous epithelium in the middle ear with subsequent chronic inflammation in subepithelial connective tissues. The hypothesis was tested that receptor for advanced glycation endproduct (RAGE) and its ligand, high-mobility box 1 (HMGB1), are overexpressed in cholesteatoma, and the RAGE/HMGB1 axis might contribute to its pathogenesis. Cholesteatoma samples (n = 36) and 27 normal skin specimens were studied by immunohistochemistry (IHC) for HMGB1 and RAGE expression. Effects of HMGB1 signaling on proliferation, migration, cytokine production, and apoptosis of human immortalized keratinocytes (HaCaTs) and normal keratinocytes were studied by quantitative reverse transcription (qRT)-PCR, IHC, Western blots, and flow cytometry after cell co-incubation with HMGB1. While all studied tissues expressed HMGB1, its expression was higher in cholesteatoma than in normal skin (p < 0.0001). All cases of cholesteatoma also showed elevated RAGE expression levels, and only 7/27 (26 %) of normal skin specimens were weakly positive for RAGE. Proliferation and migration of HaCaT cells incubated with HMGB1 were up-regulated (p < 0.05). HMGB1 also prevented HaCaT cell apoptosis and induced activation of several molecular signaling pathways in keratinocytes. The data suggest that in cholesteatoma, HMGB1 released from stressed or necrotic epithelial cells and binding to RAGE overexpressed in keratinocytes initiates molecular signaling that culminates in pro-inflammatory cytokine release and chronic inflammation. Key message HMGB1 signaling engages multiple activation pathways in RAGE-positive keratinocytes. HMGB1 protects RAGE-positive keratinocytes from drug-induced apoptosis. Keratinocyte proliferation is controlled via RAGE and HMGB1 molecular signaling. Molecular signaling of the HMGB1/RAGE axis contributes to cholesteatoma pathogenesis.
Electronic supplementary material The online version of this article (doi:10.1007/s00109-014-1217-3) contains supplementary material, which is available to authorized users.
Collapse
|
22
|
Tolosa MJ, Chuguransky SR, Sedlinsky C, Schurman L, McCarthy AD, Molinuevo MS, Cortizo AM. Insulin-deficient diabetes-induced bone microarchitecture alterations are associated with a decrease in the osteogenic potential of bone marrow progenitor cells: preventive effects of metformin. Diabetes Res Clin Pract 2013; 101:177-86. [PMID: 23806481 DOI: 10.1016/j.diabres.2013.05.016] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 05/21/2013] [Accepted: 05/30/2013] [Indexed: 12/15/2022]
Abstract
AIMS Diabetes mellitus is associated with metabolic bone disease and increased low-impact fractures. The insulin-sensitizer metformin possesses in vitro, in vivo and ex vivo osteogenic effects, although this has not been adequately studied in the context of diabetes. We evaluated the effect of insulin-deficient diabetes and/or metformin on bone microarchitecture, on osteogenic potential of bone marrow progenitor cells (BMPC) and possible mechanisms involved. METHODS Partially insulin-deficient diabetes was induced in rats by nicotinamide/streptozotocin-injection, with or without oral metformin treatment. Femoral metaphysis micro-architecture, ex vivo osteogenic potential of BMPC, and BMPC expression of Runx-2, PPARγ and receptor for advanced glycation endproducts (RAGE) were investigated. RESULTS Histomorphometric analysis of diabetic femoral metaphysis demonstrated a slight decrease in trabecular area and a significant reduction in osteocyte density, growth plate height and TRAP (tartrate-resistant acid phosphatase) activity in the primary spongiosa. BMPC obtained from diabetic animals showed a reduction in Runx-2/PPARγ ratio and in their osteogenic potential, and an increase in RAGE expression. Metformin treatment prevented the diabetes-induced alterations in bone micro-architecture and BMPC osteogenic potential. CONCLUSION Partially insulin-deficient diabetes induces deleterious effects on long-bone micro-architecture that are associated with a decrease in BMPC osteogenic potential, which could be mediated by a decrease in their Runx-2/PPARγ ratio and up-regulation of RAGE. These diabetes-induced alterations can be totally or partially prevented by oral administration of metformin.
Collapse
Affiliation(s)
- María José Tolosa
- Laboratorio de Investigación en Osteopatías y Metabolismo Mineral, Department of Biological Sciences, School of Exact Sciences, National University of La Plata, Argentina
| | | | | | | | | | | | | |
Collapse
|
23
|
Qi SC, Cui C, Yan YH, Sun GH, Zhu SR. Effects of high-mobility group box 1 on the proliferation and odontoblastic differentiation of human dental pulp cells. Int Endod J 2013; 46:1153-63. [DOI: 10.1111/iej.12112] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 03/25/2013] [Indexed: 01/09/2023]
Affiliation(s)
- S. C. Qi
- Center of Stomatology; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan Hubei
- Department of Stomatology; The Tenth People's Hospital of Tongji University; Shanghai
| | - C. Cui
- Center of Stomatology; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan Hubei
| | - Y. H. Yan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine of Ministry of Education (KLOBM); School & Hospital of Stomatology; Wuhan University; Wuhan Hubei, China
| | - G. H. Sun
- Center of Stomatology; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan Hubei
| | - S. R. Zhu
- Center of Stomatology; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan Hubei
| |
Collapse
|
24
|
Gangemi S, Allegra A, Alonci A, Cristani M, Russo S, Speciale A, Penna G, Spatari G, Cannavò A, Bellomo G, Musolino C. Increase of novel biomarkers for oxidative stress in patients with plasma cell disorders and in multiple myeloma patients with bone lesions. Inflamm Res 2012; 61:1063-7. [PMID: 22674324 DOI: 10.1007/s00011-012-0498-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Revised: 05/18/2012] [Accepted: 05/22/2012] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVES Protein oxidation plays a key role in the pathogenesis of oncological diseases. In this study, we analyzed the oxidative stress in untreated multiple myeloma (MM) patients and in patients affected by monoclonal gammopathy of uncertain significance (MGUS). METHODS We evaluated serum levels of advanced oxidation protein products (AOPPs), advanced glycation end products (AGEs), and protein nitrosylation in patients with monoclonal gammopathy and in control subjects. RESULTS Serum levels of AOPPs and S-nitrosylated proteins were significantly increased in MM patients in comparison to controls and to MGUS subjects. Moreover, in MM patients the levels of AOPPs, AGEs and S-nitrosylated proteins were significantly higher in patients with bone lesions compared with those without lytic bone lesions. CONCLUSIONS MM is closely associated with oxidative stress and further investigation might provide an insight to understand a putative causal link between oxidative stress and MM disease onset and progression or MM complications.
Collapse
Affiliation(s)
- Sebastiano Gangemi
- Department of Human Pathology, School and Division of Allergy and Clinical Immunology, University of Messina, Messina, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|