1
|
Arendt MD, Schwenter JA, Owens DW. Climate-mediated population dynamics for the world's most endangered sea turtle species. Sci Rep 2023; 13:14444. [PMID: 37660203 PMCID: PMC10475092 DOI: 10.1038/s41598-023-41647-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/29/2023] [Indexed: 09/04/2023] Open
Abstract
Restricted range, and subsequently small population size, render Kemp's ridley sea turtles (Lepidochelys kempii) the most globally endangered sea turtle species. For at least two decades preceding conservation, high egg harvest rates reduced annual cohort recruitment. Despite > 50 years of dedicated conservation, annual nest counts remain well below a landmark 1947 level. Prior studies attribute less robust than anticipated nest count rebound to multiple contemporary concerns; however, analyses herein convey optimistic interpretation. In objective 1, improved analysis of the ratio of hatchlings to nests since 1966 suggested age structure stabilization as a more likely basis for nest count trends after 2005 than density-dependent effects. In objective 2, multiple regression revealed a lagged (≤ 13 years prior) climate influence on nests (adj. r2 = 0.82) and hatchlings per nest (adj. r2 = 0.94) during 2006-2022. In objectives 3 and 4, a simulator modeled population response to changes in a suite of demographic rates including survival. Across 32 models, high survival and dynamic cohort sex ratio, sexual maturity age, and the ratio of clutch frequency to remigration interval best explained nesting trends during 1966-2022. These novel findings provide alternative perspective for evaluating species recovery criteria and in turn refine future nest trend expectations.
Collapse
Affiliation(s)
- Michael D Arendt
- South Carolina Department of Natural Resources, Marine Resources Division, 217 Fort Johnson Road, Charleston, SC, 29412, USA.
| | - Jeffrey A Schwenter
- South Carolina Department of Natural Resources, Marine Resources Division, 217 Fort Johnson Road, Charleston, SC, 29412, USA
| | - David W Owens
- College of Charleston, Grice Marine Biology Laboratory (Retired), 205 Fort Johnson Road, Charleston, SC, 29412, USA
| |
Collapse
|
2
|
Putman NF, Richards PM, Dufault SG, Scott-Dention E, McCarthy K, Beyea RT, Caillouet CW, Heyman WD, Seney EE, Mansfield KL, Gallaway BJ. Modeling juvenile sea turtle bycatch risk in commercial and recreational fisheries. iScience 2023; 26:105977. [PMID: 36756371 PMCID: PMC9900512 DOI: 10.1016/j.isci.2023.105977] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 11/16/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Understanding the drivers of fisheries bycatch is essential for limiting its impacts on vulnerable species. Here we present a model to estimate the relative magnitude of sea turtle bycatch in major coastal fisheries across the southeastern US based on spatiotemporal variation in fishing effort and the simulated distributions of juvenile Kemp's ridley (Lepidochelys kempii) and green (Chelonia mydas) sea turtles recruiting from oceanic to nearshore habitats. Over the period modeled (1996-2017), bycatch in recreational fisheries was estimated to be greater than the sum of bycatch that occurred in commercial fisheries that have historically been considered high risks to turtles (e.g., those using trawls, gillnets, and bottom longlines). Prioritizing engagement with recreational anglers to reduce bycatch could be especially beneficial to sea turtle populations. Applying lessons learned from efforts to protect turtles in commercial fisheries may help meet the challenges that arise from the large, diffuse recreational fishing sector.
Collapse
Affiliation(s)
- Nathan F. Putman
- LGL Ecological Research Associates, Bryan, TX 77802, USA,Corresponding author
| | - Paul M. Richards
- NOAA National Marine Fisheries Service, Southeast Fisheries Science Center, Miami, FL 33149, USA
| | | | - Elizabeth Scott-Dention
- NOAA National Marine Fisheries Service, Southeast Fisheries Science Center, Galveston, TX 77551, USA
| | - Kevin McCarthy
- NOAA National Marine Fisheries Service, Southeast Fisheries Science Center, Miami, FL 33149, USA
| | | | | | | | - Erin E. Seney
- Marine Turtle Research Group, Department of Biology, University of Central Florida, Orlando, FL 32816, USA
| | - Katherine L. Mansfield
- Marine Turtle Research Group, Department of Biology, University of Central Florida, Orlando, FL 32816, USA
| | | |
Collapse
|
3
|
Salvarani PI, Vieira LR, Rendón-von Osten J, Morgado F. Hawksbill Sea Turtle ( Eretmochelys imbricata) Blood and Eggs Organochlorine Pesticides Concentrations and Embryonic Development in a Nesting Area (Yucatan Peninsula, Mexico). TOXICS 2023; 11:50. [PMID: 36668776 PMCID: PMC9865186 DOI: 10.3390/toxics11010050] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/21/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
Environmental contaminants with chemical origins, such as organochlorine pesticides (OCPs) have major impacts on the health of marine animals, including sea turtles, due to the bioaccumulation of those substances by transference throughout the food chain. The effects of environmental pollution on the health of marine turtles are very important for management strategies and conservation. During recent decades, the south Gulf of Mexico and the Yucatan Peninsula have suffered from increasingly frequent disturbances from continental landmasses, river systems, urban wastewater runoff, port areas, tourism, industrial activities, pesticides from agricultural use, and other pollutants, such as metals, persistent organic pollutants (POPs) and hydrocarbons (from the oil industry activities), which contaminate water and sediments and worsen the environmental quality of the marine ecosystem in this region. In this study, we assessed the concentrations of OCPs in the blood and eggs of 60 hawksbill turtles (Eretmochelys imbricata) nesting at the Punta Xen turtle camp, and their effects on the nesting population's reproductive performance: specifically, maternal transfer and embryonic development were analyzed. Hematologic characteristics, including packed cell volume, white blood cell count, red blood cell count, and haemoglobin levels, and plasma chemistry values, including creatinine, blood urea nitrogen, uric acid, triglyceride, total cholesterol and glucose, were also measured. The general health of the turtles in this study, as well as their levels of urea, serum creatinine, glucose, uric, acid, cholesterol, and triglyceride, fell within normal ranges and was similar to other normal values, which could indicate the turtles' good energy levels and body conditions for nest-building activity, with all of the turtles able to successfully come ashore to nest. All the same, the obtained results also indicate that OCPs affect the nesting and reproductive performance of the hawksbill turtles, as well as their fertility and the development of the population of eggs and reproductive performance, specifically in terms of maternal transference and embryonic development. There were significant differences in the concentrations of OCPs (ΣHCHs and ΣDienes) between maternal blood and eggs, indicating that these chemicals are transferred from nesting females to eggs and, ultimately, to hatchlings. OCPs may, therefore, have an effect on the health and reproductive performance of hawksbill turtles, both in terms of their fertility and egg development. Conservation strategies need to be species-specific, due to differences in feeding, and address the reasons for any decline, focusing on regional assessments. Thus, accurate and comparable monitoring data are necessary, which requires the standardization of monitoring protocols.
Collapse
Affiliation(s)
- Patricia I. Salvarani
- Department of Biology and the Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Luis R. Vieira
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 2250-208 Matosinhos, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Jaime Rendón-von Osten
- Instituto Epomex, Universidad Autónoma de Campeche, Av Augustin de Melgar y Juan de la Barrera s/n, Campeche 24039, Mexico
| | - Fernando Morgado
- Department of Biology and the Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
4
|
Arendt MD, Webster RP, Schwenter JA. High annual survival suggested by size structure of Kemp’s ridley sea turtles captured by coastal research trawling in the Northwest Atlantic Ocean since 1990. ENDANGER SPECIES RES 2022. [DOI: 10.3354/esr01190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
5
|
Lamont MM, Mollenhauer R, Foley AM. Capture vulnerability of sea turtles on recreational fishing piers. Ecol Evol 2022; 12:e8473. [PMID: 35127015 PMCID: PMC8796914 DOI: 10.1002/ece3.8473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/27/2021] [Accepted: 11/29/2021] [Indexed: 11/11/2022] Open
Abstract
Capture vulnerability of commercial and recreational fishes has been associated with behavioral, morphological, and life-history traits; however, relationships with non-target species, such as sea turtles, have not been adequately studied. We examined species composition, timing of captures, morphological variables including body size and head width, and body condition of sea turtles captured from a recreational fishing pier in the northern Gulf of Mexico and of sea turtles captured in the waters adjacent to the pier. From 2014 to 2019, 148 net captures and 112 pier captures of three sea turtle species were documented. Green turtles were captured most frequently in the net and on the pier. Turtles captured from the pier were larger than those captured in the net. There was no difference in head width between net-caught and pier-caught turtles; however, small sample sizes limited those comparisons. The body condition index was lower for pier-caught than net-caught Kemp';s ridleys but did not differ with green turtles or loggerheads. Differences were also observed in the timing of capture on the pier as compared to in the net. Finally, the relationship between size, body condition, and pier-capture vulnerability suggests these are complex interactions. Mortality of sea turtles captured from fishing piers could be selecting against bolder individuals, which may result in changes in sea turtle population demographics over a long time period.
Collapse
Affiliation(s)
- Margaret M Lamont
- U.S. Geological Survey Wetland and Aquatic Research Center Gainesville Florida USA
| | - Robert Mollenhauer
- U.S. Geological Survey Wetland and Aquatic Research Center Gainesville Florida USA
| | - Allen M Foley
- Florida Fish and Wildlife Conservation Commission Jacksonville Field Laboratory Fish and Wildlife Research Institute Jacksonville Florida USA
| |
Collapse
|
6
|
Critical In-Water Habitats for Post-Nesting Sea Turtles from the Southern Gulf of Mexico. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2021. [DOI: 10.3390/jmse9080793] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Marine turtles are globally endangered species that spend more than 95% of their life cycle in in-water habitats. Nevertheless, most of the conservation, recovery and research efforts have targeted the on-land habitats, due to their easier access, where adult females lay their eggs. Targeting the large knowledge gaps on the in-water critical habitats of turtles, particularly in the Large Marine Ecosystem Gulf of Mexico, is crucial for their conservation and recovery in the long term. We used satellite telemetry to track 85 nesting females from their beaches after they nested to identify their feeding and residency habitats, their migratory corridors and to describe the context for those areas. We delimited major migratory corridors in the southern Gulf of Mexico and West Caribbean and described physical features of internesting and feeding home ranges located mainly around the Yucatan Peninsula and Veracruz, Mexico. We also contributed by describing general aggregation and movement patterns for the four marine turtle species in the Atlantic, expanding the knowledge of the studied species. Several tracked individuals emigrated from the Gulf of Mexico to as far as Nicaragua, Honduras, and the Bahamas. This information is critical for identifying gaps in marine protection and for deciphering the spatial connectivity in large ocean basins, and it provides an opportunity to assess potential impacts on marine turtle populations and their habitats.
Collapse
|
7
|
Shaver DJ, Gredzens C, Walker JS, Godard-Codding CAJ, Yacabucci JE, Frey A, Dutton PH, Schmitt CJ. Embryo deformities and nesting trends in Kemp’s ridley sea turtles Lepidochelys kempii before and after the Deepwater Horizon oil spill. ENDANGER SPECIES RES 2021. [DOI: 10.3354/esr01107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Kemp’s ridley sea turtles Lepidochelys kempii were disproportionately affected by the Deepwater Horizon (DWH) oil spill, which began on 20 April 2010. Embryo deformities were documented in inviable L. kempii eggs before (2008-2010) and after (2011-2013) the DWH spill in 2 Texas (USA) nesting areas (Upper Texas Coast and Padre Island National Seashore). Additional nesting trends, including clutch size and hatching success, were also investigated. Total and late-stage embryo deformity prevalence were 1.5 times greater after 2010 than before, but low in all nesting seasons (mean ± SD: 0.7 ± 8.5% total; 0.6 ± 8.0% late-stage) and did not differ between locations. Craniofacial and carapace deformities were the most frequently observed deformity types. Documented nests in both areas declined in 2010 relative to previous years, ending an exponential increase observed beginning in 1995. Clutch size remained consistent before and after the spill. Hatching success averaged 87.0 ± 33.3% in all years, but no effects from DWH were determined. Collectively, these data represent useful benchmarks against which to judge impacts of future crude oil spills and other catastrophic events.
Collapse
Affiliation(s)
- DJ Shaver
- National Park Service, Padre Island National Seashore, Corpus Christi, TX 78480, USA
| | - C Gredzens
- National Park Service, Padre Island National Seashore, Corpus Christi, TX 78480, USA
| | - JS Walker
- National Park Service, Padre Island National Seashore, Corpus Christi, TX 78480, USA
| | - CAJ Godard-Codding
- The Institute of Environmental and Human Health, Texas Tech University, Lubbock, TX 79409, USA
| | - JE Yacabucci
- The Institute of Environmental and Human Health, Texas Tech University, Lubbock, TX 79409, USA
| | - A Frey
- NOAA Fisheries, Southwest Fisheries Science Center, La Jolla, CA 92037, USA
| | - PH Dutton
- NOAA Fisheries, Southwest Fisheries Science Center, La Jolla, CA 92037, USA
| | - CJ Schmitt
- US Geological Survey, Columbia Environmental Research Center, Columbia, MO 65201, USA
| |
Collapse
|
8
|
Putman NF, Hawkins J, Gallaway BJ. Managing fisheries in a world with more sea turtles. Proc Biol Sci 2020; 287:20200220. [PMID: 32605516 DOI: 10.1098/rspb.2020.0220] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
For decades, fisheries have been managed to limit the accidental capture of vulnerable species and many of these populations are now rebounding. While encouraging from a conservation perspective, as populations of protected species increase so will bycatch, triggering management actions that limit fishing. Here, we show that despite extensive regulations to limit sea turtle bycatch in a coastal gillnet fishery on the eastern United States, the catch per trip of Kemp's ridley has increased by more than 300% and green turtles by more than 650% (2001-2016). These bycatch rates closely track regional indices of turtle abundance, which are a function of increased reproductive output at distant nesting sites and the oceanic dispersal of juveniles to near shore habitats. The regulations imposed to help protect turtles have decreased fishing effort and harvest by more than 50%. Given uncertainty in the population status of sea turtles, however, simply removing protections is unwarranted. Stock-assessment models for sea turtles must be developed to determine what level of mortality can be sustained while balancing continued turtle population growth and fishing opportunity. Implementation of management targets should involve federal and state managers partnering with specific fisheries to develop bycatch reduction plans that are proportional to their impact on turtles.
Collapse
|
9
|
Frandsen HR, Figueroa DF, George JA. Mitochondrial genomes and genetic structure of the Kemp's ridley sea turtle ( Lepidochelys kempii). Ecol Evol 2020; 10:249-262. [PMID: 31988726 PMCID: PMC6972797 DOI: 10.1002/ece3.5891] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/23/2019] [Accepted: 11/13/2019] [Indexed: 12/03/2022] Open
Abstract
The Kemp's ridley (Lepidochelys kempii) is the world's most endangered sea turtle species and is primarily distributed in the Gulf of Mexico. In the United States, South Padre Island, Texas serves as a key nesting ground for the species. Genetic studies of the Kemp's ridley have been used to aid in conservation and management practices, with the mitochondrial control region as the most commonly used marker due to its perceived hypervariability and ease of sequencing. However, with the advent of next generation sequencing technology, targeting complete mitochondrial genomes is now feasible. Here, we describe a more complete mitochondrial genome for the Kemp's ridley than has been previously published in literature and demonstrate a cost-effective and efficient method for obtaining complete mitochondrial genomes from sea turtles. We compare the genetic diversity and taxonomic resolution obtained from whole mitochondrial genomes to that obtained from the mitochondrial control region alone. We compare current genetic diversity with previous records. Furthermore, we evaluate the genetic structure between the breeding stock in South Padre Island and that of deceased Kemp's ridleys recovered on the Northern coast of the Gulf of Mexico after the 2010 BP Deepwater Horizon oil spill, and of Kemp's ridleys stranded on the East Coast of the United States. Our results show that complete mitochondrial genomes provide greater resolution than the control region alone. They also show that the genetic diversity of the Kemp's ridley has remained stable, despite large population declines, and that the genetic makeup of deceased turtles stranded after the Deepwater Horizon oil spill is indistinguishable from the breeding stock in South Padre Island, Texas. OPEN DATA BADGE This article has earned an Open Data Badge for making publicly available the digitally-shareable data necessary to reproduce the reported results. The data is available at https://www.ncbi.nlm.nih.gov/genbank/.
Collapse
|
10
|
Perrault JR, Arendt MD, Schwenter JA, Byrd JL, Harms CA, Cray C, Tuxbury KA, Wood LD, Stacy NI. Blood analytes of immature Kemp's ridley sea turtles ( Lepidochelys kempii) from Georgia, USA: reference intervals and body size correlations. CONSERVATION PHYSIOLOGY 2020; 8:coaa091. [PMID: 33304585 PMCID: PMC7720087 DOI: 10.1093/conphys/coaa091] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/14/2020] [Accepted: 10/26/2020] [Indexed: 05/04/2023]
Abstract
Health assessments of wildlife species are becoming increasingly important in an ever-changing environment. Kemp's ridley sea turtles (Lepidochelys kempii; hereafter, Kemp's ridleys) are critically endangered and incur several on-going threats to their population recovery; therefore, it is imperative to advance the understanding of baseline blood analyte data as a diagnostic and monitoring tool. For in-water, trawl-captured, immature Kemp's ridleys (minimum N = 31) from Georgia, USA, the objectives of this study were to (1) establish reference intervals (RIs) for packed cell volume (PCV) and 27 plasma biochemistry analytes and (2) determine length-specific relationships in blood analytes. We observed significant positive correlations between minimum straight carapace length and PCV, amylase, calcium:phosphorus ratio, cholesterol, magnesium, triglycerides, total solids, total protein and all protein fractions (e.g. alpha-, beta- and gamma-globulins); aspartate aminotransferase and chloride showed significant negative relationships. These results suggest that certain blood analytes in Kemp's ridleys change as these animals grow, presumptively due to somatic growth and dietary shifts. The information presented herein, in due consideration of capture technique that may have impacted glucose and potassium concentrations, represents the first report of blood analyte RIs for Kemp's ridley sea turtles established by guidelines of the American Society for Veterinary Clinical Pathology and will have direct applications for stranded individuals in rehabilitative care and for future investigations into the health status of wild individuals from this population.
Collapse
Affiliation(s)
- Justin R Perrault
- Loggerhead Marinelife Center, Juno Beach, Florida, 33408, USA
- Corresponding author: Loggerhead Marinelife Center, Juno Beach, Florida, 33408, USA. Tel: 561-627-8280.
| | - Michael D Arendt
- Marine Resources Division, South Carolina Department of Natural Resources, Charleston, South Carolina, 29412, USA
| | - Jeffrey A Schwenter
- Marine Resources Division, South Carolina Department of Natural Resources, Charleston, South Carolina, 29412, USA
| | - Julia L Byrd
- South Atlantic Fish Management Council, North Charleston, South Carolina, 29405, USA
| | - Craig A Harms
- Department of Clinical Sciences and Center for Marine Sciences and Technology, College of Veterinary Medicine, North Carolina State University, Morehead City, North Carolina, 27606, USA
| | - Carolyn Cray
- Division of Comparative Pathology, Department of Pathology and Laboratory Medicine, Miller School of Medicine, University of Miami, Miami, Florida, 33136, USA
| | - Kathryn A Tuxbury
- Animal Health Department, New England Aquarium, Central Wharf, Boston, Massachusetts, 02110, USA
| | - Lawrence D Wood
- Florida Hawksbill Project at the National Save the Sea Turtle Foundation, Fort Lauderdale, Florida, 33308, USA
| | - Nicole I Stacy
- Aquatic, Amphibian, and Reptile Pathology Program, Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, Florida, 32608, USA
| |
Collapse
|
11
|
Evaluation of Gonadal Tissue to Validate Size at Reproductive Maturity in Kemp’s Ridley Sea Turtles Found Stranded in Texas, USA. DIVERSITY 2019. [DOI: 10.3390/d11050076] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Kemp’s ridley, Lepidochelys kempii, is the most endangered sea turtle in the world. Anthropogenic mortality of Kemp’s ridleys has been well documented in the Gulf of Mexico (GOM), USA. We evaluated the reproductive maturity of 75 Kemp’s ridley sea turtles found dead on GOM beaches on Mustang Island and North Padre Island, Texas, USA, 1994–1999. Straight carapace length (SCL) ranged from 40.8 to 68.7 cm. Preserved gonads and associated tissues were examined and measured. Gonadal measurements were then compared with SCL. Adults and juveniles shared a larger range of carapace measurements than expected, supporting the idea that juveniles spend several years in a pubertal state. Our results suggest caution when using SCL, tail length, or curved front claws alone as indicators of sexual maturity. In fact, SCL can be used to discern adults from juveniles with more predictive power when coupled with testis length or oviduct length measurements, thus allowing endangered species managers to more clearly identify demographic shifts in the number of mature animals, which can precede population changes. This study shows that information gained from the examination of stranded sea turtles allows wildlife managers to make more informed decisions regarding conservation priorities.
Collapse
|
12
|
Kocmoud AR, Wang HH, Grant WE, Gallaway BJ. Population dynamics of the endangered Kemp’s ridley sea turtle following the 2010 oil spill in the Gulf of Mexico: Simulation of potential cause-effect relationships. Ecol Modell 2019. [DOI: 10.1016/j.ecolmodel.2018.11.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|