1
|
Watson A, Fuess E, Laxalde J, Mitchell D. Glycyrrhizin intake higher than the current international guidelines has no detectable hypermineralocorticoid-like effect in dogs. J Anim Physiol Anim Nutr (Berl) 2024; 108:1906-1912. [PMID: 39087832 DOI: 10.1111/jpn.14030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/10/2024] [Accepted: 07/20/2024] [Indexed: 08/02/2024]
Abstract
Glycyrrhizin-enriched extracts from licorice root are associated with numerous health benefits and are widely used in phytotherapy. There is evidence that ingesting glycyrrhizin beyond threshold concentrations can impact the metabolism of cortisol, inhibiting its conversion to an inactive form, cortisone, via 11-hydroxysteroid dehydrogenase. A consequence can be a form of hypermineralocorticoidism, with elevated potassium excretion and associated hypertension, as demonstrated in rats and humans. Here, 3 orally dosed concentrations of glycyrrhizin (0.2, 0.4 and 0.6 mg/kg bodyweight/day) were assessed over 28 days in dogs. As the current guidelines reflect a lack of reliable data in this species, our aim was to provide relevant information for doses above the current guidelines. The specific purpose of this study was to demonstrate that an intake of licorice with a known therapeutic benefit to dogs does not cause hypermineralocorticoidism in this species. No changes in blood pressure, nor electrolyte excretion were observed in the dogs given these three glycyrrhizin concentrations.
Collapse
Affiliation(s)
| | - Elizabeth Fuess
- Royal Canin, Pet Health Nutrition Center, Lewisburg, Ohio, USA
| | | | | |
Collapse
|
2
|
Ceccuzzi G, Rapino A, Perna B, Costanzini A, Farinelli A, Fiorica I, Marziani B, Cianci A, Rossin F, Cesaro AE, Spampinato MD, De Giorgio R, Guarino M. Liquorice Toxicity: A Comprehensive Narrative Review. Nutrients 2023; 15:3866. [PMID: 37764649 PMCID: PMC10537237 DOI: 10.3390/nu15183866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/26/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Renowned since ancient times for its medical properties, liquorice is nowadays mainly used for flavoring candies or soft drinks. Continuous intake of large amounts of liquorice is a widely known cause of pseudo-hyperaldosteronism leading to hypertension and hypokalemia. These manifestations are usually mild, although in some cases may generate life-threatening complications, i.e., arrhythmias, muscle paralysis, rhabdomyolysis, and coma. In addition, liquorice has an important estrogenic-like activity. METHODS We summarized the current knowledge about liquorice and reviewed 104 case reports in both the English and Italian languages from inception to June 2023 concerning complications due to an excess of liquorice intake. RESULTS In contrast to most published data, female sex and old age do not appear to be risk factors. However, hypertension and electrolyte imbalance (mainly hypokalemia) are prevalent features. The detection of glycyrrhetinic acid in blood is very uncommon, and the diagnosis is essentially based on an accurate history taking. CONCLUSIONS Although there is not a significant mortality rate, liquorice toxicity often requires hospitalization and therefore represents a significant health concern. Major pharmaceutical drug regulatory authorities should solicit public awareness about the potentially dangerous effects caused by excessive use of liquorice.
Collapse
Affiliation(s)
- Giovanna Ceccuzzi
- Department of Translational Medicine, St. Anna University Hospital of Ferrara, University of Ferrara, 44124 Ferrara, Italy; (G.C.); (A.R.); (B.P.); (A.C.); (A.F.); (I.F.); (B.M.); (A.C.); (F.R.); (A.E.C.); (M.D.S.); (M.G.)
| | - Alessandro Rapino
- Department of Translational Medicine, St. Anna University Hospital of Ferrara, University of Ferrara, 44124 Ferrara, Italy; (G.C.); (A.R.); (B.P.); (A.C.); (A.F.); (I.F.); (B.M.); (A.C.); (F.R.); (A.E.C.); (M.D.S.); (M.G.)
| | - Benedetta Perna
- Department of Translational Medicine, St. Anna University Hospital of Ferrara, University of Ferrara, 44124 Ferrara, Italy; (G.C.); (A.R.); (B.P.); (A.C.); (A.F.); (I.F.); (B.M.); (A.C.); (F.R.); (A.E.C.); (M.D.S.); (M.G.)
| | - Anna Costanzini
- Department of Translational Medicine, St. Anna University Hospital of Ferrara, University of Ferrara, 44124 Ferrara, Italy; (G.C.); (A.R.); (B.P.); (A.C.); (A.F.); (I.F.); (B.M.); (A.C.); (F.R.); (A.E.C.); (M.D.S.); (M.G.)
| | - Andrea Farinelli
- Department of Translational Medicine, St. Anna University Hospital of Ferrara, University of Ferrara, 44124 Ferrara, Italy; (G.C.); (A.R.); (B.P.); (A.C.); (A.F.); (I.F.); (B.M.); (A.C.); (F.R.); (A.E.C.); (M.D.S.); (M.G.)
| | - Ilaria Fiorica
- Department of Translational Medicine, St. Anna University Hospital of Ferrara, University of Ferrara, 44124 Ferrara, Italy; (G.C.); (A.R.); (B.P.); (A.C.); (A.F.); (I.F.); (B.M.); (A.C.); (F.R.); (A.E.C.); (M.D.S.); (M.G.)
| | - Beatrice Marziani
- Department of Translational Medicine, St. Anna University Hospital of Ferrara, University of Ferrara, 44124 Ferrara, Italy; (G.C.); (A.R.); (B.P.); (A.C.); (A.F.); (I.F.); (B.M.); (A.C.); (F.R.); (A.E.C.); (M.D.S.); (M.G.)
| | - Antonella Cianci
- Department of Translational Medicine, St. Anna University Hospital of Ferrara, University of Ferrara, 44124 Ferrara, Italy; (G.C.); (A.R.); (B.P.); (A.C.); (A.F.); (I.F.); (B.M.); (A.C.); (F.R.); (A.E.C.); (M.D.S.); (M.G.)
| | - Federica Rossin
- Department of Translational Medicine, St. Anna University Hospital of Ferrara, University of Ferrara, 44124 Ferrara, Italy; (G.C.); (A.R.); (B.P.); (A.C.); (A.F.); (I.F.); (B.M.); (A.C.); (F.R.); (A.E.C.); (M.D.S.); (M.G.)
| | - Alice Eleonora Cesaro
- Department of Translational Medicine, St. Anna University Hospital of Ferrara, University of Ferrara, 44124 Ferrara, Italy; (G.C.); (A.R.); (B.P.); (A.C.); (A.F.); (I.F.); (B.M.); (A.C.); (F.R.); (A.E.C.); (M.D.S.); (M.G.)
| | - Michele Domenico Spampinato
- Department of Translational Medicine, St. Anna University Hospital of Ferrara, University of Ferrara, 44124 Ferrara, Italy; (G.C.); (A.R.); (B.P.); (A.C.); (A.F.); (I.F.); (B.M.); (A.C.); (F.R.); (A.E.C.); (M.D.S.); (M.G.)
- Department of Emergency, St. Anna University Hospital of Ferrara, University of Ferrara, 44124 Ferrara, Italy
| | - Roberto De Giorgio
- Department of Translational Medicine, St. Anna University Hospital of Ferrara, University of Ferrara, 44124 Ferrara, Italy; (G.C.); (A.R.); (B.P.); (A.C.); (A.F.); (I.F.); (B.M.); (A.C.); (F.R.); (A.E.C.); (M.D.S.); (M.G.)
| | - Matteo Guarino
- Department of Translational Medicine, St. Anna University Hospital of Ferrara, University of Ferrara, 44124 Ferrara, Italy; (G.C.); (A.R.); (B.P.); (A.C.); (A.F.); (I.F.); (B.M.); (A.C.); (F.R.); (A.E.C.); (M.D.S.); (M.G.)
- Department of Emergency, St. Anna University Hospital of Ferrara, University of Ferrara, 44124 Ferrara, Italy
| |
Collapse
|
3
|
Caré W, Grenet G, Schmitt C, Michel S, Langrand J, Le Roux G, Vodovar D. [Adverse effects of licorice consumed as food: An update]. Rev Med Interne 2023; 44:487-494. [PMID: 37005098 DOI: 10.1016/j.revmed.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/07/2023] [Accepted: 03/09/2023] [Indexed: 04/03/2023]
Abstract
The word "licorice" refers to the plant, its root, and its aromatic extract. From a commercial point of view, Glycyrrhiza glabra is the most important species with a wide range of uses (herbal medicine, tobacco industry, cosmetics, food and pharmaceutical). Glycyrrhizin is one of the main constituents of licorice. Glycyrrhizin is hydrolyzed in the intestinal lumen by bacterial β-glucuronidases to 3β-monoglucuronyl-18β-glycyrrhetinic acid (3MGA) and 18β-glycyrrhetinic acid (GA), which are metabolized in the liver. Plasma clearance is slow due to enterohepatic cycling. 3MGA and GA can bind to mineralocorticoid receptors with very low affinity, and 3MGA induces apparent mineralocorticoid excess syndrome through dose-dependent inhibition of 11β-hydroxysteroid dehydrogenase type 2 in renal tissue. The cases of apparent mineralocorticoid excess syndrome reported in the literature are numerous and sometimes severe, even fatal, most often in cases of chronic high dose consumption. Glycyrrhizin poisonings are characterized by hypertension, fluid retention, and hypokalemia with metabolic alkalosis and increased kaliuresis. Toxicity depends on the dose, the type of product consumed, the mode of consumption (acute or chronic) and a very large inter-individual variability. The diagnosis of glycyrrhizin-induced apparent mineralocorticoid excess syndrome is based on the history, clinical examination, and biochemical analysis. Management is primarily based on symptomatic care and stopping licorice consumption.
Collapse
Affiliation(s)
- W Caré
- Centre antipoison de Paris, Fédération de toxicologie (FeTox), hôpital Fernand-Widal (AP-HP), 200, rue du faubourg Saint-Denis, 75010 Paris, France; Service de médecine interne, hôpital d'instruction des armées Bégin, 69, avenue de Paris, 91460 Saint-Mandé, France; Université Paris Cité, Inserm UMR-S 1144, optimisation thérapeutique en neuropsychopharmacologie, 75006 Paris, France.
| | - G Grenet
- Service hospitalo-universitaire de pharmacotoxicologie, Hospices Civils de Lyon, Lyon, France; UMR - CNRS 5558, laboratoire de biométrie et biologie évolutive, université Lyon 1, 69000 Lyon, France; Université de Lyon, Université Lyon 1, 69000 Lyon, France
| | - C Schmitt
- Pharmacologie clinique, centre antipoison et de toxicovigilance de Marseille, APHM, Hôpitaux Sud, Marseille, France
| | - S Michel
- Produit naturel, analyse et synthèse, UMR CNRS 8038, UFR Pharmacie, université Paris Cité, 4, avenue de l'Observatoire, 75006 Paris, France
| | - J Langrand
- Centre antipoison de Paris, Fédération de toxicologie (FeTox), hôpital Fernand-Widal (AP-HP), 200, rue du faubourg Saint-Denis, 75010 Paris, France; Université Paris Cité, Inserm UMR-S 1144, optimisation thérapeutique en neuropsychopharmacologie, 75006 Paris, France
| | - G Le Roux
- Centre antipoison d'Angers, Centre hospitalier universitaire d'Angers, 4, rue Larrey, 49000 Angers, France; Institut de recherche en santé, environnement et travail (IRSET), Inserm UMR 1085, équipe 10 ESTER, université d'Angers, 49000 Angers, France
| | - D Vodovar
- Centre antipoison de Paris, Fédération de toxicologie (FeTox), hôpital Fernand-Widal (AP-HP), 200, rue du faubourg Saint-Denis, 75010 Paris, France; Université Paris Cité, Inserm UMR-S 1144, optimisation thérapeutique en neuropsychopharmacologie, 75006 Paris, France; UFR de médecine, université de Paris, 75006 Paris, France
| |
Collapse
|
4
|
da Silva MCS, da Luz JMR, Veloso TGR, Gomes WDS, Oliveira ECDS, Anastácio LM, Cunha Neto A, Moreli AP, Guarçoni RC, Kasuya MCM, Pereira LL. Processing techniques and microbial fermentation on microbial profile and chemical and sensory quality of the coffee beverage. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-03980-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Glycyrrhizic Acid and Its Hydrolyzed Metabolite 18β-Glycyrrhetinic Acid as Specific Ligands for Targeting Nanosystems in the Treatment of Liver Cancer. Pharmaceutics 2021; 13:pharmaceutics13111792. [PMID: 34834206 PMCID: PMC8621092 DOI: 10.3390/pharmaceutics13111792] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/28/2021] [Accepted: 10/19/2021] [Indexed: 01/10/2023] Open
Abstract
Glycyrrhizic acid and its hydrolyzed metabolite 18β-glycyrrhetinic acid, obtained from the plant Glycyrrhiza glabra, have numerous pharmacological activities, such as anti-inflammatory, anti-ulcerative, antiallergic, immunomodulatory, antiviral, antitumor, hepatoprotective, and antioxidant effects, and others. In addition to the pharmacological activities, in the 1980s, an interaction and uptake of these molecules by the liver was verified, which was later confirmed by other studies through the discovery of specific receptors in the hepatocytes. The presence of these specific receptors in the liver led to vectorization and delivery of drugs, by the introduction of glycyrrhizic acid or glycyrrhetinic acid on the surface of nanosystems, for the treatment of liver diseases. This review describes experimental evidence of vectorization by conjugating glycyrrhizic acid or glycyrrhetinic acid to nanosystems and delivery of antitumor drugs for the treatment of liver cancer and also describes the techniques used to perform this conjugation. We have shown that due to the existence of specific receptors for these molecules, in addition to the targeting of nanosystems to hepatocytes, nanosystems having glycyrrhizic acid or glycyrrhetinic acid on their surface had the same therapeutic effect in a significantly lower dose compared to the free drug and unconjugated nanosystems, with consequent reduction of side effects and toxicity.
Collapse
|
6
|
Singh R, Goel S, Bourgeade P, Aleya L, Tewari D. Ayurveda Rasayana as antivirals and immunomodulators: potential applications in COVID-19. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:55925-55951. [PMID: 34491498 PMCID: PMC8422837 DOI: 10.1007/s11356-021-16280-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 08/27/2021] [Indexed: 05/08/2023]
Abstract
Coronavirus disease (COVID-19) has been declared as a pandemic by the World Health Organization with rapid spread across 216 countries. COVID-19 pandemic has left its imprints on various health systems globally and caused immense social and economic disruptions. The scientific community across the globe is in a quest for digging the effective treatment for COVID-19 and exploring potential leads from traditional systems of healthcare across the world too. Ayurveda (Indian traditional system of medicine) has a comprehensive aspect of immunity through Rasayana which is a rejuvenation therapy. Here we attempt to generate the potential leads based on the classical text from Ayurveda in general and Rasayana in particular to develop effective antiviral and/or immunomodulator for potential or adjunct therapy in SARS-CoV-2. The Rasayana acts not only by resisting body to restrain or withstand the strength, severity or progression of a disease but also by promoting power of the body to prevent the manifestation of a disease. These Rasayana herbs are common in practice as immunomodulator, antiviral and protectives. The studies on Rasayana can provide an insight into the future course of research for the plausible development of effective management of COVID-19 by the utilization and development of various traditional systems of healthcare. Keeping in view the current pandemic situation, there is an urgent need of developing potential medicines. This study proposes certain prominent medicinal plants which may be further studied for drug development process and also in clinical setup under repurposing of these herbs.
Collapse
Affiliation(s)
- Rajeshwari Singh
- Central Council for Research in Ayurvedic Sciences, Ministry of AYUSH, Government of India, Janakpuri, New Delhi, 110058, India
| | - Sumeet Goel
- Central Council for Research in Ayurvedic Sciences, Ministry of AYUSH, Government of India, Janakpuri, New Delhi, 110058, India
| | - Pascale Bourgeade
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, F-25030, Besançon Cedex, France
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, F-25030, Besançon Cedex, France.
| | - Devesh Tewari
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India.
| |
Collapse
|
7
|
Husain I, Bala K, Khan IA, Khan SI. A review on phytochemicals, pharmacological activities, drug interactions, and associated toxicities of licorice (
Glycyrrhiza
sp.). FOOD FRONTIERS 2021. [DOI: 10.1002/fft2.110] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Islam Husain
- National Center for Natural Products Research, School of Pharmacy University of Mississippi, University, MS 38677 USA
| | - Kiran Bala
- Department of P.G. Studies and Research in Biological Science Rani Durgavati University Jabalpur India
| | - Ikhlas A. Khan
- National Center for Natural Products Research, School of Pharmacy University of Mississippi, University, MS 38677 USA
- Department of BioMolecular Sciences, School of Pharmacy University of Mississippi, University, MS 38677 USA
| | - Shabana I. Khan
- National Center for Natural Products Research, School of Pharmacy University of Mississippi, University, MS 38677 USA
- Department of BioMolecular Sciences, School of Pharmacy University of Mississippi, University, MS 38677 USA
| |
Collapse
|
8
|
Glycyrrhiza Genus: Enlightening Phytochemical Components for Pharmacological and Health-Promoting Abilities. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:7571132. [PMID: 34349875 PMCID: PMC8328722 DOI: 10.1155/2021/7571132] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/12/2021] [Accepted: 06/18/2021] [Indexed: 02/06/2023]
Abstract
The Glycyrrhiza genus, generally well-known as licorice, is broadly used for food and medicinal purposes around the globe. The genus encompasses a rich pool of bioactive molecules including triterpene saponins (e.g., glycyrrhizin) and flavonoids (e.g., liquiritigenin, liquiritin). This genus is being increasingly exploited for its biological effects such as antioxidant, antibacterial, antifungal, anti-inflammatory, antiproliferative, and cytotoxic activities. The species Glycyrrhiza glabra L. and the compound glycyrrhizin (glycyrrhizic acid) have been studied immensely for their effect on humans. The efficacy of the compound has been reported to be significantly higher on viral hepatitis and immune deficiency syndrome. This review provides up-to-date data on the most widely investigated Glycyrrhiza species for food and medicinal purposes, with special emphasis on secondary metabolites' composition and bioactive effects.
Collapse
|
9
|
Lin HL, Lin MY, Tsai CH, Wang YH, Chen CJ, Hwang SJ, Yen MH, Chiu YW. Harmonizing Formula Prescription Patterns in Patients With Chronic Kidney Disease: A Population-Based Cross-Sectional Study. Front Pharmacol 2021; 12:573145. [PMID: 33995002 PMCID: PMC8117089 DOI: 10.3389/fphar.2021.573145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 03/22/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: Harmonizing formulas are associated with beneficial renal outcomes in chronic kidney disease (CKD), but the therapeutic mechanisms are unclear. The study aims to explore the associations of intentions and independent factors with harmonizing formulas prescriptions for patients with CKD. Methods: We conducted a population-based cross-sectional study to explore factors associated with harmonizing formulas prescription. Patients who had been prescribed harmonizing formulas after CKD diagnosis was defined as the using harmonizing formulas group. Disease diagnoses when having harmonizing formula prescriptions and patient characteristics related to these prescriptions were collected. Results: In total, 24,971 patients were enrolled in this analysis, and 5,237 (21%) patients were prescribed harmonizing formulas after CKD diagnosis. The three most frequent systematic diseases and related health problems for which harmonizing formula prescriptions were issued in CKD were symptoms, signs, and ill-defined conditions (24.5%), diseases of the digestive system (20.67%), and diseases of the musculoskeletal system (12.9%). Higher likelihoods of harmonizing formula prescriptions were associated with young age (adjusted odds ratio: 0.98, 95% confidence interval: 0.97-0.98), female sex (1.79, 1.68-1.91), no diabetes (1.20, 1.06-1.36), no hypertension (1.38, 1.27-1.50), no cerebrovascular disease (1.34, 1.14-1.56), less disease severity (0.85, 0.83-0.88), using nonsteroidal anti-inflammatory drugs (NSAIDs) (1.65, 1.54-1.78), and using analgesic drugs other than NSAIDs (1.47, 1.35-1.59). Conclusion: Harmonizing formulas are commonly used for treating symptoms of the digestive and musculoskeletal systems in CKD cases. Further research on harmonizing formula effectiveness with regard to particular characteristics of CKD patients is warranted.
Collapse
Affiliation(s)
- Hung-Lung Lin
- Department of Chinese Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Yen Lin
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Master of Public Health Degree Program, College of Public Health, National Taiwan University, Taipei, Taiwan
- Department of Renal Care, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Cheng-Hsun Tsai
- Department of Chinese Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Hsiu Wang
- Department of Chinese Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chung-Jen Chen
- Department of Chinese Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shang-Jyh Hwang
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Renal Care, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Ming-Hong Yen
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Wen Chiu
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Renal Care, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
10
|
Glycyrrhizic acid as a multifunctional drug carrier - From physicochemical properties to biomedical applications: A modern insight on the ancient drug. Int J Pharm 2019; 559:271-279. [PMID: 30690130 PMCID: PMC7126914 DOI: 10.1016/j.ijpharm.2019.01.047] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 12/30/2022]
Abstract
Glycyrrhizic acid (GA), saponin of licorice shows wide range of biological activity. Mechanism of GA activity on the cell and molecular level is rarely discussed. GA activity could be caused by the cell membrane modification.
Glycyrrhizic acid is the main active component of Licorice root which has been known in traditional Chinese and Japanese medicine since ancient times. In these cultures glycyrrhizic acid (GA) is one of the most frequently used drugs. However, only in 21-st century a novel unusual property of the GA to enhance the activity of other drugs has been discovered. The review describes briefly the experimental evidences of wide spectrum of own biological activities of glycyrrhizic acid as well as discusses the possible mechanisms of the ability of GA to enhance the activity of other drugs. We have shown that due to its amphiphilic nature GA is able to form self-associates in aqueous and non-aqueous media, as well as water soluble complexes with a wide range of lipophilic drugs. The main purpose of our review is to focus reader's attention on physicochemical studies of the molecular mechanisms of GA activity as a drug delivery system (DDS). In our opinion, the most intriguing feature of glycyrrhizic acid which might be the key factor in its therapeutic activity is the ability of GA to incorporate into the lipid bilayer and to increase the membrane fluidity and permeability. The ability of biomolecules and their aggregates to change the properties of cell membranes is of great significance, from both fundamental and practical points of view.
Collapse
|