1
|
Kleter GA, van der Voet H, Engel J, van der Berg JP. Comparative safety assessment of genetically modified crops: focus on equivalence with reference varieties could contribute to more efficient and effective field trials. Transgenic Res 2023; 32:235-250. [PMID: 37213044 PMCID: PMC10409827 DOI: 10.1007/s11248-023-00344-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 03/28/2023] [Indexed: 05/23/2023]
Abstract
The initial compositional analysis of plants plays an important role within the internationally harmonized comparative safety assessment approach for genetically modified plants. Current EFSA guidance prescribes two types of comparison, namely difference tests with regard to a conventional comparator or control, and equivalence tests with regard to a collection of commercial reference varieties. The experience gained so far shows that most of the statistically significant differences between the test and control can be discounted based on the fact that they are still within equivalence limits of reference varieties with a presumed history of safe use. Inclusion of a test variety and reference varieties into field trial design, and of the statistical equivalence test would already suffice for the purpose of finding relevant parameters that warrant further assessment, hence both the inclusion of a conventional counterpart and the performance of difference testing can be omitted. This would also allow for the inclusion of safety testing regimes into plant variety testing VCU (value for cultivation and use) or other, independent variety trials.
Collapse
Affiliation(s)
- Gijs A Kleter
- Wageningen Food Safety Research, Part of Wageningen University and Research, P.O. Box 230, 6700 AE, Wageningen, Netherlands.
| | - Hilko van der Voet
- Biometris, Wageningen Plant Research, Part of Wageningen University and Research, Wageningen, Netherlands
| | - Jasper Engel
- Biometris, Wageningen Plant Research, Part of Wageningen University and Research, Wageningen, Netherlands
| | - Jan-Pieter van der Berg
- Wageningen Food Safety Research, Part of Wageningen University and Research, P.O. Box 230, 6700 AE, Wageningen, Netherlands
| |
Collapse
|
2
|
EFSA Panel on Genetically Modified Organisms (GMO), Naegeli H, Bresson J, Dalmay T, Dewhurst IC, Epstein MM, Firbank LG, Guerche P, Hejatko J, Moreno FJ, Mullins E, Nogué F, Rostoks N, Sánchez Serrano JJ, Savoini G, Veromann E, Veronesi F, Álvarez F, Ardizzone M, De Sanctis G, Devos Y, Dumont AF, Federici S, Gennaro A, Gómez Ruiz JÁ, Lanzoni A, Neri FM, Papadopoulou N, Paraskevopoulos K, Raffaello T. Scientific Opinion on application EFSA-GMO-NL-2016-132 for authorisation of genetically modified of insect-resistant and herbicide-tolerant soybean DAS-81419-2 × DAS-44406-6 for food and feed uses, import and processing submitted in accordance with Regulation (EC) No 1829/2003 by Dow Agrosciences LCC. EFSA J 2020; 18:e06302. [PMID: 33250936 PMCID: PMC7677967 DOI: 10.2903/j.efsa.2020.6302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Soybean DAS-8419-2 × DAS-44406-6 was developed to provide protection against certain lepidopteran pests and tolerance to 2,4-dichlorophenoxyacetic acid and other related phenoxy herbicides, and glyphosate- and glufosinate ammonium-containing herbicides. The Genetically Modified Organisms (GMO) Panel previously assessed the two single soybean events and did not identify safety concerns. No new data on the single soybean events, leading to modification of the original conclusions on their safety have been identified. The molecular characterisation, comparative analysis (agronomic, phenotypic and compositional characteristics) and the outcome of the toxicological, allergenicity and nutritional assessment indicate that the combination of the single soybean events and of the newly expressed proteins in the two-event stack soybean does not give rise to food and feed safety and nutritional concerns. In the case of accidental release of viable DAS-8419-2 × DAS-44406-6 seeds into the environment, soybean DAS-8419-2 × DAS-44406-6 would not raise environmental safety concerns. The post-market environmental monitoring plan and reporting intervals are in line with the intended uses of soybean DAS-8419-2 × DAS-44406-6. In conclusion, the GMO Panel considers that soybean DAS-8419-2 × DAS-44406-6, as described in this application, is as safe as its conventional counterpart and the non-genetically modified soybean reference varieties tested with respect to potential effects on human and animal health and the environment.
Collapse
|
3
|
Hill RC, Oman TJ, Wang X, Shan G, Schafer B, Herman RA, Tobias R, Shippar J, Malayappan B, Sheng L, Xu A, Bradshaw J. Development, Validation, and Interlaboratory Evaluation of a Quantitative Multiplexing Method To Assess Levels of Ten Endogenous Allergens in Soybean Seed and Its Application to Field Trials Spanning Three Growing Seasons. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:5531-5544. [PMID: 28635260 DOI: 10.1021/acs.jafc.7b01018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
As part of the regulatory approval process in Europe, comparison of endogenous soybean allergen levels between genetically engineered (GE) and non-GE plants has been requested. A quantitative multiplex analytical method using tandem mass spectrometry was developed and validated to measure 10 potential soybean allergens from soybean seed. The analytical method was implemented at six laboratories to demonstrate the robustness of the method and further applied to three soybean field studies across multiple growing seasons (including 21 non-GE soybean varieties) to assess the natural variation of allergen levels. The results show environmental factors contribute more than genetic factors to the large variation in allergen abundance (2- to 50-fold between environmental replicates) as well as a large contribution of Gly m 5 and Gly m 6 to the total allergen profile, calling into question the scientific rational for measurement of endogenous allergen levels between GE and non-GE varieties in the safety assessment.
Collapse
Affiliation(s)
- Ryan C Hill
- Dow AgroSciences LLC , 9330 Zionsville Road, Indianapolis, Indiana 46268, United States
| | - Trent J Oman
- Dow AgroSciences LLC , 9330 Zionsville Road, Indianapolis, Indiana 46268, United States
| | - Xiujuan Wang
- Dow AgroSciences LLC , 9330 Zionsville Road, Indianapolis, Indiana 46268, United States
| | - Guomin Shan
- Dow AgroSciences LLC , 9330 Zionsville Road, Indianapolis, Indiana 46268, United States
| | - Barry Schafer
- Dow AgroSciences LLC , 9330 Zionsville Road, Indianapolis, Indiana 46268, United States
| | - Rod A Herman
- Dow AgroSciences LLC , 9330 Zionsville Road, Indianapolis, Indiana 46268, United States
| | - Rowel Tobias
- EAG Laboratories , 4780 Discovery Drive, Columbia, Missouri 65201, United States
| | - Jeff Shippar
- Covance Laboratories , 3301 Kinsman Blvd., Madison, Wisconsin 53704, United States
| | - Bhaskar Malayappan
- Critical Path Services LLC , 3070 McCann Farm Drive, Garnet Valley, Pennsylvania 19060, United States
| | - Li Sheng
- EPL Bioanalytical Services , 9095 W. Harristown Blvd, Niantic, Illinois 62551, United States
| | - Austin Xu
- Primera Analytical Solutions , 259 Wall Street, Princeton, New Jersey 08540, United States
| | - Jason Bradshaw
- Pyxant Laboratories , 4720 Forge Road #106, Colorado Springs, Colorado 80907, United States
| |
Collapse
|