1
|
Julianingsih D, Alvarado-Martinez Z, Tabashsum Z, Tung CW, Aditya A, Kapadia S, Maskey S, Mohapatra A, Biswas D. Identification of Salmonella enterica biovars Gallinarum and Pullorum and their antibiotic resistance pattern in integrated crop-livestock farms and poultry meats. Access Microbiol 2024; 6:000775.v6. [PMID: 39697365 PMCID: PMC11652723 DOI: 10.1099/acmi.0.000775.v6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 09/10/2024] [Indexed: 12/20/2024] Open
Abstract
Due to consumer demand, many conventional poultry farms are now growing poultry without antibiotics or synthetic chemicals. In addition to this, pasture/organic poultry farms have increased significantly in the USA, and they are also antibiotic- and chemical-free. According to recent reports, both antibiotic-free conventional and pasture poultry farmers are facing the re-emergence of bacterial diseases. Bacterial diseases cause higher mortality rates in birds and lead to non-profitable poultry farming. This study investigated the prevalence of Salmonella enterica subsp. enterica serovar Gallinarum biovars Gallinarum (S. Gallinarum), the causative agent of fowl typhoid, and Salmonella enterica subsp. enterica serovar Gallinarum biovars Pullorum (S. Pullorum), the causative agent of pullorum disease, within integrated crop-livestock/pasture farm environments and their processed products. Specifically, the study focused on both the pre-harvest period, which includes the conditions and practices on the farm before the crops and livestock are harvested, and the post-harvest period, which encompasses the handling, processing, and storage of the products after harvest. A total of 1286 samples were collected from six farms and adjacent 13 markets to determine the prevalence of S. Gallinarum and S. Pullorum by using both microbiological culture and molecular techniques, specifically PCR. Antimicrobial susceptibility testing was performed using the agar dilution method for the recommended antibiotics as described in the Clinical Laboratory Standards Institute (CLSI). S. Pullorum was detected in 11 samples (2.7%), while S. Gallinarum was found in six samples (1.5%) out of a total of 403 samples at the pre-harvest level. At the post-harvest level, only S. Gallinarum was identified in 14 meat samples out of 883(1.6%) recovered from samples collected from retail markets. Antibiogram showed S. Gallinarum and S. Pullorum to be highly resistant to cephradine, trimethoprim-sulfamethoxazole, amoxicillin, streptomycin, and ampicillin. This data demonstrates that both S. Pullorum and S. Gallinarum are commonly present in farm poultry environments as well as the products sold in the markets, which warrants implementation of regular surveillance and monitoring programmes, as well as potentially requiring future control strategies to reduce S. Pullorum and S. Gallinarum transmission.
Collapse
Affiliation(s)
- Dita Julianingsih
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | | | - Zajeba Tabashsum
- Biological Sciences Program, University of Maryland, College Park, MD 20742, USA
| | - Chuan-Wei Tung
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - Arpita Aditya
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - Sarika Kapadia
- Biological Sciences Program, University of Maryland, College Park, MD 20742, USA
| | - Saloni Maskey
- Biological Sciences Program, University of Maryland, College Park, MD 20742, USA
| | - Aditi Mohapatra
- Biological Sciences Program, University of Maryland, College Park, MD 20742, USA
| | - Debabrata Biswas
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
- Biological Sciences Program, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
2
|
Wales A, Lawes J. JMM Profile: Salmonella enterica serovar Gallinarum, biovars Pullorum and Gallinarum. J Med Microbiol 2023; 72. [PMID: 36753431 DOI: 10.1099/jmm.0.001653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Salmonella
serovar Gallinarum has two distinct biovars, Pullorum and Gallinarum. They are host-adapted avian pathogens that infect a number of wild and domesticated species but they pose a particular threat to farmed and backyard chickens and turkeys. Both biovars cause invasive and septicaemic disease, often resulting in high mortality. Pullorum is transmitted in eggs and typically affects birds soon after hatch. Gallinarum may cause disease in any age of bird, which often progresses through mature flocks. The establishment of clean breeding stock has resulted in freedom from the pathogens in many countries although even in these territories sporadic incursions still occur.
Collapse
Affiliation(s)
- Andrew Wales
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, University of Surrey, Guildford, Surrey, GU2 7AL, UK
| | - Joanna Lawes
- Department of Epidemiological Sciences, Animal and Plant Health Agency, Woodham Lane, Addlestone, Surrey, KT15 3NB, UK
| |
Collapse
|
3
|
Kim K, Yoon S, Kim YB, Lee YJ. Virulence Variation of Salmonella Gallinarum Isolates through SpvB by CRISPR Sequence Subtyping, 2014 to 2018. Animals (Basel) 2020; 10:ani10122346. [PMID: 33317043 PMCID: PMC7763567 DOI: 10.3390/ani10122346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/07/2020] [Accepted: 12/07/2020] [Indexed: 11/25/2022] Open
Abstract
Simple Summary Salmonella Gallinarum causes fowl typhoid in all ages of chickens, which results in economic loss of commercial chicken farms. The disease has been eradicated in many developed countries, but is still prevalent in Korea. In this study, we investigated virulence and genetic variation of S. Gallinarum from Korea, between 2014 and 2018. The results indicated that virulence was increased, which was associated with genetic change over time. Therefore, surveillance of genetic change associated with virulence increase is necessary for monitoring of S. Gallinarum isolates for dissemination. Abstract Salmonella Gallinarum is a Gram-negative bacteria that causes fowl typhoid, a septicemic disease with high morbidity and mortality that affects all ages of chickens. Although vaccines and antimicrobials have been used nationwide to eradicate the disease, the malady is still prevalent in Korea. In this study, we investigated the virulence and genetic variation of 116 S. Gallinarum isolates from laying hens between 2014 and 2018. A total of 116 isolates were divided into five Gallinarum Sequence Types (GST) through clustered regularly interspaced short palindromic repeats (CRISPR) subtyping method. The GSTs displayed changes over time. The 116 isolates showed no difference in virulence gene distribution, but the polyproline linker (PPL) length of the SpvB, one of the virulence factors of Salmonella spp., served as an indicator of S. Gallinarum pathogenicity. The most prevalent PPL length was 22 prolines (37.9%). The shortest PPL length (19 prolines) was found only in isolates from 2014 and 2015. However, the longest PPL length of 24 prolines appeared in 2018. This study indicates that PPLs of S. Gallinarum in Korea tend to lengthen over time, so the pathogenic potency of the bacteria is increasing. Moreover, the transition of GST was associated with PPL length extension over time. These results indicate that surveillance of changing GST and PPL length are necessary in the monitoring of S. Gallinarum isolates.
Collapse
|
4
|
El Baaboua A, El Maadoudi M, Bouyahya A, Belmehdi O, Kounnoun A, Zahli R, Abrini J. Evaluation of Antimicrobial Activity of Four Organic Acids Used in Chicks Feed to Control Salmonella typhimurium: Suggestion of Amendment in the Search Standard. Int J Microbiol 2018; 2018:7352593. [PMID: 30364137 PMCID: PMC6188770 DOI: 10.1155/2018/7352593] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 08/29/2018] [Indexed: 12/12/2022] Open
Abstract
Today, the general public has become increasingly aware of salmonellosis problems. Organic acids are known by their antimicrobial potential and commonly used for improving the quality of poultry feed. In this context, the present work evaluated the inhibitory effect of four organic acids, namely, acetic acid, citric acid, lactic acid, and tartaric acid, at different levels of contamination by Salmonella typhimurium. The neutralization of these organic acids in vitro and in the presence of one-day-old chick's organs was also investigated during the search for Salmonella serovars in birds as described in the Moroccan standard "NM 08.0.550." The effect of four organic acids on Salmonella typhimurium was tested in vitro and in the presence of chick's organs at different concentrations set of strain and organic acids tested. The MIC results demonstrated that tartaric acid, citric acid, and acetic acid inhibited Salmonella typhimurium at concentrations of 0.312%, 0.625%, and 0.512% for the three levels of strain: 10, 100, and 103 CFU/ml, respectively, while lactic acid and depending on the amount of the strain introduced acts differently: 0.078% for 10 CFU/ml and 0.156% for 100 and 103 CFU/ml. The concentration of 0.04M of Na2HPO4 solution has proved, in vitro, in caecums and organs of chicks (in presence of organic acids) that strain introduced, even at low concentrations, can be recovered. The use of additives has beneficial effects in Salmonella control program. However, the present results recommend the amendment of Salmonella research standard, taking into account the probable presence of organic acids in digestive content of one-day-old chicks.
Collapse
Affiliation(s)
- Aicha El Baaboua
- Biology and Health Laboratory, Biotechnology and Applied Microbiology Team, Department of Biology, Faculty of Science, Abdelmalek Essaadi University, Tetouan, Morocco
- Regional Laboratory for Analysis and Research, National Office for Food Safety, Tangier, Morocco
| | - Mohamed El Maadoudi
- Regional Laboratory for Analysis and Research, National Office for Food Safety, Tangier, Morocco
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathology Biology, Faculty of Sciences, and Genomic Center of Human Pathology, Mohammed V University, Rabat, Morocco
| | - Omar Belmehdi
- Biology and Health Laboratory, Biotechnology and Applied Microbiology Team, Department of Biology, Faculty of Science, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Ayoub Kounnoun
- Regional Laboratory for Analysis and Research, National Office for Food Safety, Tangier, Morocco
- Laboratory of Applied Biology and Pathology, Department of Biology, Faculty of Science, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Rajae Zahli
- Biology and Health Laboratory, Biotechnology and Applied Microbiology Team, Department of Biology, Faculty of Science, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Jamal Abrini
- Biology and Health Laboratory, Biotechnology and Applied Microbiology Team, Department of Biology, Faculty of Science, Abdelmalek Essaadi University, Tetouan, Morocco
| |
Collapse
|