1
|
Haider A, Abbas Z, Taqveem A, Ali A, Khurshid M, Naggar RFE, Rohaim MA, Munir M. Lumpy Skin Disease: Insights into Molecular Pathogenesis and Control Strategies. Vet Sci 2024; 11:561. [PMID: 39591335 PMCID: PMC11598853 DOI: 10.3390/vetsci11110561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Lumpy skin disease (LSD) is a viral infection that affects buffaloes and cattle across various regions, including both tropical and temperate climates. Intriguingly, the virus-carrying skin sores remain the primary source of infection for extended periods, exacerbated by the abundance of vectors in disease-endemic countries. Recent scientific advances have revealed the molecular aspects of LSD and offered improved vaccines and valuable antiviral targets. This review summarizes the molecular features of LSD and its effect on various livestock species. We then provide an extensive discussion on the transmission dynamics of LSD and the roles of vectors in its continued spread among livestock populations. Additionally, this review critically analyses the rationales behind, as well as the affordability and effectiveness, of current control strategies worldwide.
Collapse
Affiliation(s)
- Ali Haider
- Department of Allied Health Sciences, The University of Lahore, Gujrat Campus, Gujrat 50700, Pakistan; (A.H.); (Z.A.)
| | - Zaheer Abbas
- Department of Allied Health Sciences, The University of Lahore, Gujrat Campus, Gujrat 50700, Pakistan; (A.H.); (Z.A.)
| | - Ahsen Taqveem
- Institute of Microbiology, Government College University Faisalabad, Faisalabad 38000, Pakistan; (A.T.); (M.K.)
| | - Abid Ali
- Department of Allied Health Sciences, The University of Chenab, Gujrat 50700, Pakistan;
| | - Mohsin Khurshid
- Institute of Microbiology, Government College University Faisalabad, Faisalabad 38000, Pakistan; (A.T.); (M.K.)
| | - Rania F. El Naggar
- Department of Virology, Faculty of Veterinary Medicine, University of Sadat City, Sadat 32897, Egypt;
| | - Mohammed A. Rohaim
- Department of Virology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt;
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YG, UK
| | - Muhammad Munir
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YG, UK
| |
Collapse
|
2
|
Smaraki N, Jogi HR, Kamothi DJ, Savsani HH. An insight into emergence of lumpy skin disease virus: a threat to Indian cattle. Arch Microbiol 2024; 206:210. [PMID: 38592503 DOI: 10.1007/s00203-024-03932-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 04/10/2024]
Abstract
Lumpy skin disease (LSD) is a highly infectious and economically devastating viral disease of cattle. It is caused by Lumpy Skin Disease Virus (LSDV) belonging to the genus Capripoxvirus and family Poxviridae. The origin of lumpy skin disease has been traced to Zambia, (an African nation) in Southern part during the year 1929. The first reported case of LSD besides Africa was from Israel, a Middle Eastern nation, thus proving inter-continental spread. Subsequently, the disease entered Middle East, Eastern Europe and Asia with numerous outbreaks in the recent years. LSD has emerged as a significant concern in the Indian sub-continent, due to outbreaks reported in countries such as Bangladesh, India, China in 2019. In the following years, other South and East Asian countries like Taipei, Nepal, Sri Lanka, Myanmar, Bhutan, Vietnam, Hong Kong, Thailand, Malaysia, Laos, Cambodia, Pakistan, Indonesia and Singapore also faced severe outbreaks. At present, LSD is considered to be an emerging disease in the Indian sub-continent due to the recent status of disease. Considering the global scenario, LSDV is changing its transmission dynamics as evidenced by a shift in its epidemiology. As a result of high morbidity and mortality rate among cattle, the current outbreaks have been a major cause of socio-economic catastrophe. This contagious viral disease has eminent repercussions as the estimated monetary damage incurred is quite high. Despite having networked surveillance and comprehensive databases, the recurring outbreaks have raised major concern among researchers. Therefore, this review offers brief insights into the emergence of LSDV by amalgamating the newest literature related to its biology, transmission, clinico-pathology, epidemiology, prevention strategies, and economic consequences. Additionally, we have also provided the epidemiological insights of the recent outbreaks with detailed state wise studies.
Collapse
Affiliation(s)
- Nabaneeta Smaraki
- CADRAD, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India.
| | - Harsh Rajeshbhai Jogi
- Division of Biological Products, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Dhaval J Kamothi
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - H H Savsani
- Veterinary College, Kamdhenu University, Junagadh, Gujarat, 362001, India
| |
Collapse
|
3
|
Di Felice E, Pinoni C, Rossi E, Amatori G, Mancuso E, Iapaolo F, Taraschi A, Di Teodoro G, Di Donato G, Ronchi GF, Mercante MT, Di Ventura M, Morelli D, Monaco F. Susceptibility of Mediterranean Buffalo ( Bubalus bubalis) following Experimental Infection with Lumpy Skin Disease Virus. Viruses 2024; 16:466. [PMID: 38543831 PMCID: PMC10974937 DOI: 10.3390/v16030466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/09/2024] [Accepted: 03/14/2024] [Indexed: 05/23/2024] Open
Abstract
Lumpy skin disease (LSD) is a viral disease of cattle and water buffalo characterized by cutaneous nodules, biphasic fever, and lymphadenitis. LSD is endemic in Africa and the Middle East but has spread to different Asian countries in recent years. The disease is well characterized in cattle while little is known about the disease in buffaloes in which no experimental studies have been conducted. Six buffaloes and two cattle were inoculated with an Albanian LSD virus (LSDV) field strain and clinically monitored for 42 days. Only two buffaloes showed fever, skin nodules, and lymphadenitis. All samples collected (blood, swabs, biopsies, and organs) were tested in real-time PCR and were negative. Between day 39 and day 42 after inoculation, anti-LSDV antibodies were detected in three buffaloes by ELISA, but all sera were negative by virus neutralization test (VNT). Cattle showed severe clinical signs, viremia, virus shedding proven by positive real-time PCR results, and seroconversion confirmed by both ELISA and VNT. Clinical findings suggest that susceptibility in buffaloes is limited compared to in cattle once experimentally infected with LSDV. Virological results support the hypothesis of buffalo resistance to LSD and its role as an accidental non-adapted host. This study highlights that the sensitivity of ELISA and VNT may differ between animal species and further studies are needed to investigate the epidemiological role of water buffalo.
Collapse
Affiliation(s)
- Elisabetta Di Felice
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise G. Caporale, 64100 Teramo, Italy; (C.P.); (E.R.); (G.A.); (E.M.); (F.I.); (A.T.); (G.D.T.); (G.F.R.); (M.T.M.); (M.D.V.); (D.M.); (F.M.)
- Servizio Veterinario Igiene degli Allevamenti e Produzioni Zootecniche, ASL2 Lanciano Vasto Chieti, 66054 Vasto, Italy
| | - Chiara Pinoni
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise G. Caporale, 64100 Teramo, Italy; (C.P.); (E.R.); (G.A.); (E.M.); (F.I.); (A.T.); (G.D.T.); (G.F.R.); (M.T.M.); (M.D.V.); (D.M.); (F.M.)
| | - Emanuela Rossi
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise G. Caporale, 64100 Teramo, Italy; (C.P.); (E.R.); (G.A.); (E.M.); (F.I.); (A.T.); (G.D.T.); (G.F.R.); (M.T.M.); (M.D.V.); (D.M.); (F.M.)
| | - Giorgia Amatori
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise G. Caporale, 64100 Teramo, Italy; (C.P.); (E.R.); (G.A.); (E.M.); (F.I.); (A.T.); (G.D.T.); (G.F.R.); (M.T.M.); (M.D.V.); (D.M.); (F.M.)
| | - Elisa Mancuso
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise G. Caporale, 64100 Teramo, Italy; (C.P.); (E.R.); (G.A.); (E.M.); (F.I.); (A.T.); (G.D.T.); (G.F.R.); (M.T.M.); (M.D.V.); (D.M.); (F.M.)
- Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Federica Iapaolo
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise G. Caporale, 64100 Teramo, Italy; (C.P.); (E.R.); (G.A.); (E.M.); (F.I.); (A.T.); (G.D.T.); (G.F.R.); (M.T.M.); (M.D.V.); (D.M.); (F.M.)
| | - Angela Taraschi
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise G. Caporale, 64100 Teramo, Italy; (C.P.); (E.R.); (G.A.); (E.M.); (F.I.); (A.T.); (G.D.T.); (G.F.R.); (M.T.M.); (M.D.V.); (D.M.); (F.M.)
| | - Giovanni Di Teodoro
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise G. Caporale, 64100 Teramo, Italy; (C.P.); (E.R.); (G.A.); (E.M.); (F.I.); (A.T.); (G.D.T.); (G.F.R.); (M.T.M.); (M.D.V.); (D.M.); (F.M.)
| | - Guido Di Donato
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise G. Caporale, 64100 Teramo, Italy; (C.P.); (E.R.); (G.A.); (E.M.); (F.I.); (A.T.); (G.D.T.); (G.F.R.); (M.T.M.); (M.D.V.); (D.M.); (F.M.)
| | - Gaetano Federico Ronchi
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise G. Caporale, 64100 Teramo, Italy; (C.P.); (E.R.); (G.A.); (E.M.); (F.I.); (A.T.); (G.D.T.); (G.F.R.); (M.T.M.); (M.D.V.); (D.M.); (F.M.)
| | - Maria Teresa Mercante
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise G. Caporale, 64100 Teramo, Italy; (C.P.); (E.R.); (G.A.); (E.M.); (F.I.); (A.T.); (G.D.T.); (G.F.R.); (M.T.M.); (M.D.V.); (D.M.); (F.M.)
| | - Mauro Di Ventura
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise G. Caporale, 64100 Teramo, Italy; (C.P.); (E.R.); (G.A.); (E.M.); (F.I.); (A.T.); (G.D.T.); (G.F.R.); (M.T.M.); (M.D.V.); (D.M.); (F.M.)
| | - Daniela Morelli
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise G. Caporale, 64100 Teramo, Italy; (C.P.); (E.R.); (G.A.); (E.M.); (F.I.); (A.T.); (G.D.T.); (G.F.R.); (M.T.M.); (M.D.V.); (D.M.); (F.M.)
| | - Federica Monaco
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise G. Caporale, 64100 Teramo, Italy; (C.P.); (E.R.); (G.A.); (E.M.); (F.I.); (A.T.); (G.D.T.); (G.F.R.); (M.T.M.); (M.D.V.); (D.M.); (F.M.)
| |
Collapse
|
4
|
Haegeman A, Sohier C, Mostin L, De Leeuw I, Van Campe W, Philips W, De Regge N, De Clercq K. Evidence of Lumpy Skin Disease Virus Transmission from Subclinically Infected Cattle by Stomoxys calcitrans. Viruses 2023; 15:1285. [PMID: 37376585 DOI: 10.3390/v15061285] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 06/29/2023] Open
Abstract
Lumpy skin disease virus (LSDV) is a vector-transmitted capripox virus that causes disease in cattle. Stomoxys calcitrans flies are considered to be important vectors as they are able to transmit viruses from cattle with the typical LSDV skin nodules to naive cattle. No conclusive data are, however, available concerning the role of subclinically or preclinically infected cattle in virus transmission. Therefore, an in vivo transmission study with 13 donors, experimentally inoculated with LSDV, and 13 naïve acceptor bulls was performed whereby S. calcitrans flies were fed on either subclinical- or preclinical-infected donor animals. Transmission of LSDV from subclinical donors showing proof of productive virus replication but without formation of skin nodules was demonstrated in two out of five acceptor animals, while no transmission was seen from preclinical donors that developed nodules after Stomoxys calcitrans flies had fed. Interestingly, one of the acceptor animals which became infected developed a subclinical form of the disease. Our results show that subclinical animals can contribute to virus transmission. Therefore, stamping out only clinically diseased LSDV-infected cattle could be insufficient to completely halt the spread and control of the disease.
Collapse
Affiliation(s)
- Andy Haegeman
- Sciensano, Infectious Diseases in Animals, Exotic and Vector-Borne Diseases, Groeselenberg 99, B-1180 Brussels, Belgium
| | - Charlotte Sohier
- Sciensano, Infectious Diseases in Animals, Exotic and Vector-Borne Diseases, Groeselenberg 99, B-1180 Brussels, Belgium
| | - Laurent Mostin
- Sciensano, Experimental Center Machelen, Kerklaan 68, B-1830 Machelen, Belgium
| | - Ilse De Leeuw
- Sciensano, Infectious Diseases in Animals, Exotic and Vector-Borne Diseases, Groeselenberg 99, B-1180 Brussels, Belgium
| | - Willem Van Campe
- Sciensano, Experimental Center Machelen, Kerklaan 68, B-1830 Machelen, Belgium
| | - Wannes Philips
- EURL for Diseases Caused by Capripox Viruses, Sciensano, Groeselenberg 99, B-1180 Brussels, Belgium
| | - Nick De Regge
- Sciensano, Infectious Diseases in Animals, Exotic and Vector-Borne Diseases, Groeselenberg 99, B-1180 Brussels, Belgium
| | - Kris De Clercq
- Sciensano, Infectious Diseases in Animals, Exotic and Vector-Borne Diseases, Groeselenberg 99, B-1180 Brussels, Belgium
| |
Collapse
|
5
|
Khalafalla A. Lumpy Skin Disease: An Economically Significant Emerging Disease. Vet Med Sci 2022. [DOI: 10.5772/intechopen.108845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Lumpy skin disease (LSD) is a severe viral disease of cattle caused by the lumpy skin disease virus (LSDV), a member of the Capripoxvirus genus of the poxviridae family. Fever and flat disk-like skin nodules on the skin characterize the disease. It can also lead to death and significant economic losses, especially in herds, that have never been exposed to the virus. Blood-feeding insects, such as specific types of flies, mosquitoes, and ticks, are thought to be the primary vectors of LSDV transmission. Most African and middle eastern countries have a high prevalence of lumpy skin disease. The disease extended to southeast Europe, the Balkans, and the Caucasus in 2015 and 2016 and is still spreading throughout Asia. The World Organization for Animal Health [WOAH] has designated LSD as a notifiable illness due to the likelihood of fast transmission. The rapid spread of disease in formerly disease-free areas emphasizes the need to know the disease epidemiology and the virus’s interaction with its host. This chapter aims to provide the latest developments in the etiology, epidemiology, diagnosis, and control of LSD.
Collapse
|
6
|
Nielsen SS, Alvarez J, Bicout DJ, Calistri P, Canali E, Drewe JA, Garin‐Bastuji B, Gonzales Rojas JL, Gortázar Schmidt C, Herskin M, Michel V, Miranda Chueca MÁ, Padalino B, Pasquali P, Stahl K, Calvo AV, Viltrop A, Winckler C, De Clercq K, Sjunnesson Y, Gervelmeyer A, Roberts HC. Assessment of the control measures of the Category A diseases of the Animal Health Law: prohibitions in restricted zones and risk-mitigating treatments for products of animal origin and other materials. EFSA J 2022; 20:e07443. [PMID: 35958104 PMCID: PMC9361132 DOI: 10.2903/j.efsa.2022.7443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
EFSA received a mandate from the European Commission to assess the effectiveness of prohibitions of certain activities in restricted zones, and of certain risk mitigation treatments for products of animal origin and other materials with respect to diseases included in the Category A list in the Animal Health Law (Regulation (EU) 2016/429). This opinion belongs to a series of opinions where other disease-specific control measures have been assessed. In this opinion, EFSA and the AHAW Panel of experts review the effectiveness of (i) prohibiting the movements of certain products, notably germinal products (semen, oocytes, embryos and hatching eggs), products of animal origin and animal by-products and feed of plant origin, hay and straw, and (ii) risk mitigation treatments for products of animal origin. In terms of semen, oocytes, embryos and hatching eggs, it was agreed that there was a lack of evidence particularly for embryos and oocytes reflected in a varying degree of uncertainty, whether these commodities could potentially contain the pathogen under consideration. The scenario assessed did not consider whether the presence of pathogen would lead to infection in the recipient animal. In terms of animal products, certain animal by-products and movement of feed of plant origin and straw, the assessment considered the ability of the commodity to transmit disease to another animal if exposed. For most pathogens, products were to some degree considered a risk, but lack of field evidence contributed to the uncertainty, particularly as potential exposure of ruminants to meat products is concerned. In terms of the risk mitigating treatments, recommendations have been made for several of these treatments, because the treatment description is not complete, the evidence is poor or inconclusive, or the evidence points to the treatment being ineffective.
Collapse
|
7
|
Abdalhamed AM, Naser SM, Mohamed AH, Zeedan GSG. Development of gold nanoparticles-lateral flow test as a novel field diagnostic assay for detecting foot-and-mouth disease and lumpy skin disease viruses. IRANIAN JOURNAL OF MICROBIOLOGY 2022; 14:574-586. [PMID: 36721504 PMCID: PMC9867639 DOI: 10.18502/ijm.v14i4.10245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Background and Objectives Rapid diagnosis is a cornerstone for controlling and preventing viral disease outbreaks. The present study is aimed to develop a rapid field diagnostic test based on gold nanoparticles for the detection of lumpy skin diseases (LSD), and foot and mouth diseases (FMD) in animals with high sensitivity and specificity. Materials and Methods FMD and LSD vaccines were used as a source of viruses' antigens for preparing monoclonal antibodies and conjugated with gold nanoparticles that characterized using various techniques such as UV-visible spectrometry, and transmission electron microscopy (TEM). Monoclonal antibodies (mAbs) for each serotype produced in experimental rats and used to capture antibodies for FMDV and/or LSDV. ELISA was used to screen 469 milk samples and 1165 serum samples from naturally infected cattle, buffaloes, sheep, and goats for validation of the lateral flow test (LFT). LSDV DNA was extracted from 117 blood and skin biopsy samples collected from naturally infected cattle during the 2019 outbreak. Results The specificity and sensitivity of GNP-LFT were evaluated and compared to Ag-ELISA, Western blot tests (WB), and PCR. A total of 95 FMDV positives out of 469 (20.25%) milk samples and 268 FMDV positives out of 1165 (23.3%) serum samples from natural infected cattle, buffaloes, sheep, and goats examined by ELISA to valid GNPS-LFT Viral LSDV DNA was detected in 60/117 (51.5%) and 31/60 (52.9%). While the GNPS-LFT assay results were 49/117 (41.9%) and 29/60 (48.3%) blood and skin biopsy samples, respectively. The diagnostic sensitivity and specificity of the GNP-LFT test were 72% and 82%, respectively. All vesicular fluid and epithelium samples collected from infected animals were identified as positive by the GNP-LFT and Ag-ELISA. Ag-ELISA, on the other hand, was 90% and 100%. While the developed GNP-LFT used LSDV polyclonal antibodies were similar to ELISA and IgG-WB with a sensitivity of 72.8% and a specificity of 88.8%, respectively. Conclusion The GNPS-LFT is a novel immunoassay based on mono or polyclonal antibodies conjugated with gold nanoparticles that provides an accurate, rapid, specific, and sensitive tool for field rapid diagnosis of FMDV and LSDV.
Collapse
Affiliation(s)
- Abeer Mostafa Abdalhamed
- Department of Parasitology and Animals Diseases (Infectious Diseases), National Research Centre, Dokki, Giza, Egypt
| | - Soad Mohammed Naser
- Clinical Pathology Research Unit, Department of Parasitology and Animals Diseases, National Research Centre, Dokki, Giza, Egypt
| | - Ayman Hamady Mohamed
- Biotechnology Unit, Department of Biotechnology, Cell Biology Research and Food Hygiene, Animal Health Institute, Dokki, Giza, Egypt
| | - Gamil Sayed Gamil Zeedan
- Department of Parasitology and Animals Diseases (Infectious Diseases), National Research Centre, Dokki, Giza, Egypt,Corresponding author: Gamil Sayed Gamil Zeedan, Ph.D, Department of Parasitology and Animals Diseases, (Infectious Diseases), National Research Centre, Dokki, Giza, Egypt. Tel: +201145535240 Fax: +20233370931
| |
Collapse
|