1
|
Alotaibi BS, Wu CH, Khan M, Nawaz M, Chen CC, Ali A. African swine fever; insights into genomic aspects, reservoirs and transmission patterns of virus. Front Vet Sci 2024; 11:1413237. [PMID: 39193370 PMCID: PMC11347335 DOI: 10.3389/fvets.2024.1413237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 06/19/2024] [Indexed: 08/29/2024] Open
Abstract
African swine fever is a hemorrhagic disease of pigs with high mortality rates. Since its first characterization in 1921, there has been sufficient information about African swine fever virus (ASFV) and related diseases. The virus has been found and maintained in the sylvatic cycle involving ticks and domestic and wild boars in affected regions. The ASFV is spread through direct and indirect contact with infected pigs, their products and carrier vectors especially Ornithodoros ticks. Severe economic losses and a decline in pig production have been observed in ASFV affected countries, particularly in sub-Saharan Africa and Europe. At the end of 2018, the ASFV adversely affected China, the world's leading pork-producer. Control strategies for the disease remained challenging due to the unavailability of effective vaccines and the lack of successful therapeutic measures. However, considerable efforts have been made in recent years to understand the biology of the virus, surveillance and effective control measures. This review emphasizes and summarizes the current state of information regarding the knowledge of etiology, epidemiology, transmission, and vaccine-based control measures against ASFV.
Collapse
Affiliation(s)
- Bader S. Alotaibi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Riyadh, Saudi Arabia
| | - Chia-Hung Wu
- Division of General Surgery, Department of Surgery, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Majid Khan
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Mohsin Nawaz
- Faculty of Veterinary and Animal Sciences, University of Poonch Rawalakot Azad Kashmir, Rawalakot, Pakistan
| | - Chien-Chin Chen
- Department of Pathology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
- Department of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
- Ph.D. Program in Translational Medicine and Rong Hsing Translational Medicine Research Center, National Chung Hsing University, Taichung, Taiwan
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Abid Ali
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| |
Collapse
|
2
|
Kameyama KI, Kitamura T, Okadera K, Ikezawa M, Masujin K, Kokuho T. Usability of Immortalized Porcine Kidney Macrophage Cultures for the Isolation of ASFV without Affecting Virulence. Viruses 2022; 14:v14081794. [PMID: 36016416 PMCID: PMC9414656 DOI: 10.3390/v14081794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/12/2022] [Accepted: 08/14/2022] [Indexed: 11/16/2022] Open
Abstract
Immortalized porcine kidney macrophage (IPKM) cells are highly susceptible to major African swine fever virus (ASFV) isolates. To clarify the compatibility of this cell line for ASFV isolation from biomaterials, animal experiments and in vitro isolation were performed. Pork products seized at international airports were subjected to virus inoculation in pigs (in vivo) and IPKM cell cultures (in vitro) to examine the viability and virulence of the contaminating viruses. Moreover, the viruses isolated using IPKM cells were inoculated into pigs to assess the virulence shift from the original materials. All pigs that were inoculated with either homogenate samples of seized pork product or IPKM-isolated ASFVs developed typical symptoms of ASF and died (or were euthanized) within the term of the animal experiments. The success rate of virus isolation in IPKM cells was comparable to that observed in porcine primary alveolar macrophage (PAM) cells. The IPKM cell line would be an ideal tool for the isolation and propagation of live ASFVs with high efficiency and enhanced usability, such as immortal, proliferative, and adhesive properties. The isolated viruses retained biologically similar characteristics to those of the original ones during isolation in vitro.
Collapse
|
3
|
Vlasova NN, Verkhovsky OA, Aliper TI, Kapustina OV, Alekseev KP, Yuzhakov AG, Gulukin MI, Gulukin AM. [Problems of specific prevention of African swine fever]. Vopr Virusol 2022; 67:206-216. [PMID: 35831963 DOI: 10.36233/0507-4088-117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
This review presents the current state of the problem of development and application of the specific prevention of African swine fever (ASF) with a brief description of its etiology and pathogenesis. The unique nature of the ASF virus (ASFV) determines some limitations and the complexity of solving the problem of vaccine development. Such situation stimulated the development of highly specific diagnostic methods for rapid and accurate detection of the ASFV. In this regard, results of studies, including our own, concerning the comparative analysis of the genome of vaccine and virulent strains of the ASFV, as well as immunodiagnostic approaches to determine causes of high virulence and low protective activity of the ASFV, are briefly presented. Special attention is given to the issue related to the development of safe and effective vaccines against ASF. In this context disadvantages and possible advantages of live attenuated (LAV) and recombinant (RV) vaccines are considered in details. Results of recent studies on the assessment of the immunogenicity of genetically modified vaccines (GMV) which developed in various laboratories around the world are presented. The obtained data indicate that ASF vaccination is currently the most promising measure to stop the spread of this disease in our country and in the world, however, previous experience with ASF vaccination has revealed some problems in its development and application. The significant contribution of foreign researchers to the study of the basics of virulence of this pathogen and the study of its genes functions are noted. The possible further expansion of ASF in Europe and Asia in bordering Russia territories, as well as the established fact of the persistence of ASFV in wild boar population indicate a constant threat of its re-introduction into our country. In conclusion, the importance of developing a safe effective vaccine against ASF and the assessing of the possible risks of creating the artificial sources of the infection in nature as a result of its use is emphasized.
Collapse
Affiliation(s)
- N N Vlasova
- Federal Scientific Center All-Russian Research Institute of Experimental Veterinary named after the honorary K.I. Scriabin and Ya.R. Kovalenko of the Russian Academy of Sciences
| | - O A Verkhovsky
- Diagnostic and Prevention Research Institute for Human and Animal Diseases
| | - T I Aliper
- Federal Scientific Center All-Russian Research Institute of Experimental Veterinary named after the honorary K.I. Scriabin and Ya.R. Kovalenko of the Russian Academy of Sciences
| | - O V Kapustina
- Federal Scientific Center All-Russian Research Institute of Experimental Veterinary named after the honorary K.I. Scriabin and Ya.R. Kovalenko of the Russian Academy of Sciences
| | - K P Alekseev
- Federal Scientific Center All-Russian Research Institute of Experimental Veterinary named after the honorary K.I. Scriabin and Ya.R. Kovalenko of the Russian Academy of Sciences
| | - A G Yuzhakov
- Federal Scientific Center All-Russian Research Institute of Experimental Veterinary named after the honorary K.I. Scriabin and Ya.R. Kovalenko of the Russian Academy of Sciences
| | - M I Gulukin
- Federal Scientific Center All-Russian Research Institute of Experimental Veterinary named after the honorary K.I. Scriabin and Ya.R. Kovalenko of the Russian Academy of Sciences
| | - A M Gulukin
- Federal Scientific Center All-Russian Research Institute of Experimental Veterinary named after the honorary K.I. Scriabin and Ya.R. Kovalenko of the Russian Academy of Sciences
| |
Collapse
|
4
|
Clemmons EA, Alfson KJ, Dutton JW. Transboundary Animal Diseases, an Overview of 17 Diseases with Potential for Global Spread and Serious Consequences. Animals (Basel) 2021; 11:2039. [PMID: 34359167 PMCID: PMC8300273 DOI: 10.3390/ani11072039] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/21/2022] Open
Abstract
Animals provide food and other critical resources to most of the global population. As such, diseases of animals can cause dire consequences, especially disease with high rates of morbidity or mortality. Transboundary animal diseases (TADs) are highly contagious or transmissible, epidemic diseases, with the potential to spread rapidly across the globe and the potential to cause substantial socioeconomic and public health consequences. Transboundary animal diseases can threaten the global food supply, reduce the availability of non-food animal products, or cause the loss of human productivity or life. Further, TADs result in socioeconomic consequences from costs of control or preventative measures, and from trade restrictions. A greater understanding of the transmission, spread, and pathogenesis of these diseases is required. Further work is also needed to improve the efficacy and cost of both diagnostics and vaccines. This review aims to give a broad overview of 17 TADs, providing researchers and veterinarians with a current, succinct resource of salient details regarding these significant diseases. For each disease, we provide a synopsis of the disease and its status, species and geographic areas affected, a summary of in vitro or in vivo research models, and when available, information regarding prevention or treatment.
Collapse
Affiliation(s)
- Elizabeth A. Clemmons
- Southwest National Primate Research Center, Texas Biomedical Research Institute, 8715 W. Military Drive, San Antonio, TX 78227, USA;
| | - Kendra J. Alfson
- Texas Biomedical Research Institute, 8715 W. Military Drive, San Antonio, TX 78227, USA
| | - John W. Dutton
- Southwest National Primate Research Center, Texas Biomedical Research Institute, 8715 W. Military Drive, San Antonio, TX 78227, USA;
| |
Collapse
|
5
|
Carlson J, Fischer M, Zani L, Eschbaumer M, Fuchs W, Mettenleiter T, Beer M, Blome S. Stability of African Swine Fever Virus in Soil and Options to Mitigate the Potential Transmission Risk. Pathogens 2020; 9:pathogens9110977. [PMID: 33238521 PMCID: PMC7700497 DOI: 10.3390/pathogens9110977] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 11/25/2022] Open
Abstract
Understanding African swine fever virus (ASFV) transmission is essential for strategies to minimize virus spread during an outbreak. ASFV can survive for extended time periods in animal products, carcasses, and the environment. While the ASFV genome was found in environments around infected farms, data on the virus survival in soil are scarce. We investigated different soil matrices spiked with ASFV-positive blood from infected wild boar to see if ASFV can remain infectious in the soil beneath infected carcasses. As expected, ASFV genome detection was possible over the entire sampling period. Soil pH, structure, and ambient temperature played a role in the stability of infectious ASFV. Infectious ASFV was demonstrated in specimens originating from sterile sand for at least three weeks, from beach sand for up to two weeks, from yard soil for one week, and from swamp soil for three days. The virus was not recovered from two acidic forest soils. All risk mitigation experiments with citric acid or calcium hydroxide resulted in complete inactivation. In conclusion, the stability of infectious ASFV is very low in acidic forest soils but rather high in sandy soils. However, given the high variability, treatment of carcass collection points with disinfectants should be considered.
Collapse
Affiliation(s)
- Jolene Carlson
- Institute for Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany; (J.C.); (W.F.); (T.M.)
| | - Melina Fischer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany; (M.F.); (M.E.); (M.B.)
| | - Laura Zani
- Institute for International Animal Health/One Health, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany;
| | - Michael Eschbaumer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany; (M.F.); (M.E.); (M.B.)
| | - Walter Fuchs
- Institute for Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany; (J.C.); (W.F.); (T.M.)
| | - Thomas Mettenleiter
- Institute for Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany; (J.C.); (W.F.); (T.M.)
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany; (M.F.); (M.E.); (M.B.)
| | - Sandra Blome
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany; (M.F.); (M.E.); (M.B.)
- Correspondence:
| |
Collapse
|
6
|
Patil SS, Suresh KP, Vashist V, Prajapati A, Pattnaik B, Roy P. African swine fever: A permanent threat to Indian pigs. Vet World 2020; 13:2275-2285. [PMID: 33281367 PMCID: PMC7704300 DOI: 10.14202/vetworld.2020.2275-2285] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/28/2020] [Indexed: 11/16/2022] Open
Abstract
India has 9 million pigs, of which 45% are in the North eastern (NE) states of India. Viral diseases affecting pigs are a major concern of mortality causing huge loss to the pig farmers. One such disease is African swine fever (ASF) that has already knocked the porous borders of NE states of India. ASF is a highly contagious devastating disease of pigs and wild boars causing 100% mortality. The causative agent African swine fever virus (ASFV) belongs to the genus Asfivirus, family Asfarviridae. Pig is the only species affected by this virus. Soft ticks (Ornithodoros genus) are shown to be reservoir and transmission vectors of ASFV. Transmission is very rapid and quickly engulfs the entire pig population. It is very difficult to differentiate classical swine fever from ASF since clinical symptoms overlap. Infected and in contact pigs should be culled immediately and buried deep, and sheds and premises be disinfected to control the disease. There is no vaccine available commercially. Since its first report in Kenya in 1921, the disease has been reported from the countries in Europe, Russian federation, China, and Myanmar. The disease is a threat to Indian pigs. OIE published the first report of ASF in India on May 21, 2020, wherein, a total of 3701 pigs died from 11 outbreaks (Morbidity - 38.45% and mortality - 33.89%) in Assam and Arunachal Pradesh states of India. ASF is non-zoonotic.
Collapse
Affiliation(s)
- Sharanagouda S. Patil
- Indian Council of Agricultural Research-National Institute of Veterinary Epidemiology and Disease Informatics, Bengaluru, Karnataka, India
| | | | - Vikram Vashist
- Department of Animal Husbandry and Veterinary Services, Shimla, Himachal Pradesh, India
| | - Awadhesh Prajapati
- Indian Council of Agricultural Research-National Institute of Veterinary Epidemiology and Disease Informatics, Bengaluru, Karnataka, India
| | - Bramhadev Pattnaik
- One Health Center for Surveillance and Disease Dynamics, AIPH University, Bhubaneswar, Odisha, India
| | - Parimal Roy
- Indian Council of Agricultural Research-National Institute of Veterinary Epidemiology and Disease Informatics, Bengaluru, Karnataka, India
| |
Collapse
|
7
|
Molecular Characterization of African Swine Fever Virus Isolates in Estonia in 2014-2019. Pathogens 2020; 9:pathogens9070582. [PMID: 32709020 PMCID: PMC7400522 DOI: 10.3390/pathogens9070582] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/28/2022] Open
Abstract
After the extensive spread of the African swine fever virus (ASFV) genotype II in Eastern Europe, the first case of African swine fever (ASF) in Estonia was diagnosed in September 2014. By the end of 2019, 3971 ASFV-positive wild boars were found, and 27 domestic pig outbreaks were reported. A selection of ASFV isolates from wild boar and domestic pigs (during the period of September 2014–2019) was molecularly characterized using standardized genotyping procedures. One of the proven markers to characterize this virus is the central variable region (CVR) within the B602L gene. In summer 2015, a new ASFV genotype II CVR variant 2 (GII-CVR2) was confirmed in Estonia. The results suggest that the GII-CVR2 variant was only confirmed in wild boar from a limited area in southern Estonia in 2015 and 2016. In addition to GII-CVR2, a single nucleotide polymorphism (SNP) that resulted in amino acid change was identified within the genotype II CVR variant 1 (GII-CVR1). The GII-CVR1/SNP1 strain was isolated in Estonia in November 2016. Additional GII-CVR1/SNP1 cases were confirmed in two neighbouring counties, as well as in one outbreak farm in June 2017. Based on the available data, no GII-CVR2 and GII-CVR1/SNP1 have been reported by other affected European countries. The spread of variant strains in Estonia has been limited over time, and restricted to a relatively small area.
Collapse
|
8
|
Abstract
Abstract
Until July 30th, 2019 when the first case of African swine fever (ASF) was confirmed, Serbia was a country free from ASF. After the owner reported atypical illness and death of a sow, the local veterinarian submitted the organ samples to the National Reference Laboratory for Classical Swine Fever (CSF) and African Swine Fever within the Institute of Veterinary Medicine of Serbia in Belgrade. Observed gross lesions included splenomegaly, serous edema of the wall of the gallbladder and hemorrhages in the enlarged portal lymph nodes, petechial hemorrhages on the kidney and epicardium, and petechial and echymotic hemorrhages on the mucosa of the urinary bladder. Results of real-time PCR confirmed that the cause of illness and death of the swine was African swine fever virus. The samples were sent for confirmation to the EU Reference Laboratory where it was confirmed that Serbian domestic pig virus isolates based on p72 belong to genotype II. In total, 270 pigs from 18 affected holdings were killed in the infected zones. According to the on-record data, mortality was 6.89%, whereas lethality reached 64.5%. Currently, an extensive surveillance program is being conducted, aiming to force passive surveillance. ASF in wild boar has not been confirmed so far.
Collapse
|
9
|
Aira C, Ruiz T, Dixon L, Blome S, Rueda P, Sastre P. Bead-Based Multiplex Assay for the Simultaneous Detection of Antibodies to African Swine Fever Virus and Classical Swine Fever Virus. Front Vet Sci 2019; 6:306. [PMID: 31572739 PMCID: PMC6753221 DOI: 10.3389/fvets.2019.00306] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 08/28/2019] [Indexed: 11/13/2022] Open
Abstract
African swine fever (ASF) and Classical swine fever (CSF) are both highly contagious diseases of domestic pigs and wild boar. In the last years, several cases of both diseases have been reported in the Caucasus, Russian Federation and Eastern Europe. Thus, the probability of encountering these two viruses in the same area is increasing. Since differentiation by clinical or post-mortem examination is not possible, laboratory tools for differential diagnosis are required. In the present work, we have developed a triplex bead-based assay using some of the most immunogenic antigens of each virus, for the simultaneous detection of antibodies; i.e. the VP72 and VP30 of ASF virus (ASFV) and the E2 protein of CSF virus (CSFV). The assay was firstly set up and optimized using well characterized reference serum samples specific for each pathogen. Then, a panel of 352 sera from experimentally infected animals with either ASFV or CSFV were analyzed in the multiplex assay. A collection of 253 field negative sera was also included in the study. The results of the multiplex analysis were compared to those obtained by two commercially available ELISAs for detection of antibodies against ASFV or CSFV, and considered in this study as the reference techniques. The data obtained showed values of 97.3% sensitivity and 98.3% specificity for detection of antibodies to ASFV and 95.7% of sensitivity and 99.8% specificity for detection of antibodies to CSFV. This multiplex assay allows the simultaneous and differential detection of antibodies against ASFV and CSFV, providing a valuable tool for surveillance studies. Moreover, this method is rather versatile, offering the possibility of increasing the panel of antigens from other swine diseases that could be of interest for a differential diagnosis along with ASF and CSF.
Collapse
Affiliation(s)
- Cristina Aira
- INGENASA, Inmunología y Genética Aplicada, Madrid, Spain
| | - Tamara Ruiz
- INGENASA, Inmunología y Genética Aplicada, Madrid, Spain
| | - Linda Dixon
- Virology Department, The Pirbright Institute, Pirbright, United Kingdom
| | - Sandra Blome
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Greifswald, Germany
| | - Paloma Rueda
- INGENASA, Inmunología y Genética Aplicada, Madrid, Spain
| | | |
Collapse
|
10
|
Prevalence of African swine fever virus and classical swine fever virus antibodies in pigs in Benue State, Nigeria. Trop Anim Health Prod 2017; 50:689-692. [PMID: 29110237 DOI: 10.1007/s11250-017-1461-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 10/26/2017] [Indexed: 10/18/2022]
Abstract
This study investigated the prevalence of African swine fever virus (ASFV) and classical swine fever virus (CSFV) antibodies in pigs in Benue State, Nigeria. Serum samples were collected from a total of 460 pigs, including 416 from 74 piggeries and 44 from Makurdi slaughter slab. The samples were analysed using indirect enzyme-linked immunosorbent assay (ELISA) test kit to detect the presence of ASFV antibodies, while competitive ELISA test kit was used to detect antibodies to CSFV. Our findings showed a total ASF prevalence of 13 (2.8%), while prevalences of 7 (1.7%) and 6 (13.6%) were observed in piggeries and in Makurdi slaughter slab, respectively. However, no CSFV antibody sera were detected in this study. Relatively higher ASFV antibody-positive pigs were detected in the slaughter slab than in piggeries. The difference in prevalence of ASF between the two locations was significantly associated (p = 0.017). These findings suggest the presence of ASFV antibody-positive pig in Benue State, Nigeria. Continuous surveillance and monitoring of these diseases among pigs in Nigeria to prevent any fulminating outbreak are recommended.
Collapse
|
11
|
Nurmoja I, Petrov A, Breidenstein C, Zani L, Forth JH, Beer M, Kristian M, Viltrop A, Blome S. Biological characterization of African swine fever virus genotype II strains from north-eastern Estonia in European wild boar. Transbound Emerg Dis 2017; 64:2034-2041. [PMID: 28116841 DOI: 10.1111/tbed.12614] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Indexed: 11/29/2022]
Abstract
Due to its impact on animal health and pig industry, African swine fever (ASF) is regarded as one of the most important viral diseases of pigs. Following the ongoing epidemic in the Transcaucasian countries and the Russian Federation, African swine fever virus was introduced into the Estonian wild boar population in 2014. Epidemiological investigations suggested two different introductions into the southern and the north-eastern part of Estonia. Interestingly, outbreak characteristics varied considerably between the affected regions. While high mortality and mainly virus-positive animals were observed in the southern region, mortality was low in the north-eastern area. In the latter, clinically healthy, antibody-positive animals were found in the hunting bag and detection of virus was rare. Two hypotheses could explain the different behaviour in the north-east: (i) the frequency of antibody detections combined with the low mortality is the tail of an older, so far undetected epidemic wave coming from the east, or (ii) the virus in this region is attenuated and leads to a less severe clinical outcome. To explore the possibility of virus attenuation, a re-isolated ASFV strain from the north-eastern Ida-Viru region was biologically characterized in European wild boar. Oronasal inoculation led to an acute and severe disease course in all animals with typical pathomorphological lesions. However, one animal recovered completely and was subsequently commingled with three sentinels of the same age class to assess disease transmission. By the end of the trial at 96 days post-initial inoculation, all animals were completely healthy and neither virus nor viral genomes were detected in the sentinels or the survivor. The survivor, however, showed high antibody levels. In conclusion, the ASFV strain from north-eastern Estonia was still highly virulent but nevertheless, one animal recovered completely. Under the experimental conditions, no transmission occurred from the survivor to susceptible sentinel pigs.
Collapse
Affiliation(s)
- I Nurmoja
- Estonian Veterinary and Food Laboratory, Tartu, Estonia.,Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - A Petrov
- Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany.,Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - C Breidenstein
- Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | - L Zani
- Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | - J H Forth
- Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | - M Beer
- Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | - M Kristian
- Estonian Veterinary and Food Board, Tallinn, Estonia
| | - A Viltrop
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - S Blome
- Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| |
Collapse
|
12
|
Roelandt S, Van der Stede Y, D'hondt B, Koenen F. The Assessment of African Swine Fever Virus Risk to Belgium Early 2014, using the Quick and Semiquantitative Pandora Screening Protocol. Transbound Emerg Dis 2015; 64:237-249. [PMID: 25939453 DOI: 10.1111/tbed.12365] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Indexed: 11/26/2022]
Abstract
A risk assessment was organized during the early EU ASF outbreaks of early 2014 (February-April) and performed in cooperation with 15 Belgian and European experts on ASFV and its epidemiology in pigs/wild boar. African swine fever (ASF) is considered as one of the most dangerous infectious pig diseases, causing many outbreaks. Since the end of 2013 - early 2014, several outbreaks within the European Union (Lithuania, Poland, Estonia and Latvia) were reported to OIE, which prompted several risk assessments by (inter)national bodies and scientists. In this study, the open source, semiquantitative Pandora risk assessment tool was used for a quick overall screening of the risk posed by ASF to Belgium early 2014. A set of integrated risk scores was calculated within the Pandora framework. Experts scored the questions and uncertainty levels in the Pandora modules individually, after which the calculations were performed and averaged scores were used within pre-defined risk scales to define and visualize the ASF risk to Belgium. Emergence risk was considered low (Pandora score 0.29), while disease consequences were deemed high (0.93); the resulting multiplicative overall risk of ASFV for Belgium was low (0.27). The Belgian experts tended to give lower risk scores than the European experts, especially for entry risk and trade/public opinion consequences. These risk scores are further interpreted with a due consideration of the qualitative data in the expert remarks and of other ASF risk assessments. The results are similar to more extensive and elaborate risk assessment models/procedures which may require more time and resources. The Pandora tool allows sequential updates to monitor (rates of) increasing risk and provides information for risk managers to organize targeted control.
Collapse
Affiliation(s)
- S Roelandt
- Unit of Coordination of Veterinary Diagnosis, Epidemiology and Risk analysis (CVD-ERA), Operational Directorate of Interactions and Surveillance, Veterinary and Agrochemical Research Centre (CODA-CERVA), Brussels, Belgium
| | - Y Van der Stede
- Unit of Coordination of Veterinary Diagnosis, Epidemiology and Risk analysis (CVD-ERA), Operational Directorate of Interactions and Surveillance, Veterinary and Agrochemical Research Centre (CODA-CERVA), Brussels, Belgium.,Laboratory of Veterinary Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - B D'hondt
- Biology Department, Ghent University, Ghent, Belgium.,Research Institute for Nature and Forest (INBO), Brussels, Belgium
| | - F Koenen
- Unit of Coordination of Veterinary Diagnosis, Epidemiology and Risk analysis (CVD-ERA), Operational Directorate of Interactions and Surveillance, Veterinary and Agrochemical Research Centre (CODA-CERVA), Brussels, Belgium
| |
Collapse
|
13
|
Course and transmission characteristics of oral low-dose infection of domestic pigs and European wild boar with a Caucasian African swine fever virus isolate. Arch Virol 2015; 160:1657-67. [PMID: 25916610 DOI: 10.1007/s00705-015-2430-2] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 04/15/2015] [Indexed: 10/23/2022]
Abstract
In 2007, African swine fever virus (ASFV) was introduced into the Transcaucasian countries and Russia. Since then, it has spread alarmingly and reached the European Union. ASFV strains are highly virulent and lead to almost 100% mortality under experimental conditions. However, the possibility of dose-dependent disease courses has been discussed. For this reason, a study was undertaken to assess the risk of chronic disease and the establishment of carriers upon low-dose oronasal infection of domestic pigs and European wild boar. It was demonstrated that very low doses of ASFV are sufficient to infect especially weak or runted animals by the oronasal route. Some of these animals did not show clinical signs indicative of ASF, and they developed almost no fever. However, no changes were observed in individual animal regarding the onset, course and outcome of infection as assessed by diagnostic tests. After amplification of ASFV by these animals, pen- and stablemates became infected and developed acute lethal disease with similar characteristics in all animals. Thus, we found no indication of prolonged or chronic individual courses upon low-dose infection in either species. The scattered onset of clinical signs and pathogen detection within and among groups confirms moderate contagiosity that is strongly linked with blood contact. In conclusion, the prolonged course at the "herd level" together with the exceptionally low dose that proved to be sufficient to infect a runted wild boar could be important for disease dynamics in wild-boar populations and in backyard settings.
Collapse
|
14
|
|
15
|
Costard S, Mur L, Lubroth J, Sanchez-Vizcaino JM, Pfeiffer DU. Epidemiology of African swine fever virus. Virus Res 2012; 173:191-7. [PMID: 23123296 DOI: 10.1016/j.virusres.2012.10.030] [Citation(s) in RCA: 285] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 10/12/2012] [Accepted: 10/24/2012] [Indexed: 11/18/2022]
Abstract
African swine fever virus used to occur primarily in Africa. There had been occasional incursions into Europe or America which apart from the endemic situation on the island of Sardinia always had been successfully controlled. But following an introduction of the virus in 2007, it now has expanded its geographical distribution into Caucasus and Eastern Europe where it has not been controlled, to date. African swine fever affects domestic and wild pig species, and can involve tick vectors. The ability of the virus to survive within a particular ecosystem is defined by the ecology of its wild host populations and the characteristics of livestock production systems, which influence host and vector species densities and interrelationships. African swine fever has high morbidity in naïve pig populations and can result in very high mortality. There is no vaccine or treatment available. Apart from stamping out and movement control, there are no control measures, thereby potentially resulting in extreme losses for producers. Prevention and control of the infection requires good understanding of its epidemiology, so that targeted measures can be instigated.
Collapse
Affiliation(s)
- S Costard
- Veterinary Epidemiology & Public Health Group, Royal Veterinary College, Hatfield, Hertfordshire, United Kingdom.
| | | | | | | | | |
Collapse
|