1
|
Guo M, Tao S, Xiong Y, Dong M, Yan Z, Ye Z, Wu D. Comparative analysis of psychiatric medications and their association with falls and fractures: A systematic review and network meta-analysis. Psychiatry Res 2024; 338:115974. [PMID: 38833938 DOI: 10.1016/j.psychres.2024.115974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/13/2024] [Accepted: 05/22/2024] [Indexed: 06/06/2024]
Abstract
An association between psychiatric medications and falls and fractures in people taking them has been demonstrated, but which class or medication leads to the greatest risk of falls or fractures should be further investigated. The aim of this study was to compare and rank the magnitude of risk of falls and fractures due to different psychiatric medications. Eight databases were searched for this meta-analysis and evaluated using a frequency-based network meta-analysis. The results included a total of 28 papers with 14 medications from 5 major classes, involving 3,467,314 patients. The results showed that atypical antipsychotics were the class of medications with the highest risk of falls, and typical antipsychotics were the class of medications with the highest risk of resulting in fractures. Quetiapine ranked first in the category of 13 medications associated with risk of falls, and class Z drugs ranked first in the category of 6 medications associated with risk of fractures. The available evidence suggests that atypical antipsychotics and typical antipsychotics may be the drugs with the highest risk of falls and fractures, respectively. Quetiapine may be the medication with the highest risk of falls, and class Z drugs may be the medication with the highest risk of fractures.
Collapse
Affiliation(s)
- Mengjia Guo
- School of Nursing, Chengdu University of Traditional Chinese Medicine, China
| | - Silu Tao
- School of Nursing, Chengdu University of Traditional Chinese Medicine, China
| | - Yi Xiong
- School of Nursing, Chengdu University of Traditional Chinese Medicine, China
| | - Meijun Dong
- School of Nursing, Chengdu University of Traditional Chinese Medicine, China
| | - Zhangrong Yan
- School of Nursing, Chengdu University of Traditional Chinese Medicine, China
| | - Zixiang Ye
- Department of Nursing, The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Dongmei Wu
- Department of Nursing, The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
2
|
Azimi Manavi B, Corney KB, Mohebbi M, Quirk SE, Stuart AL, Pasco JA, Hodge JM, Berk M, Williams LJ. The neglected association between schizophrenia and bone fragility: a systematic review and meta-analyses. Transl Psychiatry 2024; 14:225. [PMID: 38816361 PMCID: PMC11139985 DOI: 10.1038/s41398-024-02884-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/13/2024] [Accepted: 03/18/2024] [Indexed: 06/01/2024] Open
Abstract
Schizophrenia is associated with increased risk of medical comorbidity, possibly including osteoporosis, which is a public health concern due to its significant social and health consequences. In this systematic review and meta-analysis, we aimed to determine whether schizophrenia is associated with bone fragility. The protocol for this review has been registered with PROSPERO (CRD42020171959). The research question and inclusion/exclusion criteria were developed and presented according to the PECO (Population, Exposure, Comparison, Outcome) framework. Schizophrenia was identified from medical records, DSM-IV/5 or the ICD. The outcomes for this review were bone fragility [i.e., bone mineral density (BMD), fracture, bone turnover markers, bone quality]. A search strategy was developed and implemented for the electronic databases. A narrative synthesis was undertaken for all included studies; the results from eligible studies reporting on BMD and fracture were pooled using a random effects model to complete a meta-analysis. The conduct of the review and reporting of results adhered to PRISMA guidelines. Our search yielded 3103 studies, of which 29 met the predetermined eligibility criteria. Thirty-seven reports from 29 studies constituted 17 studies investigating BMD, eight investigating fracture, three investigating bone quality and nine investigating bone turnover markers. The meta-analyses revealed that people with schizophrenia had lower BMD at the lumbar spine [standardised mean difference (SMD) -0.74, 95% CI -1.27, -0.20; Z = -2.71, p = 0.01] and at the femoral neck (SMD -0.78, 95% CI -1.03, -0.53; Z = -6.18, p ≤ 0.001). Also observed was a higher risk of fracture (OR 1.43, 95% CI 1.27, 1.61; Z = 5.88, p ≤ 0.001). Following adjustment for publication bias, the association between schizophrenia and femoral neck BMD (SMD -0.63, 95% CI -0.97, -0.29) and fracture (OR 1.32, 95% CI 1.28, 1.35) remained. Significantly increased risk of bone fragility was observed in people with schizophrenia. This association was independent of sex, participant number, methodological quality and year of publication.
Collapse
Affiliation(s)
- Behnaz Azimi Manavi
- Deakin University, Institute for Mental and Physical Health and Clinical Translation-IMPACT, Geelong, VIC, Australia.
| | - Kayla B Corney
- Deakin University, Institute for Mental and Physical Health and Clinical Translation-IMPACT, Geelong, VIC, Australia
| | - Mohammadreza Mohebbi
- Deakin University, Institute for Mental and Physical Health and Clinical Translation-IMPACT, Geelong, VIC, Australia
- Deakin University, Faculty of Health, Biostatistics unit, Geelong, Australia
| | - Shae E Quirk
- Deakin University, Institute for Mental and Physical Health and Clinical Translation-IMPACT, Geelong, VIC, Australia
- Institute of Clinical Medicine, Psychiatry, University of Eastern Finland, Kuopio, Finland
- Institute of Clinical Medicine, Kuopio Musculoskeletal Research Unit (KMRU), University of Eastern, Kuopio, Finland
| | - Amanda L Stuart
- Deakin University, Institute for Mental and Physical Health and Clinical Translation-IMPACT, Geelong, VIC, Australia
| | - Julie A Pasco
- Deakin University, Institute for Mental and Physical Health and Clinical Translation-IMPACT, Geelong, VIC, Australia
- Barwon Health, Geelong, VIC, Australia
- Department of Medicine-Western Health, The University of Melbourne, Parkville, VIC, Australia
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Jason M Hodge
- Deakin University, Institute for Mental and Physical Health and Clinical Translation-IMPACT, Geelong, VIC, Australia
- Barwon Health, Geelong, VIC, Australia
| | - Michael Berk
- Deakin University, Institute for Mental and Physical Health and Clinical Translation-IMPACT, Geelong, VIC, Australia
- Barwon Health, Geelong, VIC, Australia
- Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
- Orygen, The National Centre of Excellence in Youth Mental Health, Centre for Youth Mental Health, Parkville, VIC, Australia
| | - Lana J Williams
- Deakin University, Institute for Mental and Physical Health and Clinical Translation-IMPACT, Geelong, VIC, Australia
- Barwon Health, Geelong, VIC, Australia
| |
Collapse
|
3
|
Hua Y, Wang C, Ge X, Lin Y. Enhancing Osteogenic Potential: Controlled Release of Dopamine D1 Receptor Agonist SKF38393 Compared to Free Administration. Biomedicines 2024; 12:1046. [PMID: 38791008 PMCID: PMC11117781 DOI: 10.3390/biomedicines12051046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
Osteoporosis is the most common metabolic bone disorder and is characterized by decreased bone density, which has a relationship with the quality of life among the aging population. Previous research has found that activation of the dopamine D1 receptor can improve bone mass formation. SKF38393 is an agonist of dopamine D1 receptors. However, as a small-molecule drug, SKF38393 is unstable and releases quickly. The aim of this study was to prototype polylactic-co-glycolic acid (PLGA)/SKF38393 microspheres and assess their potential osteogenic effects compared to those under the free administration of SKF38393. The cytocompatibility of PLGA/SKF38393 was determined via CCK-8 and live/dead cell staining; the osteogenic effects in vitro were determined with ALP and alizarin red staining, qRT-PCR, and Western blotting; and the in vivo effects were assessed using 25 Balb/c mice. We also used a PCR array to explore the possible signaling pathway changes after employing PLGA/SKF38393. Our experiments demonstrated that the osteogenic effect of D1Rs activated by the PLGA/SKF38393 microsphere was better than that under free administration, both in vitro and in vivo. According to the PCR array, this result might be associated with six signaling pathways (graphical abstract). Ultimately, in this study, we prototyped PLGA/SKF38393, demonstrated its effectiveness, and preliminarily analyzed its mechanism of action.
Collapse
Affiliation(s)
| | | | - Xiyuan Ge
- Department of Implantology, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China; (Y.H.); (C.W.)
| | - Ye Lin
- Department of Implantology, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China; (Y.H.); (C.W.)
| |
Collapse
|
4
|
Weerasinghe DK, Hodge JM, Pasco JA, Samarasinghe RM, Azimi Manavi B, Williams LJ. Antipsychotic-induced bone loss: the role of dopamine, serotonin and adrenergic receptor signalling. Front Cell Dev Biol 2023; 11:1184550. [PMID: 37305679 PMCID: PMC10248006 DOI: 10.3389/fcell.2023.1184550] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 05/09/2023] [Indexed: 06/13/2023] Open
Abstract
Antipsychotics are commonly used in treating psychiatric disorders. These medications primarily target dopamine the serotonin receptors, they have some affinity to adrenergic, histamine, glutamate and muscarinic receptors. There is clinical evidence that antipsychotic use decreases BMD and increases fracture risk, with dopamine, serotonin and adrenergic receptor-signalling becoming an increasing area of focus where the presence of these receptors in osteoclasts and osteoblasts have been demonstrated. Osteoclasts and osteoblasts are the most important cells in the bone remodelling and the bone regeneration process where the activity of these cells determine the bone resorption and formation process in order to maintain healthy bone. However, an imbalance in osteoclast and osteoblast activity can lead to decreased BMD and increased fracture risk, which is also believed to be exacerbated by antipsychotics use. Therefore, the aim of this review is to provide an overview of the mechanisms of action of first, second and third generation antipsychotics and the expression profiles of dopamine, serotonin and adrenergic receptors during osteoclastogenesis and osteoblastogenesis.
Collapse
Affiliation(s)
- D. Kavindi Weerasinghe
- IMPACT—The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC, Australia
| | - Jason M. Hodge
- IMPACT—The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC, Australia
- Barwon Health, Geelong, VIC, Australia
| | - Julie A. Pasco
- IMPACT—The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC, Australia
- Barwon Health, Geelong, VIC, Australia
- Department of Medicine—Western Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Rasika M. Samarasinghe
- IMPACT—The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC, Australia
| | - Behnaz Azimi Manavi
- IMPACT—The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC, Australia
| | - Lana J. Williams
- IMPACT—The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC, Australia
- Barwon Health, Geelong, VIC, Australia
| |
Collapse
|
5
|
Gangopadhyay A, Ibrahim R, Theberge K, May M, Houseknecht KL. Non-alcoholic fatty liver disease (NAFLD) and mental illness: Mechanisms linking mood, metabolism and medicines. Front Neurosci 2022; 16:1042442. [PMID: 36458039 PMCID: PMC9707801 DOI: 10.3389/fnins.2022.1042442] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/21/2022] [Indexed: 09/26/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease in the world and one of the leading indications for liver transplantation. It is one of the many manifestations of insulin resistance and metabolic syndrome as well as an independent risk factor for cardiovascular disease. There is growing evidence linking the incidence of NAFLD with psychiatric illnesses such as schizophrenia, bipolar disorder and depression mechanistically via genetic, metabolic, inflammatory and environmental factors including smoking and psychiatric medications. Indeed, patients prescribed antipsychotic medications, regardless of diagnosis, have higher incidence of NAFLD than population norms. The mechanistic pharmacology of antipsychotic-associated NAFLD is beginning to emerge. In this review, we aim to discuss the pathophysiology of NAFLD including its risk factors, insulin resistance and systemic inflammation as well as its intersection with psychiatric illnesses.
Collapse
Affiliation(s)
| | | | | | | | - Karen L. Houseknecht
- Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, ME, United States
| |
Collapse
|
6
|
Zeshan M, Basu S, George J, Riaz M, Malik S, Imran N. Endocrinopathies Due to Psychotropic Agents. Psychiatr Ann 2021. [DOI: 10.3928/00485713-20210806-01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
Wang CX, Ge XY, Wang MY, Ma T, Zhang Y, Lin Y. Dopamine D1 receptor-mediated activation of the ERK signaling pathway is involved in the osteogenic differentiation of bone mesenchymal stem cells. Stem Cell Res Ther 2020; 11:12. [PMID: 31900224 PMCID: PMC6942280 DOI: 10.1186/s13287-019-1529-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 12/06/2019] [Accepted: 12/11/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Osteogenic differentiation of bone mesenchymal stem cells (BMSCs) is regulated by numerous signaling pathways. Dopamine (DA), a neurotransmitter, has previously been demonstrated to induce new bone formation by stimulating the receptors on BMSCs, but the essential mediators of DA-induced osteogenic signaling remain unclear. METHODS In this work, we evaluated the influence of both dopamine D1 and D2 receptor activation on BMSC osteogenic differentiation. Gene and protein expression of osteogenic-related markers were tested. The direct binding of transcriptional factor, Runx2, to those markers was also investigated. Additionally, cellular differentiation-associated signaling pathways were evaluated. RESULTS We showed that the expression level of the D1 receptor on BMSCs increased during osteogenic differentiation. A D1 receptor agonist, similar to DA, induced the osteogenic differentiation of BMSCs, and this phenomenon was effectively inhibited by a D1 receptor antagonist or by D1 receptor knockdown. Furthermore, the suppression of protein kinase A (PKA), an important kinase downstream of the D1 receptor, successfully inhibited DA-induced BMSC osteogenic differentiation and decreased the phosphorylation of ERK1/2. Compared with P38, MAPK, and JNK, DA mainly induced the phosphorylation of ERK1/2 and led to the upregulation of Runx2 transcriptional activity, thus facilitating BMSC osteogenic differentiation. On the other hand, an ERK1/2 inhibitor could reverse these effects. CONCLUSIONS Taken together, these results suggest that ERK signaling may play an essential role in coordinating the DA-induced osteogenic differentiation of BMSCs by D1 receptor activation.
Collapse
Affiliation(s)
- Chen-Xi Wang
- Department of Implantology, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, 100081, People's Republic of China
| | - Xi-Yuan Ge
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, 100081, People's Republic of China
| | - Ming-Yue Wang
- Department of Implantology, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, 100081, People's Republic of China
| | - Ting Ma
- Department of Implantology, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, 100081, People's Republic of China
| | - Yu Zhang
- Department of Implantology, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, 100081, People's Republic of China.
| | - Ye Lin
- Department of Implantology, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, 100081, People's Republic of China.
| |
Collapse
|
8
|
Antipsychotic therapies and bone health. Case Rep Womens Health 2020; 25:e00160. [PMID: 31867222 PMCID: PMC6906724 DOI: 10.1016/j.crwh.2019.e00160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 11/08/2019] [Indexed: 11/20/2022] Open
|
9
|
Beauchemin M, Geguchadze R, Guntur AR, Nevola K, Le PT, Barlow D, Rue M, Vary CPH, Lary CW, Motyl KJ, Houseknecht KL. Exploring mechanisms of increased cardiovascular disease risk with antipsychotic medications: Risperidone alters the cardiac proteomic signature in mice. Pharmacol Res 2019; 152:104589. [PMID: 31874253 DOI: 10.1016/j.phrs.2019.104589] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 10/29/2019] [Accepted: 12/05/2019] [Indexed: 02/07/2023]
Abstract
Atypical antipsychotic (AA) medications including risperidone (RIS) and olanzapine (OLAN) are FDA approved for the treatment of psychiatric disorders including schizophrenia, bipolar disorder and depression. Clinical side effects of AA medications include obesity, insulin resistance, dyslipidemia, hypertension and increased cardiovascular disease risk. Despite the known pharmacology of these AA medications, the mechanisms contributing to adverse metabolic side-effects are not well understood. To evaluate drug-associated effects on the heart, we assessed changes in the cardiac proteomic signature in mice administered for 4 weeks with clinically relevant exposure of RIS or OLAN. Using proteomic and gene enrichment analysis, we identified differentially expressed (DE) proteins in both RIS- and OLAN-treated mouse hearts (p < 0.05), including proteins comprising mitochondrial respiratory complex I and pathways involved in mitochondrial function and oxidative phosphorylation. A subset of DE proteins identified were further validated by both western blotting and quantitative real-time PCR. Histological evaluation of hearts indicated that AA-associated aberrant cardiac gene expression occurs prior to the onset of gross pathomorphological changes. Additionally, RIS treatment altered cardiac mitochondrial oxygen consumption and whole body energy expenditure. Our study provides insight into the mechanisms underlying increased patient risk for adverse cardiac outcomes with chronic treatment of AA medications.
Collapse
Affiliation(s)
- Megan Beauchemin
- College of Osteopathic Medicine, University of New England, Biddeford, ME, United States
| | - Ramaz Geguchadze
- College of Osteopathic Medicine, University of New England, Biddeford, ME, United States
| | - Anyonya R Guntur
- Center for Clinical and Translational Research, Maine Medical Center Research Institute, Scarborough, ME, United States
| | - Kathleen Nevola
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME, United States; Sackler School for Graduate Biomedical Research, Tufts University, Boston, MA, United States; Center for Outcomes Research and Evaluation, Maine Medical Center Research Institute, Portland, ME, United States
| | - Phuong T Le
- Center for Clinical and Translational Research, Maine Medical Center Research Institute, Scarborough, ME, United States
| | - Deborah Barlow
- College of Osteopathic Medicine, University of New England, Biddeford, ME, United States
| | - Megan Rue
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME, United States
| | - Calvin P H Vary
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME, United States
| | - Christine W Lary
- Center for Outcomes Research and Evaluation, Maine Medical Center Research Institute, Portland, ME, United States
| | - Katherine J Motyl
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME, United States
| | - Karen L Houseknecht
- College of Osteopathic Medicine, University of New England, Biddeford, ME, United States.
| |
Collapse
|