1
|
Cressoni ACL, Penariol LBC, Padovan CC, Orellana MD, Rosa-E-Silva JC, Poli-Neto OB, Ferriani RA, de Paz CCP, Meola J. Downregulation of DROSHA: Could It Affect miRNA Biogenesis in Endometriotic Menstrual Blood Mesenchymal Stem Cells? Int J Mol Sci 2023; 24:ijms24065963. [PMID: 36983035 PMCID: PMC10057010 DOI: 10.3390/ijms24065963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 03/18/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
Menstrual blood mesenchymal stem cells (MenSCs) have gained prominence in the endometriosis scientific community, given their multifunctional roles in regenerative medicine as a noninvasive source for future clinical applications. In addition, changes in post-transcriptional regulation via miRNAs have been explored in endometriotic MenSCs with a role in modulating proliferation, angiogenesis, differentiation, stemness, self-renewal, and the mesenchymal-epithelial transition process. In this sense, homeostasis of the miRNA biosynthesis pathway is essential for several cellular processes and is related to the self-renewal and differentiation of progenitor cells. However, no studies have investigated the miRNA biogenesis pathway in endometriotic MenSCs. In this study, we profiled the expression of eight central genes for the miRNA biosynthesis pathway under experimental conditions involving a two-dimensional culture of MenSCs obtained from healthy women (n = 10) and women with endometriosis (n = 10) using RT-qPCR and reported a two-fold decrease in DROSHA expression in the disease. In addition, miR-128-3p, miR-27a-3p, miR-27b-3p, miR-181a-5p, miR-181b-5p, miR-452-3p, miR-216a-5p, miR-216b-5p, and miR-93-5p, which have been associated with endometriosis, were identified through in silico analyses as negative regulators of DROSHA. Because DROSHA is essential for miRNA maturation, our findings may justify the identification of different profiles of miRNAs with DROSHA-dependent biogenesis in endometriosis.
Collapse
Affiliation(s)
- Ana Clara Lagazzi Cressoni
- Department of Gynecology and Obstetrics, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - Letícia B C Penariol
- Department of Gynecology and Obstetrics, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - Cristiana Carolina Padovan
- Department of Gynecology and Obstetrics, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - Maristela D Orellana
- Regional Blood Center, Medical School of Hemocenter Foundation of Ribeirão Preto, University of Sao Paulo, Ribeirão Preto, São Paulo 14051-140, Brazil
| | - Júlio Cesar Rosa-E-Silva
- Department of Gynecology and Obstetrics, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - Omero Benedicto Poli-Neto
- Department of Gynecology and Obstetrics, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - Rui Alberto Ferriani
- Department of Gynecology and Obstetrics, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
- National Institute of Hormones and Women's Health (Hormona)-CNPq, Porto Alegre 90035-003, Brazil
| | - Cláudia Cristina Paro de Paz
- Department of Genetics, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - Juliana Meola
- Department of Gynecology and Obstetrics, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
- National Institute of Hormones and Women's Health (Hormona)-CNPq, Porto Alegre 90035-003, Brazil
| |
Collapse
|
2
|
Sahraei SS, Davoodi Asl F, Kalhor N, Sheykhhasan M, Fazaeli H, Moud SS, Sheikholeslami A. A Comparative Study of Gene Expression in Menstrual Blood-Derived Stromal Cells between Endometriosis and Healthy Women. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7053521. [PMID: 35059465 PMCID: PMC8766185 DOI: 10.1155/2022/7053521] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/18/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND Research into the pathogenesis of endometriosis would substantially promote its effective treatment and early diagnosis. Currently, accumulating evidence has shed light on the importance of endometrial stem cells within the menstrual blood which are involved in the establishment and progression of endometriotic lesions in a retrograde manner. OBJECTIVES We aimed to identify the differences in some genes' expression between menstrual blood-derived mesenchymal stem cells (MenSCs) isolated from endometriosis patients (E-MenSCs) and MenSCs from healthy women (NE-MenSCs). METHODS Menstrual blood samples (2-3 mL) from healthy and endometriosis women in the age range of 22-35 years were collected. Isolated MenSCs by the Ficoll-Paque density-gradient centrifugation method were characterized by flow cytometry. MenSCs were evaluated for key related endometriosis genes by real-time-PCR. RESULTS E-MenSCs were morphologically different from NE-MenSCs and showed, respectively, higher and lower expression of CD10 and CD9. Furthermore, E-MenSCs had higher expression of Cyclin D1 (a cell cycle-related gene) and MMP-2 and MMP-9 (migration- and invasion-related genes) genes compared with NE-MenSCs. Despite higher cell proliferation in E-MenSCs, the BAX/BCL-2 ratio was significantly lower in E-MenSCs compared to NE-MenSCs. Also, the level of inflammatory genes such as IL1β, IL6, IL8, and NF-κB and stemness genes including SOX2 and SALL4 was increased in E-MenSCs compared with NE-MenSCs. Further, VEGF, as a potent angiogenic factor, showed a significant increase in E-MenSCs rather than NE-MenSCs. However, NE-MenSCs showed increased ER-α and β-catenin when compared with E-MenSCs. CONCLUSION Here, we showed that there are gene expression differences between E-MenSCs and NE-MenSCs. These findings propose that MenSCs could play key role in the pathogenesis of endometriosis and further support the menstrual blood retrograde theory of endometriosis formation. This could be of great importance in exploiting promising therapeutic targets and new biomarkers for endometriosis treatment and prognosis.
Collapse
Affiliation(s)
- Seyedeh Saeideh Sahraei
- Department of Reproductive Biology, Academic Center for Education, Culture, and Research (ACECR), Qom Branch, Qom, Iran
| | - Faezeh Davoodi Asl
- Department of Mesenchymal Stem Cells, Academic Center for Education, Culture, and Research (ACECR), Qom Branch, Qom, Iran
| | - Naser Kalhor
- Department of Mesenchymal Stem Cells, Academic Center for Education, Culture, and Research (ACECR), Qom Branch, Qom, Iran
| | - Mohsen Sheykhhasan
- Department of Mesenchymal Stem Cells, Academic Center for Education, Culture, and Research (ACECR), Qom Branch, Qom, Iran
| | - Hoda Fazaeli
- Department of Mesenchymal Stem Cells, Academic Center for Education, Culture, and Research (ACECR), Qom Branch, Qom, Iran
| | - Sanaz Soleymani Moud
- Midwifery Ward, Infertility Treatment Center, Academic Center for Education, Culture, and Research (ACECR), Qom Branch, Qom, Iran
| | - Azar Sheikholeslami
- Department of Mesenchymal Stem Cells, Academic Center for Education, Culture, and Research (ACECR), Qom Branch, Qom, Iran
| |
Collapse
|
3
|
The Role of miRNAs 340-5p, 92a-3p, and 381-3p in Patients with Endometriosis: A Plasma and Mesenchymal Stem-Like Cell Study. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5298006. [PMID: 34631883 PMCID: PMC8494557 DOI: 10.1155/2021/5298006] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 09/05/2021] [Accepted: 09/09/2021] [Indexed: 01/07/2023]
Abstract
Background Endometriosis is the most prevalent gynecological disease with elusive etiology. The mysterious entity and the lack of noninvasive diagnostic methods affect women's lives negatively. This study is aimed at finding the relationship between miR-340-5p, 92a-3p, and miR-381-3p and the pathogenesis of endometriosis in endometrial mesenchymal stem-like cells (eMSCs) of endometriosis and assessing their potential as a noninvasive biomarker in plasma. Methods Peripheral blood and eMSC specimens were collected from suspected women of endometriosis before laparoscopy. Total RNA was isolated from plasma and cultured eMSCs to synthesize complementary DNA. The expression of miR-340-5p, miR-92a-3p, and miR-381-3p was analyzed by RT-qPCR. To understand these miRNAs' role, we also did a bioinformatic analysis. Results There was a downregulation of miR-340-5p, miR-92a-3p, and miR-381-3p in plasma, and the upregulation of miR-340-5p and the downregulation of miR-92a-3p and miR-381-3p in eMSCs of women with endometriosis. There was a positive concordance between the expression of miR-92a-3p and miR-381-3p in plasma and eMSCs. Our study also showed three genes, Solute Carrier Family 6 Member 8 (SLC6A8), Zinc Finger Protein 264 (ZNF264), and mouse double minute 2 (MDM2), as common targets of these miRNAs. Conclusions This study has been one of the first attempts to examine the expression of miR-340-5p, miR-92a-3p, and miR-381-3p in both plasma and eMSCs and revealed their possible role in endometriosis based on in silico analysis. Biomarkers pave the way to develop a new therapeutic approach to the management or treatment of endometriosis patients. Our result as a first report shows that combined levels of miRNAs 340-5p and 381-3p may have the potential to be utilized as diagnostic biomarkers for endometriosis.
Collapse
|
4
|
Sheikholeslami A, Kalhor N, Sheykhhasan M, Jannatifar R, Sahraei SS. Evaluating differentiation potential of the human menstrual blood-derived stem cells from infertile women into oocyte-like cells. Reprod Biol 2021; 21:100477. [PMID: 33401233 DOI: 10.1016/j.repbio.2020.100477] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/09/2020] [Accepted: 12/15/2020] [Indexed: 02/08/2023]
Abstract
One of the most intricate infertility problems among women is the number and quality of the oocytes. Menstrual blood-derived stem cells (MenSCs) are a recently discovered source of mesenchymal stem cells which is known as a suitable source of cells for regenerative medicine. We aimed to investigate whether MenSCs as autologous cell source from endometriosis, PCOS, and healthy women have different characteristics regarding their morphology, CD marker expression pattern, differentiation potential into oocyte-like cells, and oocyte-related genes expression. Menstrual blood samples (1-2 ml) from healthy and infertile women (PCOS and endometriosis) in the age range of 22-35 years were collected. Isolated MenSCs by the Ficoll-Paque density-gradient centrifugation method was characterized by flow cytometry. MenSCs were induced under 20 % follicular fluid (FF), and then they were evaluated for differentiation by Real time-PCR and immunocytochemistry assay. MenSCs derived from endometriosis women had different morphology from PCOS and healthy women, but similar regarding their CD marker pattern. All induced MenSCs showed morphological changes and expressed oocyte related genes (STELLA, GDF9, STRA8, PRDM, LHR, FSHR, SCP3, DDX4, and ZP2) in the 2nd week of culture, but there was a significant difference between the groups. Endometriosis-derived MenSCs showed higher levels of both gene and protein expressions. These findings propose that MenSCs derived from endometriosis and PCOS patients under 20 % FF, not only could differentiate into oocyte-like cells, but also showed more differential potential in comparison with healthy women. This indicates the possibility of using the patients' own MenSCs to differentiate into the oocyte-like cells.
Collapse
Affiliation(s)
- Azar Sheikholeslami
- Department of Mesenchymal Stem Cells, Academic Center for Education, Culture and Research, Qom Branch, Qom, Iran
| | - Naser Kalhor
- Department of Mesenchymal Stem Cells, Academic Center for Education, Culture and Research, Qom Branch, Qom, Iran
| | - Mohsen Sheykhhasan
- Department of Mesenchymal Stem Cells, Academic Center for Education, Culture and Research, Qom Branch, Qom, Iran
| | - Rahil Jannatifar
- Department of Reproductive Biology, Academic Center for Education, Culture and Research, Qom Branch, Qom, Iran
| | - Seyedeh Saeideh Sahraei
- Department of Mesenchymal Stem Cells, Academic Center for Education, Culture and Research, Qom Branch, Qom, Iran; Department of Reproductive Biology, Academic Center for Education, Culture and Research, Qom Branch, Qom, Iran.
| |
Collapse
|