1
|
Bishay S, Robb WH, Schwartz TM, Smith DS, Lee LH, Lynn CJ, Clark TL, Jefferson AL, Warner JL, Rosenthal EL, Murphy BA, Hohman TJ, Koran MEI. Frontal and anterior temporal hypometabolism post chemoradiation in head and neck cancer: A real-world PET study. J Neuroimaging 2024; 34:211-216. [PMID: 38148283 DOI: 10.1111/jon.13181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/20/2023] [Accepted: 12/11/2023] [Indexed: 12/28/2023] Open
Abstract
BACKGROUND AND PURPOSE Adverse neurological effects after cancer therapy are common, but biomarkers to diagnose, monitor, or risk stratify patients are still not validated or used clinically. An accessible imaging method, such as fluorodeoxyglucose positron emission tomography (FDG PET) of the brain, could meet this gap and serve as a biomarker for functional brain changes. We utilized FDG PET to evaluate which brain regions are most susceptible to altered glucose metabolism after chemoradiation in patients with head and neck cancer (HNCa). METHODS Real-world FDG PET images were acquired as standard of care before and after chemoradiation for HNCa in 68 patients. Linear mixed-effects voxelwise models assessed changes after chemoradiation in cerebral glucose metabolism quantified with standardized uptake value ratio (SUVR), covarying for follow-up time and patient demographics. RESULTS Voxelwise analysis revealed two large clusters of decreased glucose metabolism in the medial frontal and polar temporal cortices following chemoradiation, with decreases of approximately 5% SUVR after therapy. CONCLUSIONS These findings provide evidence that standard chemoradiation for HNCa can lead to decreased neuronal glucose metabolism, contributing to literature emphasizing the vulnerability of the frontal and anterior temporal lobes, especially in HNCa, where these areas may be particularly vulnerable to indirect radiation-induced injury. FDG PET shows promise as a sensitive biomarker for assessing these changes.
Collapse
Affiliation(s)
- Steven Bishay
- School of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - W Hudson Robb
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Trent M Schwartz
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - David S Smith
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt University Institute of Imaging Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Lok Hin Lee
- School of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Cynthia J Lynn
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Tammy L Clark
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Angela L Jefferson
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jeremy L Warner
- Department of Medicine, Brown University, Providence, Rhode Island, USA
- Lifespan Cancer Institute, Providence, Rhode Island, USA
| | - Eben L Rosenthal
- Department of Otolaryngology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Barbara A Murphy
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Timothy J Hohman
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Mary Ellen I Koran
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt University Institute of Imaging Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
2
|
Lv P, Ma G, Chen W, Liu R, Xin X, Lu J, Su S, Li M, Yang S, Ma Y, Rong P, Dong N, Chen Q, Zhang X, Han X, Zhang B. Brain morphological alterations and their correlation to tumor differentiation and duration in patients with lung cancer after platinum chemotherapy. Front Oncol 2022; 12:903249. [PMID: 36016623 PMCID: PMC9396961 DOI: 10.3389/fonc.2022.903249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE Chemotherapy-related brain impairments and changes can occur in patients with lung cancer after platinum chemotherapy and have a substantial impact on survivors' quality of life. Therefore, it is necessary to understand the brain neuropathological alterations and response mechanisms to provide a theoretical basis for rehabilitation strategies. This study aimed to investigate the related brain morphological changes and clarified their correlation with clinical and pathological indicators in patients with lung cancer after platinum chemotherapy. METHODS Overall, 28 patients with chemotherapy, 56 patients without chemotherapy, and 41 healthy controls were categorized in three groups, matched for age, sex, and years of education, and included in the cross-sectional comparison of brain volume and cortical thickness. 14 matched patients before and after chemotherapy were subjected to paired comparison for longitudinal observation of brain morphological changes. Three-dimensional T1-weighted images were acquired from all participants, and quantitative parameters were calculated using the formula of the change from baseline. Correlation analysis was performed to evaluate the relationship between abnormal morphological indices and clinical information of patients. RESULTS Brain regions with volume differences among the three groups were mainly distributed in frontal lobe and limbic cortex. Additionally, significant differences in cerebrospinal fluid were observed in most ventricles, and the main brain regions with cortical thickness differences were the gyrus rectus and medial frontal cortex of the frontal lobe, transverse temporal gyrus of the temporal lobe, insular cortex, anterior insula, and posterior insula of the insular cortex. According to the paired comparison, decreased brain volumes in the patients after chemotherapy appeared in some regions of the frontal, parietal, temporal, and occipital lobes; limbic cortex; insular cortex; and lobules VI-X and decreased cortical thickness in the patients after chemotherapy was found in the frontal, temporal, limbic, and insular cortexes. In the correlation analysis, only the differentiation degree of the tumor and duration after chemotherapy were significantly correlated with imaging indices in the abnormal brain regions. CONCLUSIONS Our findings illustrate the platinum-related brain reactivity morphological alterations which provide more insights into the neuropathological mechanisms of patients with lung cancer after platinum chemotherapy and empirical support for the details of brain injury related to cancer and chemotherapy.
Collapse
Affiliation(s)
- Pin Lv
- Department of Radiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Guolin Ma
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Wenqian Chen
- Department of Radiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Renyuan Liu
- Department of Radiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Xiaoyan Xin
- Department of Radiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Jiaming Lu
- Department of Radiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Shu Su
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Ming Li
- Department of Radiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - ShangWen Yang
- Department of Radiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Yiming Ma
- Department of Radiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Ping Rong
- Department of Radiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Ningyu Dong
- Department of Radiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Qian Chen
- Department of Radiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Xin Zhang
- Department of Radiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Xiaowei Han
- Department of Radiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Bing Zhang
- Department of Radiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing, China
- Institute of Brain Science, Nanjing University, Nanjing, China
| |
Collapse
|
3
|
Castillo-Barnes D, Jimenez-Mesa C, Martinez-Murcia FJ, Salas-Gonzalez D, Ramírez J, Górriz JM. Quantifying Differences Between Affine and Nonlinear Spatial Normalization of FP-CIT Spect Images. Int J Neural Syst 2022; 32:2250019. [PMID: 35313792 DOI: 10.1142/s0129065722500198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Spatial normalization helps us to compare quantitatively two or more input brain scans. Although using an affine normalization approach preserves the anatomical structures, the neuroimaging field is more common to find works that make use of nonlinear transformations. The main reason is that they facilitate a voxel-wise comparison, not only when studying functional images but also when comparing MRI scans given that they fit better to a reference template. However, the amount of bias introduced by the nonlinear transformations can potentially alter the final outcome of a diagnosis especially when studying functional scans for neurological disorders like Parkinson's Disease. In this context, we have tried to quantify the bias introduced by the affine and the nonlinear spatial registration of FP-CIT SPECT volumes of healthy control subjects and patients with PD. For that purpose, we calculated the deformation fields of each participant and applied these deformation fields to a 3D-grid. As the space between the edges of small cubes comprising the grid change, we can quantify which parts from the brain have been enlarged, compressed or just remain the same. When the nonlinear approach is applied, scans from PD patients show a region near their striatum very similar in shape to that of healthy subjects. This artificially increases the interclass separation between patients with PD and healthy subjects as the local intensity is decreased in the latter region, and leads machine learning systems to biased results due to the artificial information introduced by these deformations.
Collapse
Affiliation(s)
- Diego Castillo-Barnes
- Department of Signal Theory, Telematics and Communications, University of Granada, Periodista Daniel Saucedo Aranda, 18071 Granada, Spain
| | - Carmen Jimenez-Mesa
- Department of Signal Theory, Telematics and Communications, University of Granada, Periodista Daniel Saucedo Aranda, 18071 Granada, Spain
| | - Francisco J Martinez-Murcia
- Department of Signal Theory, Telematics and Communications, University of Granada, Periodista Daniel Saucedo Aranda, 18071 Granada, Spain
| | - Diego Salas-Gonzalez
- Department of Signal Theory, Telematics and Communications, University of Granada, Periodista Daniel Saucedo Aranda, 18071 Granada, Spain
| | - Javier Ramírez
- Department of Signal Theory, Telematics and Communications, University of Granada, Periodista Daniel Saucedo Aranda, 18071 Granada, Spain
| | - Juan M Górriz
- Department of Signal Theory, Telematics and Communications, University of Granada, Periodista Daniel Saucedo Aranda, 18071 Granada, Spain.,Department of Psychiatry, University of Cambridge, Herchel Smith Buidling for Brain & Mind Sciences, Forvie Site Robinson Way, Cambridge CB2 0SZ, UK
| |
Collapse
|
4
|
Goksel S, Rakici S. The effect of prophylactic cranial irradiation on brain 18F-fluorodeoxyglucose uptake in small cell lung cancer in the metabolic imaging era. JOURNAL OF RADIATION AND CANCER RESEARCH 2022. [DOI: 10.4103/jrcr.jrcr_60_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
5
|
Arya N, Vaish A, Zhao K, Rao H. Neural Mechanisms Underlying Breast Cancer Related Fatigue: A Systematic Review of Neuroimaging Studies. Front Neurosci 2021; 15:735945. [PMID: 34858127 PMCID: PMC8631399 DOI: 10.3389/fnins.2021.735945] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 10/19/2021] [Indexed: 12/03/2022] Open
Abstract
Introduction: Fatigue and cognitive dysfunction commonly co-occur in breast cancer patients and survivors. However, the underlying neural mechanism is not clear. We performed a systematic review of studies that used neuroimaging methods to investigate structural and functional changes in the brain associated with fatigue in breast cancer patients and survivors. Methods: We searched PubMed, Scopus, EmBase, and Cochrane CENTRAL from January 2009 to May 2021 for studies that reported brain neuroimaging findings in relationship to fatigue in breast cancer patients or survivors. Neuroimaging methods included magnetic resonance imaging (MRI), positron emission tomography (PET), and electroencephalogram (EEG). We summarized structural and functional neuroimaging changes associated with fatigue. Results: Of the 176 articles retrieved, ten MRI studies reported neuroimaging findings in relationship to fatigue. Together these studies compared 385 breast cancer patients or survivors to 205 controls. Fatigue was associated with reduced white matter integrity and increased glutamate in the insula but changes in gray matter volume were not associated with fatigue score. Nine of the ten studies found significant associations between fatigue and functional changes in the frontoparietal cortex. In response to memory and planning tasks, fatigue was associated with increased activations in several regions of the frontoparietal cortex, however, overall performance on tasks was not reduced. Fatigue was also associated with extensive changes in the connectivity of brain networks that filter endogenous signals (salience network), internal attention (default mode network), and external attention (dorsal attention network). Subcortical regions associated with fatigue included insula (interoception), superior colliculus (sleep regulation), and thalamus (alertness). Functional brain changes before initiation of chemotherapy were a better predictor of post-treatment fatigue than chemotherapy itself. Conclusions: Fatigue in breast cancer is associated with widespread functional changes of brain regions and networks that affect executive function including memory, planning, internal and external attention. Observed changes likely represent a compensatory mechanism through which breast cancer patients and survivors try to maintain adequate executive function. Breast cancer patients scheduled to undergo chemotherapy are at high risk for developing fatigue even before the start of treatment.
Collapse
Affiliation(s)
- Nisha Arya
- Department of Neurology, Center for Functional Neuroimaging, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Anya Vaish
- Department of Neurology, Center for Functional Neuroimaging, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Ke Zhao
- Department of Neurology, Center for Functional Neuroimaging, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Hengyi Rao
- Department of Neurology, Center for Functional Neuroimaging, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| |
Collapse
|
6
|
Mohan V, Bruin NM, van de Kamer JB, Sonke JJ, Vogel WV. The increasing potential of nuclear medicine imaging for the evaluation and reduction of normal tissue toxicity from radiation treatments. Eur J Nucl Med Mol Imaging 2021; 48:3762-3775. [PMID: 33687522 PMCID: PMC8484246 DOI: 10.1007/s00259-021-05284-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 02/24/2021] [Indexed: 11/26/2022]
Abstract
Radiation therapy is an effective treatment modality for a variety of cancers. Despite several advances in delivery techniques, its main drawback remains the deposition of dose in normal tissues which can result in toxicity. Common practices of evaluating toxicity, using questionnaires and grading systems, provide little underlying information beyond subjective scores, and this can limit further optimization of treatment strategies. Nuclear medicine imaging techniques can be utilised to directly measure regional baseline function and function loss from internal/external radiation therapy within normal tissues in an in vivo setting with high spatial resolution. This can be correlated with dose delivered by radiotherapy techniques to establish objective dose-effect relationships, and can also be used in the treatment planning step to spare normal tissues more efficiently. Toxicity in radionuclide therapy typically occurs due to undesired off-target uptake in normal tissues. Molecular imaging using diagnostic analogues of therapeutic radionuclides can be used to test various interventional protective strategies that can potentially reduce this normal tissue uptake without compromising tumour uptake. We provide an overview of the existing literature on these applications of nuclear medicine imaging in diverse normal tissue types utilising various tracers, and discuss its future potential.
Collapse
Affiliation(s)
- V Mohan
- Department of Nuclear Medicine, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - N M Bruin
- Department of Nuclear Medicine, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - J B van de Kamer
- Department of Nuclear Medicine, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - J-J Sonke
- Department of Nuclear Medicine, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Wouter V Vogel
- Department of Nuclear Medicine, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
7
|
Chammah SE, Allenbach G, Jumeau R, Boughdad S, Prior JO, Nicod Lalonde M, Schaefer N, Meyer M. Impact of prophylactic cranial irradiation and hippocampal sparing on 18F-FDG brain metabolism in small cell lung cancer patients. Radiother Oncol 2021; 158:200-206. [PMID: 33667589 DOI: 10.1016/j.radonc.2021.02.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/09/2021] [Accepted: 02/13/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND PURPOSE Prophylactic cranial irradiation (PCI) in small-cell lung cancer (SCLC) patients improves survival. However, it is also associated with cognitive impairment, although the underlying mechanisms remain poorly understood. Our study aims to evaluate the impact of PCI and potential benefit of hippocampal sparing (HS) on brain metabolism assessed by 18F-Fluoro-Deoxy-Glucose Positron Emission Tomography/Computed Tomography (18F-FDG PET/CT). MATERIALS AND METHODS We retrospectively included 22 SCLC patients. 50% had hippocampal-sparing (HS) PCI. 18F-FDG PET/CT was performed 144.5 ± 73 days before and 383 ± 451 days after PCI. Brain 18F-FDG PET scans were automatically segmented in 12 regions using Combined-AAL Atlas from MI-Neurology Software (Syngo.Via, Siemens Healthineers). For all atlas regions, we computed SUV Ratio using brainstem as a reference region (SUVR = SUVmean/Brainstem SUVmean) and compared SUVR before and after PCI, using a Wilcoxon test, with a level of significance of p < 0.05. RESULTS We found significant decreases in 18F-FDG brain metabolism after PCI in the basal ganglia (p = 0.004), central regions (p = 0.001), cingulate cortex (p < 0.001), corpus striata (p = 0.003), frontal cortex (p < 0.001), parietal cortex (p = 0.001), the occipital cortex (p = 0.002), precuneus (p = 0.001), lateral temporal cortex (p = 0.001) and cerebellum (p < 0.001). Conversely, there were no significant changes in the mesial temporal cortex (MTC) which includes the hippocampi (p = 0.089). The subgroup who received standard PCI showed a significant decrease in metabolism of the hippocampi (p = 0.033). Contrastingly, the subgroup of patients who underwent HS-PCI showed no significant variation in metabolism of the hippocampi (p = 0.783). CONCLUSION PCI induced a diffuse decrease in 18F-FDG brain metabolism. HS-PCI preserves metabolic activity of the hippocampi.
Collapse
Affiliation(s)
| | - Gilles Allenbach
- Nuclear Medicine and Molecular Imaging Department, CHUV, Lausanne, Switzerland
| | | | - Sarah Boughdad
- Nuclear Medicine and Molecular Imaging Department, CHUV, Lausanne, Switzerland
| | - John O Prior
- Nuclear Medicine and Molecular Imaging Department, CHUV, Lausanne, Switzerland
| | - Marie Nicod Lalonde
- Nuclear Medicine and Molecular Imaging Department, CHUV, Lausanne, Switzerland
| | - Niklaus Schaefer
- Nuclear Medicine and Molecular Imaging Department, CHUV, Lausanne, Switzerland.
| | - Marie Meyer
- Nuclear Medicine and Molecular Imaging Department, CHUV, Lausanne, Switzerland
| |
Collapse
|
8
|
Sawyer DM, Sawyer TW, Eshghi N, Hsu C, Hamilton RJ, Garland LL, Kuo PH. Pilot Study: Texture Analysis of PET Imaging Demonstrates Changes in 18F-FDG Uptake of the Brain After Prophylactic Cranial Irradiation. J Nucl Med Technol 2020; 49:34-38. [PMID: 33020232 DOI: 10.2967/jnmt.120.248393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 08/07/2020] [Indexed: 11/16/2022] Open
Abstract
Prophylactic cranial irradiation (PCI) is used to decrease the probability of developing brain metastases in patients with small cell lung cancer and has been linked to deleterious cognitive effects. Although no well-established imaging markers for these effects exist, previous studies have shown that structural and metabolic changes in the brain can be detected with MRI and PET. This study used an image processing technique called texture analysis to explore whether global changes in brain glucose metabolism could be characterized in PET images. Methods: 18F-FDG PET images of the brain from patients with small cell lung cancer, obtained before and after the administration of PCI, were processed using texture analysis. Texture features were compared between the pre- and post-PCI images. Results: Multiple texture features demonstrated statistically significant differences before and after PCI when texture analysis was applied to the brain parenchyma as a whole. Regional differences were also seen but were not statistically significant. Conclusion: Global changes in brain glucose metabolism occur after PCI and are detectable using advanced image processing techniques. These changes may reflect radiation-induced damage and thus may provide a novel method for studying radiation-induced cognitive impairment.
Collapse
Affiliation(s)
- David M Sawyer
- Department of Medical Imaging, University of Arizona, Tucson, Arizona
| | - Travis W Sawyer
- College of Optical Sciences, University of Arizona, Tucson, Arizona
| | | | - Charles Hsu
- Department of Radiation Oncology, University of Arizona, Tucson, Arizona
| | - Russell J Hamilton
- Department of Radiation Oncology, University of Arizona, Tucson, Arizona
| | - Linda L Garland
- Department of Medicine, University of Arizona; University of Arizona Cancer Center, Tucson, Arizona; and
| | - Phillip H Kuo
- Department of Medical Imaging, University of Arizona, Tucson, Arizona.,Department of Medicine, University of Arizona; University of Arizona Cancer Center, Tucson, Arizona; and.,Department of Biomedical Engineering, University of Arizona, Tucson, Arizona
| |
Collapse
|