1
|
Panua A, Velmurugan G, Comba P, Rath H. Syntheses of Variants of π(σ) Aromatic Modified N-Methyl N-Confused Porphyrinoids with Adaptive Properties. Chem Asian J 2024:e202401196. [PMID: 39604194 DOI: 10.1002/asia.202401196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/19/2024] [Accepted: 11/27/2024] [Indexed: 11/29/2024]
Abstract
Retrosynthetically designed and syntheses of three unprecedented core modified N-confused porphyrinoids exhibiting vis-NIR absorption with tunable aromaticity is reported. Controlled modification of types of oxidants (chloranil vs. DDQ) has led to the isolation of 18π-aromatic porphyrinoid 7 (upon chloranil oxidation) while DDQ oxidation has led to 18 e σ-aromatic porphyrinoids 8 and 9. All the three SN3 hybrid N-confused porphyrinoids 7-9 have been thoroughly characterized via solution state spectroscopic measurements and in-depth DFT studies for concluding π-aromaticity of 7 and σ-aromaticity of 8 and 9. While 7 could recognize the fluoride anion with high selectivity via deprotonation rather than an anion recognition based mechanism, acetate anion binding studies clearly revealed NH⋅⋅⋅AcO- H-bonding interaction in the host-guest complex [7-AcO-] supporting an anion recognition based mechanism. Porphyrinoids 8 and 9 remain unsusceptible to anion recognition. The conformational preorganization and anion induced deprotonation leading to conformational reorganization have been extensively studied by solution state spectroscopic techniques and in depth DFT level theoretical calculations.
Collapse
Affiliation(s)
- Anirban Panua
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2 A/2B Raja S.C Mullick Road, Jadavpur, Kolkata, West Bengal, 700 032, India
| | - Gunasekaran Velmurugan
- Heidelberg University, Institute of Inorganic Chemistry and Interdisciplinary Center for Scientific Computing, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Peter Comba
- Heidelberg University, Institute of Inorganic Chemistry and Interdisciplinary Center for Scientific Computing, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Harapriya Rath
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2 A/2B Raja S.C Mullick Road, Jadavpur, Kolkata, West Bengal, 700 032, India
| |
Collapse
|
2
|
Zhou Y, Zeng F, Richards GO, Wang N. ENO2, a Glycolytic Enzyme, Contributes to Prostate Cancer Metastasis: A Systematic Review of Literature. Cancers (Basel) 2024; 16:2503. [PMID: 39061144 PMCID: PMC11274830 DOI: 10.3390/cancers16142503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/04/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024] Open
Abstract
Prostate cancer (PCa) is the second leading cause of male cancer deaths in the UK and the fifth worldwide. The presence of distant PCa metastasis can reduce the 5-year survival rate from 100% to approximately 30%. Enolase 2 (ENO2), a crucial glycolytic enzyme in cancer metabolism, is associated with the metastasis of multiple cancers and is also used as a marker for neuroendocrine tumours. However, its role in PCa metastasis remains unclear. In this study, we systematically reviewed the current literature to determine the association between ENO2 and metastatic PCa. Medline, Web of Science, and PubMed were searched for eligible studies. The search yielded five studies assessing ENO2 expression in PCa patients or cell lines. The three human studies suggested that ENO2 expression is correlated with late-stage, aggressive PCa, including castrate-resistant PCa (CRPC), metastatic CRPC, and neuroendocrine PCa (NEPC). This was further supported by two in vitro studies indicating that ENO2 expression can be regulated by the tumour microenvironment, such as androgen deprived conditions and the presence of bone-forming osteoblasts. Therefore, ENO2 may functionally contribute to PCa metastasis, possibly due to the unique metabolic features of PCa, which are glycolysis dependent only at the advanced metastatic stage.
Collapse
Affiliation(s)
- Yuhan Zhou
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield S10 2RX, UK
| | - Feier Zeng
- Leicester Cancer Research Centre, Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7LX, UK
| | - Gareth Owain Richards
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield S10 2RX, UK
| | - Ning Wang
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield S10 2RX, UK
- Leicester Cancer Research Centre, Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7LX, UK
| |
Collapse
|
3
|
Binmujlli MA. Radiological and Molecular Analysis of Radioiodinated Anastrozole and Epirubicin as Innovative Radiopharmaceuticals Targeting Methylenetetrahydrofolate Dehydrogenase 2 in Solid Tumors. Pharmaceutics 2024; 16:616. [PMID: 38794278 PMCID: PMC11126143 DOI: 10.3390/pharmaceutics16050616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/13/2024] [Accepted: 04/18/2024] [Indexed: 05/26/2024] Open
Abstract
In the dynamic field of radiopharmaceuticals, innovating targeted agents for cancer diagnosis and therapy is crucial. Our study enriches this evolving landscape by evaluating the potential of radioiodinated anastrozole ([125I]anastrozole) and radioiodinated epirubicin ([125I]epirubicin) as targeting agents against MTHFD2-driven tumors. MTHFD2, which is pivotal in one-carbon metabolism, is notably upregulated in various cancers, presenting a novel target for radiopharmaceutical application. Through molecular docking and 200 ns molecular dynamics (MD) simulations, we assess the binding efficiency and stability of [125I]anastrozole and [125I]epirubicin with MTHFD2. Molecular docking illustrates that [125I]epirubicin has a superior binding free energy (∆Gbind) of -41.25 kJ/mol compared to -39.07 kJ/mol for [125I]anastrozole and -38.53 kJ/mol for the control ligand, suggesting that it has a higher affinity for MTHFD2. MD simulations reinforce this, showing stable binding, as evidenced by root mean square deviation (RMSD) values within a narrow range, underscoring the structural integrity of the enzyme-ligand complexes. The root mean square fluctuation (RMSF) analysis indicates consistent dynamic behavior of the MTHFD2 complex upon binding with [125I]anastrozole and [125I]epirubicin akin to the control. The radius of gyration (RG) measurements of 16.90 Å for MTHFD2-[125I]anastrozole and 16.84 Å for MTHFD2-[125I]epirubicin confirm minimal structural disruption upon binding. The hydrogen bond analysis reveals averages of two and three stable hydrogen bonds for [125I]anastrozole and [125I]epirubicin complexes, respectively, highlighting crucial stabilizing interactions. The MM-PBSA calculations further endorse the thermodynamic favorability of these interactions, with binding free energies of -48.49 ± 0.11 kJ/mol for [125I]anastrozole and -43.8 kJ/mol for MTHFD2-. The significant contribution of Van der Waals and electrostatic interactions to the binding affinities of [125I]anastrozole and [125I]epirubicin, respectively, underscores their potential efficacy for targeted tumor imaging and therapy. These computational findings lay the groundwork for the future experimental validation of [125I]anastrozole and [125I]epirubicin as MTHFD2 inhibitors, heralding a notable advancement in precision oncology tools. The data necessitate subsequent in vitro and in vivo assays to corroborate these results.
Collapse
Affiliation(s)
- Mazen Abdulrahman Binmujlli
- Department of Internal Medicine, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 90950, Riyadh 11623, Saudi Arabia
| |
Collapse
|
4
|
Jana M, Sahoo S, Kottekad S, Usharani D, Rath H. Rational and controllable syntheses of variants of modified N-confused N-fused porphodimethenes and a porphotrimethene with adaptive properties. Dalton Trans 2024; 53:7397-7405. [PMID: 38587541 DOI: 10.1039/d4dt00770k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Retrosynthetic design and synthesis with structural isolation of two unprecedented core modified N-confused N-fused porphodimethene-like porphyrinoids possessing a [5.5.5.5] tetracyclic ring with tunable photophysical properties is reported. The solid-state X-ray crystal structure reveals the expected cis geometry for the meso-sp3 carbons. Controlled chemical oxidation of the porphodimethene analogue 11 bearing the N-confused pyrrole moiety to the corresponding porphotrimethene 12 has been achieved in quantitative yield, while 10 bearing the N-methyl N-confused pyrrole moiety remained unsusceptible to chemical oxidation. All three S2N3 hybrid N-confused N-fused porphodi(tri)methene-like porphyrinoids 10-12 could recognize the fluoride anion with high selectivity; however, porphodimethene 10 and porphotrimethene 12 do so via deprotonation rather than an anion recognition based mechanism as has been anticipated in the case of porphodimethene 11.
Collapse
Affiliation(s)
- Manik Jana
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A/2B Raja S.C Mullick Road, Jadavpur, Kolkata, West Bengal 700 032, India.
| | - Sumit Sahoo
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A/2B Raja S.C Mullick Road, Jadavpur, Kolkata, West Bengal 700 032, India.
| | - Sanjay Kottekad
- Department of Food Safety and Quality Control Laboratory, CSIR-Central Food Technology Research Institute, Mysuru, Karnataka, 700020, India.
| | - Dandamudi Usharani
- Department of Food Safety and Quality Control Laboratory, CSIR-Central Food Technology Research Institute, Mysuru, Karnataka, 700020, India.
- Academy of Scientific and Innovative Research (ACSIR), CSIR-HRDC, Ghaziabad, Uttar Pradesh, India
| | - Harapriya Rath
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A/2B Raja S.C Mullick Road, Jadavpur, Kolkata, West Bengal 700 032, India.
| |
Collapse
|
5
|
Yao Z, Gong Y, Chen W, Shao S, Song Y, Guo H, Li Q, Liu S, Wang X, Zhang Z, Wang Q, Xu Y, Wu Y, Wan Q, Zhao X, Xuan Q, Wang D, Lin X, Xu J, Liu J, Proud CG, Wang X, Yang R, Fu L, Niu S, Kong J, Gao L, Bo T, Zhao J. Upregulation of WDR6 drives hepatic de novo lipogenesis in insulin resistance in mice. Nat Metab 2023; 5:1706-1725. [PMID: 37735236 PMCID: PMC10590755 DOI: 10.1038/s42255-023-00896-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 08/23/2023] [Indexed: 09/23/2023]
Abstract
Under normal conditions, insulin promotes hepatic de novo lipogenesis (DNL). However, during insulin resistance (IR), when insulin signalling is blunted and accompanied by hyperinsulinaemia, the promotion of hepatic DNL continues unabated and hepatic steatosis increases. Here, we show that WD40 repeat-containing protein 6 (WDR6) promotes hepatic DNL during IR. Mechanistically, WDR6 interacts with the beta-type catalytic subunit of serine/threonine-protein phosphatase 1 (PPP1CB) to facilitate PPP1CB dephosphorylation at Thr316, which subsequently enhances fatty acid synthases transcription through DNA-dependent protein kinase and upstream stimulatory factor 1. Using molecular dynamics simulation analysis, we find a small natural compound, XLIX, that inhibits the interaction of WDR6 with PPP1CB, thus reducing DNL in IR states. Together, these results reveal WDR6 as a promising target for the treatment of hepatic steatosis.
Collapse
Affiliation(s)
- Zhenyu Yao
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, China
| | - Ying Gong
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, China
| | - Wenbin Chen
- Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Shanshan Shao
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, China
| | - Yongfeng Song
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, China
| | - Honglin Guo
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Qihang Li
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, China
| | - Sijin Liu
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Ximing Wang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhenhai Zhang
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Qian Wang
- Department of Ultrasound, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yunyun Xu
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, China
| | - Yingjie Wu
- Shandong Provincial Hospital, School of Laboratory Animal & Shandong Laboratory Animal Center, Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- Institute of Genome Engineered Animal Models, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Qiang Wan
- Center of Cell Metabolism and Disease, Jinan Central Hospital, Shandong First Medical University, Jinan, China
| | - Xinya Zhao
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Qiuhui Xuan
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, China
| | - Dawei Wang
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, China
| | - Xiaoyan Lin
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jiawen Xu
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jun Liu
- Department of Liver Transplantation and Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Christopher G Proud
- Lifelong Health, South Australian Health & Medical Research Institute, North Terrace, Adelaide, South Australia, Australia
| | - Xuemin Wang
- Lifelong Health, South Australian Health & Medical Research Institute, North Terrace, Adelaide, South Australia, Australia
| | - Rui Yang
- Institute of Genome Engineered Animal Models, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Lili Fu
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, China
| | - Shaona Niu
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, China
| | - Junjie Kong
- Department of Liver Transplantation and Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ling Gao
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China.
| | - Tao Bo
- Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.
| | - Jiajun Zhao
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, China.
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China.
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, China.
| |
Collapse
|
6
|
Cheng YJ, Fan F, Zhang Z, Zhang HJ. Lipid metabolism in malignant tumor brain metastasis: reprogramming and therapeutic potential. Expert Opin Ther Targets 2023; 27:861-878. [PMID: 37668244 DOI: 10.1080/14728222.2023.2255377] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 07/19/2023] [Accepted: 08/31/2023] [Indexed: 09/06/2023]
Abstract
INTRODUCTION Brain metastasis is a highly traumatic event in the progression of malignant tumors, often symbolizing higher mortality. Metabolic alterations are hallmarks of cancer, and the mask of lipid metabolic program rearrangement in cancer progression is gradually being unraveled. AREAS COVERED In this work, we reviewed clinical and fundamental studies related to lipid expression and activity changes in brain metastases originating from lung, breast, and cutaneous melanomas, respectively. Novel roles of lipid metabolic reprogramming in the development of brain metastasis from malignant tumors were identified and its potential as a therapeutic target was evaluated. Published literature and clinical studies in databases consisting of PubMed, Embase, Scopus and www.ClinicalTrials.gov from 1990 to 2022 were searched. EXPERT OPINION Lipid metabolic reprogramming in brain metastasis is involved in de novo lipid synthesis within low lipid availability environments, regulation of lipid uptake and storage, metabolic interactions between brain tumors and the brain microenvironment, and membrane lipid remodeling, in addition to being a second messenger for signal transduction. Although some lipid metabolism modulators work efficiently in preclinical models, there is still a long way to go from laboratory to clinic. This area of research holds assurance for the organ-targeted treatment of brain metastases through drug-regulated metabolic targets and dietary interventions.
Collapse
Affiliation(s)
- Yan-Jie Cheng
- Department of Oncology, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu, People's Republic of China
- Department of Oncology, Shanghai Fengxian District Central Hospital, Shanghai, China
| | - Fan Fan
- Department of Oncology, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Zhong Zhang
- Department of Oncology, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Hai-Jun Zhang
- Department of Oncology, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu, People's Republic of China
| |
Collapse
|
7
|
Choi SYC, Ribeiro CF, Wang Y, Loda M, Plymate SR, Uo T. Druggable Metabolic Vulnerabilities Are Exposed and Masked during Progression to Castration Resistant Prostate Cancer. Biomolecules 2022; 12:1590. [PMID: 36358940 PMCID: PMC9687810 DOI: 10.3390/biom12111590] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 08/27/2023] Open
Abstract
There is an urgent need for exploring new actionable targets other than androgen receptor to improve outcome from lethal castration-resistant prostate cancer. Tumor metabolism has reemerged as a hallmark of cancer that drives and supports oncogenesis. In this regard, it is important to understand the relationship between distinctive metabolic features, androgen receptor signaling, genetic drivers in prostate cancer, and the tumor microenvironment (symbiotic and competitive metabolic interactions) to identify metabolic vulnerabilities. We explore the links between metabolism and gene regulation, and thus the unique metabolic signatures that define the malignant phenotypes at given stages of prostate tumor progression. We also provide an overview of current metabolism-based pharmacological strategies to be developed or repurposed for metabolism-based therapeutics for castration-resistant prostate cancer.
Collapse
Affiliation(s)
- Stephen Y. C. Choi
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
- Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Caroline Fidalgo Ribeiro
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York-Presbyterian Hospital, New York, NY 10021, USA
| | - Yuzhuo Wang
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
- Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Massimo Loda
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York-Presbyterian Hospital, New York, NY 10021, USA
- New York Genome Center, New York, NY 10013, USA
| | - Stephen R. Plymate
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, 850 Republican St., Seattle, WA 98109, USA
- Geriatrics Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Takuma Uo
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, 850 Republican St., Seattle, WA 98109, USA
| |
Collapse
|
8
|
Tsao CH, Jhou RH, Ke CC, Chang CW, Chang CW, Yang BH, Huang WS, Shih BF, Liu RS. Dual-tracer positron emission tomography/computed tomography as an imaging probe of de novo lipogenesis in preclinical models of hepatocellular carcinoma. Front Med (Lausanne) 2022; 9:1008200. [PMID: 36237546 PMCID: PMC9551611 DOI: 10.3389/fmed.2022.1008200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundDe novo lipogenesis is upregulated in many cancers, and targeting it represents a metabolic approach to cancer treatment. However, the treatment response is unpredictable because lipogenic activity varies greatly among individual tumors, thereby necessitating the assessment of lipogenic activity before treatment. Here, we proposed an imaging probe, positron emission tomography/computed tomography (PET/CT) with dual tracers combining 11C-acetate and 18F-fluorodeoxyglucose (18F-FDG), to assess the lipogenic activity of hepatocellular carcinoma (HCC) and predict the response to lipogenesis-targeted therapy.MethodsWe investigated the association between 11C-acetate/18F-FDG uptake and de novo lipogenesis in three HCC cell lines (from well-differentiated to poorly differentiated: HepG2, Hep3B, and SkHep1) by examining the expression of lipogenic enzymes: acetyl-CoA synthetase 2 (ACSS2), fatty acid synthase (FASN), and ATP citrate lyase (ACLY). The glycolysis level was determined through glycolytic enzymes: pyruvate dehydrogenase expression (PDH). On the basis of the findings of dual-tracer PET/CT, we evaluated the treatment response to a lipase inhibitor (orlistat) in cell culture experiments and xenograft mice.ResultsDual-tracer PET/CT revealed the lipogenic activity of various HCC cells, which was positively associated with 11C-acetate uptake and negatively associated with 18F-FDG uptake. This finding represents the negative association between 11C-acetate and 18F-FDG uptake. Because these two tracers revealed the lipogenic and glycolytic activity, respectively, which implies an antagonism between lipogenic metabolism and glucose metabolism in HCC. In addition, dual-tracer PET/CT not only revealed the lipogenic activity but also predicted the treatment response to lipogenesis-targeted therapy. For example, HepG2 xenografts with high 11C-acetate but low 18F-FDG uptake exhibited high lipogenic activity and responded well to orlistat treatment, whereas SkHep1 xenografts with low 11C-acetate but high 18F-FDG uptake exhibited lower lipogenic activity and poor response to orlistat.ConclusionThe proposed non-invasive dual-tracer PET/CT imaging can reveal the lipogenesis and glycolysis status of HCC, thus providing an ideal imaging probe for predicting the therapeutic response of HCC to lipogenesis-targeted therapy.
Collapse
Affiliation(s)
- Chin-Ho Tsao
- Department of Nuclear Medicine, Mackay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Rong-Hong Jhou
- Department of Nuclear Medicine and National PET/Cyclotron Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chien-Chih Ke
- Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
- *Correspondence: Chien-Chih Ke,
| | - Chun-Wei Chang
- Institute of Fisheries Science, National Taiwan University, Taipei, Taiwan
| | - Chi-Wei Chang
- Department of Nuclear Medicine and National PET/Cyclotron Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Bang-Hung Yang
- Department of Nuclear Medicine and National PET/Cyclotron Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Wen-Sheng Huang
- Department of Nuclear Medicine and National PET/Cyclotron Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Bing-Fu Shih
- Department of Nuclear Medicine, Mackay Memorial Hospital, Taipei, Taiwan
| | - Ren-Shyan Liu
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Nuclear Medicine and National PET/Cyclotron Center, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Nuclear Medicine, Cheng-Hsin General Hospital, Taipei, Taiwan
- Molecular and Genetic Imaging Core, Animal Consortium, Taipei, Taiwan
- Ren-Shyan Liu,
| |
Collapse
|
9
|
Kelly JM, Jeitner TM, Waterhouse NN, Qu W, Linstad EJ, Samani B, Williams C, Nikolopoulou A, Amor-Coarasa A, DiMagno SG, Babich JW. Synthesis and Evaluation of 11C-Labeled Triazolones as Probes for Imaging Fatty Acid Synthase Expression by Positron Emission Tomography. Molecules 2022; 27:1552. [PMID: 35268652 PMCID: PMC8911806 DOI: 10.3390/molecules27051552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 12/10/2022] Open
Abstract
Cancer cells require lipids to fulfill energetic, proliferative, and signaling requirements. Even though these cells can take up exogenous fatty acids, the majority exhibit a dependency on de novo fatty acid synthesis. Fatty acid synthase (FASN) is the rate-limiting enzyme in this process. Expression and activity of FASN is elevated in multiple cancers, where it correlates with disease progression and poor prognosis. These observations have sparked interest in developing methods of detecting FASN expression in vivo. One promising approach is the imaging of radiolabeled molecular probes targeting FASN by positron emission tomography (PET). However, although [11C]acetate uptake by prostate cancer cells correlates with FASN expression, no FASN-specific PET probes currently exist. Our aim was to synthesize and evaluate a series of small molecule triazolones based on GSK2194069, an FASN inhibitor with IC50 = 7.7 ± 4.1 nM, for PET imaging of FASN expression. These triazolones were labeled with carbon-11 in good yield and excellent radiochemical purity, and binding to FASN-positive LNCaP cells was significantly higher than FASN-negative PC3 cells. Despite these promising characteristics, however, these molecules exhibited poor in vivo pharmacokinetics and were predominantly retained in lymph nodes and the hepatobiliary system. Future studies will seek to identify structural modifications that improve tumor targeting while maintaining the excretion profile of these first-generation 11C-methyltriazolones.
Collapse
Affiliation(s)
- James M. Kelly
- Molecular Imaging Innovations Institute (MI3), Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA; (T.M.J.); (C.W.J.); (A.N.); (A.A.-C.); (J.W.B.)
- Citigroup Biomedical Imaging Center, Weill Cornell Medicine, New York, NY 10021, USA; (N.N.W.); (W.Q.)
| | - Thomas M. Jeitner
- Molecular Imaging Innovations Institute (MI3), Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA; (T.M.J.); (C.W.J.); (A.N.); (A.A.-C.); (J.W.B.)
| | - Nicole N. Waterhouse
- Citigroup Biomedical Imaging Center, Weill Cornell Medicine, New York, NY 10021, USA; (N.N.W.); (W.Q.)
| | - Wenchao Qu
- Citigroup Biomedical Imaging Center, Weill Cornell Medicine, New York, NY 10021, USA; (N.N.W.); (W.Q.)
| | - Ethan J. Linstad
- Departments of Medicinal Chemistry & Pharmacognosy and Chemistry, University of Illinois-Chicago, Chicago, IL 60612, USA; (E.J.L.); (B.S.); (S.G.D.)
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Banafshe Samani
- Departments of Medicinal Chemistry & Pharmacognosy and Chemistry, University of Illinois-Chicago, Chicago, IL 60612, USA; (E.J.L.); (B.S.); (S.G.D.)
| | - Clarence Williams
- Molecular Imaging Innovations Institute (MI3), Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA; (T.M.J.); (C.W.J.); (A.N.); (A.A.-C.); (J.W.B.)
| | - Anastasia Nikolopoulou
- Molecular Imaging Innovations Institute (MI3), Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA; (T.M.J.); (C.W.J.); (A.N.); (A.A.-C.); (J.W.B.)
- Citigroup Biomedical Imaging Center, Weill Cornell Medicine, New York, NY 10021, USA; (N.N.W.); (W.Q.)
| | - Alejandro Amor-Coarasa
- Molecular Imaging Innovations Institute (MI3), Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA; (T.M.J.); (C.W.J.); (A.N.); (A.A.-C.); (J.W.B.)
| | - Stephen G. DiMagno
- Departments of Medicinal Chemistry & Pharmacognosy and Chemistry, University of Illinois-Chicago, Chicago, IL 60612, USA; (E.J.L.); (B.S.); (S.G.D.)
| | - John W. Babich
- Molecular Imaging Innovations Institute (MI3), Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA; (T.M.J.); (C.W.J.); (A.N.); (A.A.-C.); (J.W.B.)
- Citigroup Biomedical Imaging Center, Weill Cornell Medicine, New York, NY 10021, USA; (N.N.W.); (W.Q.)
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
10
|
Rath H, Jana M, Narayanasamy R, Usharani D, Tripathi K. Fluoride ion Coordination-Induced Turn-On Fluorescence of Tailored N-Methyl N-Confused Tripyrromonomethene Analogues. Org Biomol Chem 2022; 20:6741-6749. [DOI: 10.1039/d2ob01180h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Inorder to achieve striking compromise between flexibility and rigidity, two unprecedented highly air-stable N-methyl N-Confused tripyrromonomethene analogues in near quantitative yields have been synthesized by chloranil oxidation under aerobic condition....
Collapse
|
11
|
Cai L, Ying M, Wu H. Microenvironmental Factors Modulating Tumor Lipid Metabolism: Paving the Way to Better Antitumoral Therapy. Front Oncol 2021; 11:777273. [PMID: 34888248 PMCID: PMC8649922 DOI: 10.3389/fonc.2021.777273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/04/2021] [Indexed: 12/28/2022] Open
Abstract
Metabolic reprogramming is one of the emerging hallmarks of cancer and is driven by both the oncogenic mutations and challenging microenvironment. To satisfy the demands of energy and biomass for rapid proliferation, the metabolism of various nutrients in tumor cells undergoes important changes, among which the aberrant lipid metabolism has gained increasing attention in facilitating tumor development and metastasis in the past few years. Obstacles emerged in the aspect of application of targeting lipid metabolism for tumor therapy, due to lacking of comprehensive understanding on its regulating mechanism. Tumor cells closely interact with stromal niche, which highly contributes to metabolic rewiring of critical nutrients in cancer cells. This fact makes the impact of microenvironment on tumor lipid metabolism a topic of renewed interest. Abundant evidence has shown that many factors existing in the tumor microenvironment can rewire multiple signaling pathways and proteins involved in lipid metabolic pathways of cancer cells. Hence in this review, we summarized the recent progress on the understanding of microenvironmental factors regulating tumor lipid metabolism, and discuss the potential of modulating lipid metabolism as an anticancer approach.
Collapse
Affiliation(s)
- Limeng Cai
- Cancer Institute (Key Laboratory for Cancer Intervention and Prevention, China National Ministry of Education, Zhejiang Provincial Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Minfeng Ying
- Cancer Institute (Key Laboratory for Cancer Intervention and Prevention, China National Ministry of Education, Zhejiang Provincial Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hao Wu
- Cancer Institute (Key Laboratory for Cancer Intervention and Prevention, China National Ministry of Education, Zhejiang Provincial Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
12
|
Zhang Z, Liu S, Ma H, Xiang X, Nie D, Hu P, Tang G. Propionic Acid-Based PET Imaging of Prostate Cancer. Mol Imaging Biol 2021; 23:836-845. [PMID: 33876336 DOI: 10.1007/s11307-021-01608-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 04/08/2021] [Accepted: 04/12/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE This study aimed to evaluate the potential value of 2-[18F]fluoropropionic acid ([18F]FPA) for PET imaging of prostate cancer (PCa) and to explore the relationship between [18F]FPA accumulation and fatty acid synthase (FASN) levels in PCa models. The results of the first [18F]FPA PET study of a PCa patient are reported. PROCEDURES The LNCaP, PC-3 cell lines with high FASN expression, and DU145 cell lines with low FASN expression were selected for cell culture. A PET imaging comparison of [18F]FDG and [18F]FPA was performed in LNCaP, PC-3, and DU145 tumors. Additionally, in vivo inhibition experiments in those models were conducted with orlistat. In a human PET study, a patient with PCa before surgery was examined with [18F]FPA PET and [18F]FDG PET. RESULTS The uptake of [18F]FPA in the LNCaP and PC-3 tumors was higher than that of [18F]FDG (P<0.05 and P<0.05), but was lower in DU145 tumors (P<0.05). The accumulation (% ID/g) of [18F]FPA in the LNCaP, PC-3, and DU145 tumors decreased by 27.6, 40.5, and 11.7 %, respectively, after treatment with orlistat. The [18F]FPA showed higher radioactive uptake than [18F]FDG in the first PCa patient. CONCLUSIONS The [18F]FPA uptake in PCa models may be varies with fatty acid synthase activity and could be reduced after administration of a single FASN inhibitor, albeit the activity that is not measured directly. The [18F]FPA seems to be a potential broad-spectrum PET imaging agent and may serve as a valuable tool in the diagnosis of PCa in humans.
Collapse
Affiliation(s)
- Zhanwen Zhang
- Department of Nuclear Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Department of Nuclear Medicine and Medical Imaging, Guangdong Engineering Research Center for Translational Application of Medical Radiopharmaceuticals, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Shaoyu Liu
- Department of Nuclear Medicine and Medical Imaging, Guangdong Engineering Research Center for Translational Application of Medical Radiopharmaceuticals, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Department of Nuclear Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Hui Ma
- Department of Nuclear Medicine and Medical Imaging, Guangdong Engineering Research Center for Translational Application of Medical Radiopharmaceuticals, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xianhong Xiang
- Department of Nuclear Medicine and Medical Imaging, Guangdong Engineering Research Center for Translational Application of Medical Radiopharmaceuticals, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Dahong Nie
- Department of Nuclear Medicine and Medical Imaging, Guangdong Engineering Research Center for Translational Application of Medical Radiopharmaceuticals, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ping Hu
- Department of Nuclear Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China.
| | - Ganghua Tang
- Department of Nuclear Medicine and Medical Imaging, Guangdong Engineering Research Center for Translational Application of Medical Radiopharmaceuticals, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
- Nanfang PET Center and Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
13
|
Fatty Acid Metabolism Reprogramming in Advanced Prostate Cancer. Metabolites 2021; 11:metabo11110765. [PMID: 34822423 PMCID: PMC8618281 DOI: 10.3390/metabo11110765] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 12/23/2022] Open
Abstract
Prostate cancer (PCa) is a carcinoma in which fatty acids are abundant. Fatty acid metabolism is rewired during PCa development. Although PCa can be treated with hormone therapy, after prolonged treatment, castration-resistant prostate cancer can develop and can lead to increased mortality. Changes to fatty acid metabolism occur systemically and locally in prostate cancer patients, and understanding these changes may lead to individualized treatments, especially in advanced, castration-resistant prostate cancers. The fatty acid metabolic changes are not merely reflective of oncogenic activity, but in many cases, these represent a critical factor in cancer initiation and development. In this review, we analyzed the literature regarding systemic changes to fatty acid metabolism in PCa patients and how these changes relate to obesity, diet, circulating metabolites, and peri-prostatic adipose tissue. We also analyzed cellular fatty acid metabolism in prostate cancer, including fatty acid uptake, de novo lipogenesis, fatty acid elongation, and oxidation. This review broadens our view of fatty acid switches in PCa and presents potential candidates for PCa treatment and diagnosis.
Collapse
|
14
|
DeNicola GM, Shackelford DB. Metabolic Phenotypes, Dependencies, and Adaptation in Lung Cancer. Cold Spring Harb Perspect Med 2021; 11:a037838. [PMID: 34127512 PMCID: PMC8559540 DOI: 10.1101/cshperspect.a037838] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Lung cancer is a heterogeneous disease that is subdivided into histopathological subtypes with distinct behaviors. Each subtype is characterized by distinct features and molecular alterations that influence tumor metabolism. Alterations in tumor metabolism can be exploited by imaging modalities that use metabolite tracers for the detection and characterization of tumors. Microenvironmental factors, including nutrient and oxygen availability and the presence of stromal cells, are a critical influence on tumor metabolism. Recent technological advances facilitate the direct evaluation of metabolic alterations in patient tumors in this complex microenvironment. In addition, molecular alterations directly influence tumor cell metabolism and metabolic dependencies that influence response to therapy. Current therapeutic approaches to target tumor metabolism are currently being developed and translated into the clinic for patient therapy.
Collapse
Affiliation(s)
- Gina M DeNicola
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA
| | - David B Shackelford
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at the University of California, Los Angeles, California 90095, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at the University of California, Los Angeles, California 90095, USA
| |
Collapse
|
15
|
Ahmad F, Cherukuri MK, Choyke PL. Metabolic reprogramming in prostate cancer. Br J Cancer 2021; 125:1185-1196. [PMID: 34262149 PMCID: PMC8548338 DOI: 10.1038/s41416-021-01435-5] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 04/21/2021] [Accepted: 04/28/2021] [Indexed: 02/06/2023] Open
Abstract
Although low risk localised prostate cancer has an excellent prognosis owing to effective treatments, such as surgery, radiation, cryosurgery and hormone therapy, metastatic prostate cancer remains incurable. Existing therapeutic regimens prolong life; however, they are beset by problems of resistance, resulting in poor outcomes. Treatment resistance arises primarily from tumour heterogeneity, altered genetic signatures and metabolic reprogramming, all of which enable the tumour to serially adapt to drugs during the course of treatment. In this review, we focus on alterations in the metabolism of prostate cancer, including genetic signatures and molecular pathways associated with metabolic reprogramming. Advances in our understanding of prostate cancer metabolism might help to explain many of the adaptive responses that are induced by therapy, which might, in turn, lead to the attainment of more durable therapeutic responses.
Collapse
Affiliation(s)
- Fahim Ahmad
- grid.48336.3a0000 0004 1936 8075Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD USA ,grid.48336.3a0000 0004 1936 8075Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD USA
| | - Murali Krishna Cherukuri
- grid.48336.3a0000 0004 1936 8075Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD USA
| | - Peter L. Choyke
- grid.48336.3a0000 0004 1936 8075Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD USA
| |
Collapse
|
16
|
Das B, Dolai M, Dhara A, Mabhai S, Jana A, Dey S, Misra A. Acetate ion augmented fluorescence sensing of Zn 2+ by Salen-based probe, AIE character, and application for picric acid detection. ANALYTICAL SCIENCE ADVANCES 2021; 2:447-463. [PMID: 38716442 PMCID: PMC10989602 DOI: 10.1002/ansa.202000165] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 11/17/2024]
Abstract
Counter anion-triggered metal ion detection has been rarely reported by fluorimetric method. To address this challenging issue, a fluorescent probe (H2L) has been synthesized from bromo-salicylaldehyde and hydrazine hydrate, and structurally characterized by single crystal X-ray diffraction. The probe shows very weak fluorescence itself. However, its emission intensity increases in the presence of Zn2+ over other metal ions. Surprisingly, the emission profile of this probe in presence of Zn2+ is augmented only when acetate anion (OAc¯) is present as counter anion, that allows for precise quantitative analysis by spectroscopic studies. The compositions and complexation among the probe, Zn2+ ion, and OAc¯ are supported by ESI-MS, 1H-NMR, and Job's plot. Based on these studies, it is confirmed that the binding ratio between probe: metal is 1:2 and the detection limit (LOD) for the Zn2+ is 2.18 µM. The probe is capable of recognizing Zn2+ ion in the wide range of pH∼6.5-9.5, and it could be efficiently recycled by EDTA. Furthermore, the combinatorial molecular logic gate and memory device have been constructed from the fluorescent behavior of H2L with Zn2+, OAc¯, and EDTA input as based on NOT and AND gates. Interestingly, the aggregation-induced emission (AIEE) phenomenon is also perceived with greater than 50% water content in organic water mixtures, which are then useful for the detection of picric acid often used as explosive.
Collapse
Affiliation(s)
- Bhriguram Das
- Department of ChemistryVidyasagar UniversityMidnaporeWest Bengal721102India
- Department of ChemistryTamralipta MahavidyalayaPurba MedinipurWest Bengal721636India
| | - Malay Dolai
- Department of ChemistryPrabhat Kumar CollegeContai721404India
| | - Anamika Dhara
- Department of ChemistryHiralal Mazumdar Memorial College For WomenDakshineswar, North 24 ParganasKolkata700035India
| | | | - Atanu Jana
- Division of Physics and Semiconductor ScienceDongguk UniversitySeoul04620South Korea
| | - Satyajit Dey
- Department of ChemistryTamralipta MahavidyalayaPurba MedinipurWest Bengal721636India
| | - Ajay Misra
- Department of ChemistryVidyasagar UniversityMidnaporeWest Bengal721102India
| |
Collapse
|
17
|
Vassileva V, Braga M, Barnes C, Przystal J, Ashek A, Allott L, Brickute D, Abrahams J, Suwan K, Carcaboso AM, Hajitou A, Aboagye EO. Effective Detection and Monitoring of Glioma Using [ 18F]FPIA PET Imaging. Biomedicines 2021; 9:811. [PMID: 34356874 PMCID: PMC8301305 DOI: 10.3390/biomedicines9070811] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/25/2021] [Accepted: 07/09/2021] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Reprogrammed cellular metabolism is a cancer hallmark. In addition to increased glycolysis, the oxidation of acetate in the citric acid cycle is another common metabolic phenotype. We have recently developed a novel fluorine-18-labelled trimethylacetate-based radiotracer, [18F]fluoro-pivalic acid ([18F]FPIA), for imaging the transcellular flux of short-chain fatty acids, and investigated whether this radiotracer can be used for the detection of glioma growth. METHODS We evaluated the potential of [18F]FPIA PET to monitor tumor growth in orthotopic patient-derived (HSJD-GBM-001) and cell line-derived (U87, LN229) glioma xenografts, and also included [18F]FDG PET for comparison. We assessed proliferation (Ki-67) and the expression of lipid metabolism and transport proteins (CPT1, SLC22A2, SLC22A5, SLC25A20) by immunohistochemistry, along with etomoxir treatment to provide insights into [18F]FPIA uptake. RESULTS Longitudinal PET imaging showed gradual increase in [18F]FPIA uptake in orthotopic glioma models with disease progression (p < 0.0001), and high tumor-to-brain contrast compared to [18F]FDG (p < 0.0001). [18F]FPIA uptake correlated positively with Ki-67 (p < 0.01), SLC22A5 (p < 0.001) and SLC25A20 (p = 0.001), and negatively with CPT1 (p < 0.01) and SLC22A2 (p < 0.01). Etomoxir reduced [18F]FPIA uptake, which correlated with decreased Ki-67 (p < 0.05). CONCLUSIONS Our findings support the use of [18F]FPIA PET for the detection and longitudinal monitoring of glioma, showing a positive correlation with tumor proliferation, and suggest transcellular flux-mediated radiotracer uptake.
Collapse
Affiliation(s)
- Vessela Vassileva
- Department of Surgery and Cancer, Division of Cancer, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK; (M.B.); (C.B.); (L.A.); (D.B.); (J.A.)
| | - Marta Braga
- Department of Surgery and Cancer, Division of Cancer, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK; (M.B.); (C.B.); (L.A.); (D.B.); (J.A.)
| | - Chris Barnes
- Department of Surgery and Cancer, Division of Cancer, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK; (M.B.); (C.B.); (L.A.); (D.B.); (J.A.)
| | - Justyna Przystal
- Department of Medicine, Division of Brain Sciences, Imperial College London, Hammersmith Campus, Burlington Danes, London W12 0NN, UK; (J.P.); (K.S.); (A.H.)
| | - Ali Ashek
- Department of Medicine, Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK;
| | - Louis Allott
- Department of Surgery and Cancer, Division of Cancer, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK; (M.B.); (C.B.); (L.A.); (D.B.); (J.A.)
| | - Diana Brickute
- Department of Surgery and Cancer, Division of Cancer, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK; (M.B.); (C.B.); (L.A.); (D.B.); (J.A.)
| | - Joel Abrahams
- Department of Surgery and Cancer, Division of Cancer, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK; (M.B.); (C.B.); (L.A.); (D.B.); (J.A.)
| | - Keittisak Suwan
- Department of Medicine, Division of Brain Sciences, Imperial College London, Hammersmith Campus, Burlington Danes, London W12 0NN, UK; (J.P.); (K.S.); (A.H.)
| | | | - Amin Hajitou
- Department of Medicine, Division of Brain Sciences, Imperial College London, Hammersmith Campus, Burlington Danes, London W12 0NN, UK; (J.P.); (K.S.); (A.H.)
| | - Eric O. Aboagye
- Department of Surgery and Cancer, Division of Cancer, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK; (M.B.); (C.B.); (L.A.); (D.B.); (J.A.)
| |
Collapse
|
18
|
Guo Y, Gao D, Chen Y, Zhang Y, Chen L, Mao Y, Yu C, Qiu L, Lin J. Preclinical Evaluation of a Fluorine-18 Labeled Probe for the Detection of the Expression of PSMA Level in Cancer. ACS OMEGA 2021; 6:8279-8287. [PMID: 33817487 PMCID: PMC8015112 DOI: 10.1021/acsomega.0c06353] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
Prostate-specific membrane antigen (PSMA) is a prospect biomarker for the treatment of prostate cancer. Meanwhile, positron emission tomography (PET) is being developed as a significant imaging modality in cancer diagnosis. A new PET probe Glu-ureido-Lys-naphthylalanine-tranexamic acid-Gly(AMBF3)-triiodobenzoic acid (18F-GLNTGT) was radiosynthesized by a one-step 18F-labeled method. 18F-GLNTGT was obtained with a radioactivity yield (RCY) of 12.16 ± 6.4% and a good radiochemical purity (RCP > 96%). The cell uptakes of 18F-GLNTGT were determined to be 15.9 ± 0.43% ID and 9.47 ± 1.26% ID at 15 min in LNCaP cells and PC-3 cells, respectively. The cell internalization of 18F-GLNTGT was determined to be 12.89 ± 0.94% ID and 5.34 ± 0.15% ID at 15 min in LNCaP cells and PC-3 cells, respectively. It is suggested that the probe has good specificity targeting PSMA. From the results of 18F-GLNTGT binding affinity with PSMA, it has a higher affinity and a K i value of 0.49 nM (95% confidence interval (CI): 0.35-0.67 nM). In PET imaging, 18F-GLNTGT showed the highest tumor uptake of 3.51 ± 0.15% ID/g at 45 min and the maximum tumor/muscle (T/Mmax) ratio of 3.68 ± 0.29 at 60 min post-injection (p.i.) in LNCaP tumors. The control probe 18F-AlF-NOTA-RGD2 presented the highest tumor uptake of 4.2 ± 0.54% ID/g at 7.5 min and the T/Mmax ratio of 2.72 ± 0.63 at 45 min p.i. in LNCaP tumors. The results showed that the probe has a higher tumor/muscle ratio compared with the control probe 18F-AlF-NOTA-RGD2. Although the probe 18F-GLNTGT has some limitations for CT signal detection both in cells and in vivo, it is still a promising PET probe for targeting PSMA membrane protein.
Collapse
Affiliation(s)
- Yirui Guo
- Wuxi
School of Medicine, Jiangnan University, Wuxi 214122, P. R. China
- NHC
Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular
Nuclear Medicine, Jiangsu Institute of Nuclear
Medicine, Wuxi 214063, P. R. China
| | - Dingyao Gao
- NHC
Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular
Nuclear Medicine, Jiangsu Institute of Nuclear
Medicine, Wuxi 214063, P. R. China
| | - Yinfei Chen
- NHC
Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular
Nuclear Medicine, Jiangsu Institute of Nuclear
Medicine, Wuxi 214063, P. R. China
| | - Yu Zhang
- Department
of Nuclear Medicine, Affiliated Hospital
of Jiangnan University, Wuxi 214062, P. R. China
| | - Liping Chen
- Department
of Nuclear Medicine, Affiliated Hospital
of Jiangnan University, Wuxi 214062, P. R. China
| | - Yong Mao
- Department
of Oncology, Affiliated Hospital of Jiangnan
University, Wuxi 214062, P. R. China
| | - Chunjing Yu
- Wuxi
School of Medicine, Jiangnan University, Wuxi 214122, P. R. China
- Department
of Nuclear Medicine, Affiliated Hospital
of Jiangnan University, Wuxi 214062, P. R. China
| | - Ling Qiu
- NHC
Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular
Nuclear Medicine, Jiangsu Institute of Nuclear
Medicine, Wuxi 214063, P. R. China
| | - Jianguo Lin
- NHC
Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular
Nuclear Medicine, Jiangsu Institute of Nuclear
Medicine, Wuxi 214063, P. R. China
| |
Collapse
|
19
|
Uo T, Sprenger CC, Plymate SR. Androgen Receptor Signaling and Metabolic and Cellular Plasticity During Progression to Castration Resistant Prostate Cancer. Front Oncol 2020; 10:580617. [PMID: 33163409 PMCID: PMC7581990 DOI: 10.3389/fonc.2020.580617] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/25/2020] [Indexed: 12/14/2022] Open
Abstract
Metabolic reprogramming is associated with re/activation and antagonism of androgen receptor (AR) signaling that drives prostate cancer (PCa) progression to castration resistance, respectively. In particular, AR signaling influences the fates of citrate that uniquely characterizes normal and malignant prostatic metabolism (i.e., mitochondrial export and extracellular secretion in normal prostate, mitochondrial retention and oxidation to support oxidative phenotype of primary PCa, and extra-mitochondrial interconversion into acetyl-CoA for fatty acid synthesis and epigenetics in the advanced PCa). The emergence of castration-resistant PCa (CRPC) involves reactivation of AR signaling, which is then further targeted by androgen synthesis inhibitors (abiraterone) and AR-ligand inhibitors (enzalutamide, apalutamide, and daroglutamide). However, based on AR dependency, two distinct metabolic and cellular adaptations contribute to development of resistance to these agents and progression to aggressive and lethal disease, with the tumor ultimately becoming highly glycolytic and with imaging by a tracer of tumor energetics, 18F-fluorodoxyglucose (18F-FDG). Another major resistance mechanism involves a lineage alteration into AR-indifferent carcinoma such a neuroendocrine which is diagnostically characterized by robust 18F-FDG uptake and loss of AR signaling. PCa is also characterized by metabolic alterations such as fatty acid and polyamine metabolism depending on AR signaling. In some cases, AR targeting induces rather than suppresses these alterations in cellular metabolism and energetics, which can be explored as therapeutic targets in lethal CRPC.
Collapse
Affiliation(s)
- Takuma Uo
- Department of Medicine, University of Washington, Seattle, WA, United States
| | - Cynthia C. Sprenger
- Department of Medicine, University of Washington, Seattle, WA, United States
| | - Stephen R. Plymate
- Department of Medicine, University of Washington, Seattle, WA, United States
- Geriatrics Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle, WA, United States
| |
Collapse
|
20
|
Bader DA, McGuire SE. Tumour metabolism and its unique properties in prostate adenocarcinoma. Nat Rev Urol 2020; 17:214-231. [PMID: 32112053 DOI: 10.1038/s41585-020-0288-x] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2020] [Indexed: 12/14/2022]
Abstract
Anabolic metabolism mediated by aberrant growth factor signalling fuels tumour growth and progression. The first biochemical descriptions of the altered metabolic nature of solid tumours were reported by Otto Warburg almost a century ago. Now, the study of tumour metabolism is being redefined by the development of new molecular tools, tumour modelling systems and precise instrumentation together with important advances in genetics, cell biology and spectroscopy. In contrast to Warburg's original hypothesis, accumulating evidence demonstrates a critical role for mitochondrial metabolism and substantial variation in the way in which different tumours metabolize nutrients to generate biomass. Furthermore, computational and experimental approaches suggest a dominant influence of the tissue-of-origin in shaping the metabolic reprogramming that enables tumour growth. For example, the unique metabolic properties of prostate adenocarcinoma are likely to stem from the distinct metabolism of the prostatic epithelium from which it emerges. Normal prostatic epithelium employs comparatively glycolytic metabolism to sustain physiological citrate secretion, whereas prostate adenocarcinoma consumes citrate to power oxidative phosphorylation and fuel lipogenesis, enabling tumour progression through metabolic reprogramming. Current data suggest that the distinct metabolic aberrations in prostate adenocarcinoma are driven by the androgen receptor, providing opportunities for functional metabolic imaging and novel therapeutic interventions that will be complementary to existing diagnostic and treatment options.
Collapse
Affiliation(s)
- David A Bader
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA. .,Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA.
| | - Sean E McGuire
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA. .,Department of Radiation Oncology, Division of Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
21
|
Regula N, Honarvar H, Lubberink M, Jorulf H, Ladjevardi S, Häggman M, Antoni G, Buijs J, Velikyan I, Sörensen J. Carbon Flux as a Measure of Prostate Cancer Aggressiveness: [ 11C]-Acetate PET/CT. Int J Med Sci 2020; 17:214-223. [PMID: 32038105 PMCID: PMC6990881 DOI: 10.7150/ijms.39542] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 12/12/2019] [Indexed: 01/15/2023] Open
Abstract
Purpose: Dynamic [11C]-acetate positron emission tomography (PET) can be used to study tissue perfusion and carbon flux simultaneously. In this study, the feasibility of the quantification of prostate cancer aggressiveness using parametric methods assessing [11C]-acetate kinetics was investigated in prostate cancer subjects. The underlying uptake mechanism correlated with [11C]-acetate influx and efflux measured in real-time in vitro in cell culture. Methods: Twenty-one patients with newly diagnosed low-to-moderate risk prostate cancer underwent magnetic resonance imaging (MRI) and dynamic [11C]-acetate PET/CT examinations of the pelvis. Parametric images of K1 (extraction × perfusion), k2 (oxidative metabolism) and VT (=K1/k2, anabolic metabolism defined as carbon retention) were constructed using a one-tissue compartment model with an arterial input function derived from pelvic arteries. Regions of interest (ROIs) of the largest cancer lesion in each patient and normal prostate tissue were drawn using information from MRI (T2 and DWI images), biopsy results, and post-surgical histopathology of whole prostate sections (n=7). In vitro kinetics of [11C]-acetate were studied on DU145 and PC3 cell lines using LigandTracer® White equipment for the measurement of the radioactivity uptake in real-time at 37°C. Results: Mean prostate specific antigen (PSA) was 8.33±3.92 ng/mL and median Gleason Sum 6 (range 5-7). K1, VT and standardized uptake values (SUVs) were significantly higher in cancerous prostate tissues compared to normal ones for all patients (p<0.001), while k2 was not (p=0.26). PSA values correlated to early SUVs (r=0.50, p=0.02) and K1 (r=0.48, p=0.03). Early and late SUVs correlated to VT (r>0.76, p<0.001) and K1 (r>0.64, p<0.005). In vitro studies demonstrated higher extraction and retention (p<0.01) of [11C]-acetate in the more aggressive PC3 cells. Conclusion: Parametric images could be used to visualize the [11C]-acetate kinetics of the prostate cancer exhibiting elevated extraction associated with the cancer aggressiveness. The influx rate of [11C]-acetate studied in cell culture also showed dependence on the cancer aggressiveness associated with elevated lipogenesis. Dynamic [11C]-acetate/PET demonstrated potential for prostate cancer aggressiveness estimation using parametric-based K1 and VT values.
Collapse
Affiliation(s)
- Naresh Regula
- Division of Nuclear Medicine and PET, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Hadis Honarvar
- Division of Nuclear Medicine and PET, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Mark Lubberink
- Division of Nuclear Medicine and PET, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.,Medical Physics, Uppsala University Hospital, Uppsala, Sweden
| | - Håkan Jorulf
- Division of Nuclear Medicine and PET, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Sam Ladjevardi
- Division of Urology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Michael Häggman
- Division of Urology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Gunnar Antoni
- Division of Molecular Imaging, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Jos Buijs
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Irina Velikyan
- Division of Nuclear Medicine and PET, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Jens Sörensen
- Division of Nuclear Medicine and PET, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.,PET Centre, Uppsala University Hospital, Uppsala, Sweden
| |
Collapse
|
22
|
Zhang Z, Liu S, Ma H, Nie D, Wen F, Zhao J, Sun A, Yuan G, Su S, Xiang X, Hu P, Tang G. Validation of R-2-[18F]Fluoropropionic Acid as a Potential Tracer for PET Imaging of Liver Cancer. Mol Imaging Biol 2019; 21:1127-1137. [PMID: 30847820 DOI: 10.1007/s11307-019-01346-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
23
|
Arlauckas SP, Browning EA, Poptani H, Delikatny EJ. Imaging of cancer lipid metabolism in response to therapy. NMR IN BIOMEDICINE 2019; 32:e4070. [PMID: 31107583 DOI: 10.1002/nbm.4070] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 12/21/2018] [Accepted: 12/21/2018] [Indexed: 06/09/2023]
Abstract
Lipids represent a diverse array of molecules essential to the cell's structure, defense, energy, and communication. Lipid metabolism can often become dysregulated during tumor development. During cancer therapy, targeted inhibition of cell proliferation can likewise cause widespread and drastic changes in lipid composition. Molecular imaging techniques have been developed to monitor altered lipid profiles as a biomarker for cancer diagnosis and treatment response. For decades, MRS has been the dominant non-invasive technique for studying lipid metabolite levels. Recent insights into the oncogenic transformations driving changes in lipid metabolism have revealed new mechanisms and signaling molecules that can be exploited using optical imaging, mass spectrometry imaging, and positron emission tomography. These novel imaging modalities have provided researchers with a diverse toolbox to examine changes in lipids in response to a wide array of anticancer strategies including chemotherapy, radiation therapy, signal transduction inhibitors, gene therapy, immunotherapy, or a combination of these strategies. The understanding of lipid metabolism in response to cancer therapy continues to evolve as each therapeutic method emerges, and this review seeks to summarize the current field and areas of unmet needs.
Collapse
Affiliation(s)
- Sean Philip Arlauckas
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Systems Biology, Mass General Hospital, Boston, MA, USA
| | - Elizabeth Anne Browning
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Harish Poptani
- Department of Cellular and Molecular Physiology, Institute of Regenerative Medicine, University of Liverpool, Liverpool, UK
| | - Edward James Delikatny
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
24
|
Micro-PET imaging of [18F]fluoroacetate combined with [18F]FDG to differentiate chronic Mycobacterium tuberculosis infection from an acute bacterial infection in a mouse model: a preliminary study. Nucl Med Commun 2019; 40:639-644. [PMID: 30932968 DOI: 10.1097/mnm.0000000000001017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Mycobacterium tuberculosis (TB) infection is one of the deadliest infectious diseases worldwide and is responsible for 1.7 million deaths per year. The increase in multidrug-resistant TB poses formidable challenges to the global control of tuberculosis. TB infection could easily yield false-positive results in fluorine-18-fluorodeoxyglucose ([F]FDG) PET imaging for cancer detection because of its high [F]FDG uptake. We describe the combined [F]FDG PET with fluorine-18-fluoroacetate ([F]FAC), a promising analog of carbon-11-acetate, for targeting glycolysis and de novo lipogenesis, respectively, to determine the metabolic differences between chronic TB infection and acute infection. MATERIALS AND METHODS Six-month-old BALB/c mice were inoculated with Mycobacterium bovis to induce chronic TB infection, and Escherichia coli as well as Staphylococcus aureus to induce acute infection for an in-vivo imaging study. Eighteen days after inoculation for chronic TB infection and 5 days for acute infection, both [F]FDG and [F]FAC micro-PET were performed on the infected mice. Analysis of variance and the Tukey honest ad-hoc test were carried out to determine differences among treatment with different bacterial infections. RESULTS TB infection showed much lower [F] FAC accumulation than acute infection. However, both TB infection and acute infection exhibited high [F]FAC accumulation. CONCLUSION The marked metabolic differences in de novo lipogenesis and glycolysis in [F]FDG and [F]FAC uptakes in micro-PET imaging, respectively, help to differentiate chronic TB infection from acute infection.
Collapse
|
25
|
Zhao J, Zhang Z, Nie D, Ma H, Yuan G, Su S, Liu S, Liu S, Tang G. PET Imaging of Hepatocellular Carcinomas: 18F-Fluoropropionic Acid as a Complementary Radiotracer for 18F-Fluorodeoxyglucose. Mol Imaging 2019; 18:1536012118821032. [PMID: 30799682 PMCID: PMC6322104 DOI: 10.1177/1536012118821032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/31/2018] [Accepted: 11/26/2018] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE To evaluate the preclinical value of 18F-fluoropropionic acid (18F-FPA) and 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) for imaging HCCs. METHODS The 18F-FPA and 18F-FDG uptake patterns in 3 HCC cell lines (Hep3B, HepG2, and SK-Hep1) were assessed in vitro and in vivo. The 18F-FPA uptake mechanism was investigated using inhibition experiments with orlistat and 5-tetradecyloxy-2-furoic acid. The 18F-FPA PET imaging was performed in different tumor animal models and compared with 18F-FDG. We also evaluated the expressions of glucose transporter-1 (GLUT1), fatty acid synthase (FASN), and matrix metalloproteinase-2 (MMP2) in these cell lines. RESULTS In vitro experiments showed that the radiotracer uptake patterns were complementary in the HCC cell lines. Orlistat and 5-tetradecyloxy-2-furoic acid decreased the uptake of 18F-FPA. The tumor-to-liver ratio of 18F-FPA was superior to that of 18F-FDG in the SK-Hep1 and HepG2 tumors ( P < .05). However, in the Hep3B tumors, the tumor-to-liver normalized uptake of 18F-FDG was higher than 18F-FPA ( P < .01). FASN was highly expressed in cell lines with high 18F-FPA uptake, whereas GLUT1 was highly expressed in cell lines with high 18F-FDG uptake. The 18F-FPA uptake correlated with FASN ( r = 0.89, P = .014) and MMP2 ( r = 0.77, P = .002) expressions. CONCLUSIONS PET imaging with 18F-FPA combined with 18F-FDG can be an alternative for detecting HCC.
Collapse
Affiliation(s)
- Jing Zhao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangzhou, China
- Department of Nuclear Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Engineering Research Center for Translational Application of Medical Radiopharmaceuticals, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhanwen Zhang
- Guangdong Engineering Research Center for Translational Application of Medical Radiopharmaceuticals, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Nuclear Medicine and Imaging Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Nuclear Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dahong Nie
- Guangdong Engineering Research Center for Translational Application of Medical Radiopharmaceuticals, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hui Ma
- Guangdong Engineering Research Center for Translational Application of Medical Radiopharmaceuticals, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Nuclear Medicine and Imaging Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Gongjun Yuan
- Guangdong Engineering Research Center for Translational Application of Medical Radiopharmaceuticals, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Nuclear Medicine and Imaging Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shu Su
- Guangdong Engineering Research Center for Translational Application of Medical Radiopharmaceuticals, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Nuclear Medicine and Imaging Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shaoyu Liu
- Guangdong Engineering Research Center for Translational Application of Medical Radiopharmaceuticals, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Nuclear Medicine and Imaging Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Sheng Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangzhou, China
- Department of Nuclear Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ganghua Tang
- Guangdong Engineering Research Center for Translational Application of Medical Radiopharmaceuticals, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Nuclear Medicine and Imaging Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
26
|
Strandberg S, Hashemi A, Axelsson J, Riklund K. Optimization of PET reconstruction algorithm, SUV thresholding algorithm and PET acquisition time in clinical 11C-acetate PET/CT. PLoS One 2018; 13:e0209169. [PMID: 30543705 PMCID: PMC6292629 DOI: 10.1371/journal.pone.0209169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 11/30/2018] [Indexed: 12/02/2022] Open
Abstract
Introduction 11C-acetate (ACE)-PET/CT is used for staging of high-risk prostate cancer. PET data is reconstructed with iterative algorithms, such as VUEPointHD ViP (VPHD) and VUEPoint HD Sharp IR (SharpIR), the latter with additional resolution recovery. It is expected that the resolution recovery algorithm should render more accurate maximum and mean standardized uptake values (SUVmax and SUVmean) and functional tumor volumes (FTV) than the ordinary OSEM. Performing quantitative analysis, choice of volume-of-interest delineation algorithm (SUV threshold) may influence FTV. Optimizing PET acquisition time is justified if image quality and quantitation do not deteriorate. The aim of this study is to identify the optimal reconstruction algorithm, SUV threshold and acquisition time for ACE-PET/CT. Methods ACE-PET/CT data acquired with a General Electric Discovery 690 PET/CT from 16 consecutive high-risk prostate cancer patients was reconstructed with VPHD and SharpIR. Forty pelvic lymph nodes (LNs) and 14 prostate glands were delineated with 42% and estimated threshold. SUVmax, SUVmean, FTV and total lesion uptake were measured. Default acquisition time was four minutes per bed position. In a subset of lesions, acquisition times of one, two and four minutes were evaluated. Structural tumor volumes (STV) of the LNs were measured with CT for correlation with functional volumetric parameters. To validate SUV quantification under different conditions with SharpIR 42%, recovery coefficients (RCs) of SUVmean and FTV were calculated from a phantom with 18F-fluoro-deoxy-glucose (FDG)-filled volumes 0.1–9.2cm3 and signal-to-background (S/B) ratios 4.3–15.9. Results With SharpIR, SUVmax and SUVmean were higher and FTV lower compared with VPHD, regardless of threshold method, in both prostates and LNs. Total lesion uptake determined with both threshold methods was lower with SharpIR compared with VPHD with both threshold methods, except in subgroup analysis of prostate targets where estimated threshold returned higher values. Longer acquisition times returned higher FTV for both threshold methods, regardless of reconstruction algorithm. The FTV difference was most pronounced with one minute’s acquisition per bed position, which also produced visually the highest noise. SUV parameters were unaffected by varying acquisition times. FTV with SharpIR 42% showed the best correspondence with STV. SharpIR 42% gave higher RCs of SUVmean and FTV with increasing phantom size and S/B-ratio, as expected. Conclusions Delineation with SharpIR 42% seems to provide the most accurate combined information from SUVmax, SUVmean, FTV and total lesion uptake. Acquisition time may be shortened to two minutes per bed position with preserved image quality.
Collapse
Affiliation(s)
- Sara Strandberg
- Department of Radiation Sciences, Diagnostic Radiology, Umea University, Umea, Sweden
- * E-mail:
| | - Armin Hashemi
- Department of Radiation Sciences, Diagnostic Radiology, Umea University, Umea, Sweden
| | - Jan Axelsson
- Department of Radiation Sciences, Diagnostic Radiology, Umea University, Umea, Sweden
| | - Katrine Riklund
- Department of Radiation Sciences, Diagnostic Radiology, Umea University, Umea, Sweden
| |
Collapse
|
27
|
Muteganya R, Goldman S, Aoun F, Roumeguère T, Albisinni S. Current Imaging Techniques for Lymph Node Staging in Prostate Cancer: A Review. Front Surg 2018; 5:74. [PMID: 30581819 PMCID: PMC6293868 DOI: 10.3389/fsurg.2018.00074] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 11/19/2018] [Indexed: 12/13/2022] Open
Abstract
Introduction: Lymph node metastases (LNM) represent a proven prognostic factor for biochemical recurrence (BCR)-free survival, metastatic free survival and overall survival in prostate cancer (PCa). Although pelvic node dissection remains the gold standard for the detection of LNM, novel imaging techniques are entering clinical practice, in the effort to improve LNM detection and spare unnecessary surgeries. Aim of the current review is to describe such imaging techniques and explore their advantages and limitations. Evidence Acquisition: The National Library of Medicine Database was searched for relevant articles published between January 2013 and August 2018. A wide search was performed including the combination of following words: “Prostate” and “Cancer” and “staging” and “Lymph Node” and “imaging” and (“MRI” or “PET”). The initial list of selected papers was enriched by individual suggestions of the authors of the present review. Evidence Synthesis: DWI-MRI in detection of lymph node invasion has a sensitivity and specificity of 41 and 94%, respectively. For SPIO MRI using ferumoxtran-10, the sensitivity for detection of LNM with short axis diameter of 5–10 mm is reported at 96.4%, compared to 28.5% with MRI alone. PSMA PET/CT is growing exponentially, both in the initial detection of LNM and for BCR evaluation. Fluciclovine PET could improve detection of subcentimetric pathologic lymph nodes. Sentinel lymph node techniques remain experimental and not validated in the field of PCa. Conclusions: Molecular imaging, particularly PSMA ligand PET imaging, present interesting diagnostic accuracy in LN diagnosis even in subcentimetric LN. DWI-MRI yields good results in LN involvement evaluation and the use of contrast agent such SPIO may improve the detection rate. The SLN technique is limited to experimental protocols and for intermediate or high-risk PCa. Prospective trials are awaited to evaluate the true clinical impact of these imaging techniques on PCa oncologic outcomes.
Collapse
Affiliation(s)
- Raoul Muteganya
- Department of Nuclear Medicine, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Serge Goldman
- Department of Nuclear Medicine, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Fouad Aoun
- Urology Department, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium.,Urology Department, Hôtel Dieu de France, Université Saint Joseph, Beyrouth, Lebanon
| | - Thierry Roumeguère
- Urology Department, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Simone Albisinni
- Urology Department, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
28
|
Maurer A, Bowden G, Cotton J, Parl C, Krueger MA, Pichler BJ. Acetuino-A Handy Open-Source Radiochemistry Module for the Preparation of [1- 11C]Acetate. SLAS Technol 2018; 24:321-329. [PMID: 30500308 DOI: 10.1177/2472630318812341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Radiosynthesis of [1-11C]acetate is well described in literature, but all syntheses either require adaptations in complex commercial synthesizers or rely on closed-source hardware and software control. Arduino microcontrollers are ideal for the compact, flexible, and inexpensive control of low-complexity hardware, making them particularly suited for radiochemistry where operation in space-limited shielded hot cells is mandatory. We established a [1-11C]acetate radiosynthesis module for combination with a [11C]MeI module available in almost every lab working with 11C. Its small footprint even enables back-to-back production in a hot cell already occupied by other modules. Using this setup, we achieved a reliable and flexible supply of this tracer, with radiochemical yields of 51.4 ± 28.2% and radiochemical purities (RCPs) of 94.4 ± 6.7% ( n = 9) in a synthesis time of 15 minutes. Positron emission tomography (PET) and biodistribution analysis demonstrated low background uptake in healthy mice, with highest uptake in liver and kidneys. Arduino microcontrollers have become valuable and versatile tools in our lab for the automatization of low-complexity procedures not requiring full-blown commercial radiochemistry synthesizers, as showcased here for the production of [1-11C]acetate.
Collapse
Affiliation(s)
- Andreas Maurer
- 1 Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, Tübingen, Germany
| | - Gregory Bowden
- 1 Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, Tübingen, Germany
| | - Jonathan Cotton
- 1 Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, Tübingen, Germany
| | - Christoph Parl
- 1 Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, Tübingen, Germany
| | - Marcel A Krueger
- 1 Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, Tübingen, Germany
| | - Bernd J Pichler
- 1 Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, Tübingen, Germany
| |
Collapse
|
29
|
Gennaro KH, Porter KK, Gordetsky JB, Galgano SJ, Rais-Bahrami S. Imaging as a Personalized Biomarker for Prostate Cancer Risk Stratification. Diagnostics (Basel) 2018; 8:diagnostics8040080. [PMID: 30513602 PMCID: PMC6316045 DOI: 10.3390/diagnostics8040080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/13/2018] [Accepted: 11/15/2018] [Indexed: 02/07/2023] Open
Abstract
Biomarkers provide objective data to guide clinicians in disease management. Prostate-specific antigen serves as a biomarker for screening of prostate cancer but has come under scrutiny for detection of clinically indolent disease. Multiple imaging techniques demonstrate promising results for diagnosing, staging, and determining definitive management of prostate cancer. One such modality, multiparametric magnetic resonance imaging (mpMRI), detects more clinically significant disease while missing lower volume and clinically insignificant disease. It also provides valuable information regarding tumor characteristics such as location and extraprostatic extension to guide surgical planning. Information from mpMRI may also help patients avoid unnecessary biopsies in the future. It can also be incorporated into targeted biopsies as well as following patients on active surveillance. Other novel techniques have also been developed to detect metastatic disease with advantages over traditional computer tomography and magnetic resonance imaging, which primarily rely on defined size criteria. These new techniques take advantage of underlying biological changes in prostate cancer tissue to identify metastatic disease. The purpose of this review is to present literature on imaging as a personalized biomarker for prostate cancer risk stratification.
Collapse
Affiliation(s)
- Kyle H Gennaro
- Department of Urology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Kristin K Porter
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Jennifer B Gordetsky
- Department of Urology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Samuel J Galgano
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Soroush Rais-Bahrami
- Department of Urology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
30
|
Galgano SJ, Valentin R, McConathy J. Role of PET imaging for biochemical recurrence following primary treatment for prostate cancer. Transl Androl Urol 2018; 7:S462-S476. [PMID: 30363475 PMCID: PMC6178324 DOI: 10.21037/tau.2018.06.09] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Prostate cancer is one of the most common cancers in men worldwide, and primary prostate cancer is typically treated with surgery, radiation, androgen deprivation, or a combination of these therapeutic modalities. Despite technical advances, approximately 30% of men will experience biochemical recurrent within 10 years of definitive treatment. Upon detection of a rise in serum prostate specific antigen (PSA), there is great need to accurately stage these patients to help guide further therapy. As a result, there are considerable efforts underway to establish the role of positron emission tomography (PET) in the diagnostic algorithm of biochemically recurrent prostate cancer. This manuscript provides an overview of PET tracers used for the detection and localization of prostate cancer in the setting of biochemical recurrence with a focus on PET tracers that are currently being used in clinical practice in the United States.
Collapse
Affiliation(s)
- Samuel J Galgano
- Department of Radiology, Section of Molecular Imaging and Therapeutics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Roberto Valentin
- Department of Radiology, Section of Molecular Imaging and Therapeutics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jonathan McConathy
- Department of Radiology, Section of Molecular Imaging and Therapeutics, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
31
|
Zhang Z, Liu S, Tang X, Nie D, Tang G, Sun A, Xiong Y, Ma H, Wen F, Hu P. Radiosynthesis and preliminary biological evaluation of the 2-[18F]fluoropropionic acid enantiomers for tumor PET imaging. J Radioanal Nucl Chem 2018. [DOI: 10.1007/s10967-018-5753-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
32
|
MRI and 11C Acetate PET/CT for Prediction of Regional Lymph Node Metastasis in Newly Diagnosed Prostate Cancer. Radiol Oncol 2018. [PMID: 29520210 PMCID: PMC5839086 DOI: 10.2478/raon-2018-0001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Background The aim of the study was to examine the value of quantitative and qualitative MRI and 11C acetate PET/CT parameters in predicting regional lymph node (LN) metastasis of newly diagnosed prostate cancer (PCa). Patients and methods Patients with intermediate (n = 6) and high risk (n = 47) PCa underwent 3T MRI (40 patients) and 11C acetate PET/CT (53 patients) before extended pelvic LN dissection. For each patient the visually most suspicious LN was assessed for mean apparent diffusion coefficient (ADCmean), maximal standardized uptake value (SUVmax), size and shape and the primary tumour for T stage on MRI and ADCmean and SUVmax in the index lesion. The variables were analysed in simple and multiple logistic regression analysis. Results All variables, except ADCmean and SUVmax of the primary tumor, were independent predictors of LN metastasis. In multiple logistic regression analysis the best model was ADCmean in combintion with MRI T-stage where both were independent predictors of LN metastasis, this combination had an AUC of 0.81 which was higher than the AUC of 0.65 for LN ADCmean alone and the AUC of 0.69 for MRI T-stage alone. Conclusions Several quantitative and qualitative imaging parameters are predictive of regional LN metastasis in PCa. The combination of ADCmean in lymph nodes and T-stage on MRI was the best model in multiple logistic regression with increased predictive value compared to lymph node ADCmean and T-stage on MRI alone.
Collapse
|
33
|
Singh A, Sahoo SK, Trivedi DR. Colorimetric anion sensors based on positional effect of nitro group for recognition of biologically relevant anions in organic and aqueous medium, insight real-life application and DFT studies. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 188:596-610. [PMID: 28779621 DOI: 10.1016/j.saa.2017.07.051] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 07/17/2017] [Accepted: 07/28/2017] [Indexed: 05/24/2023]
Abstract
A new six colorimetric receptors A1-A6 were designed and synthesized, characterized by typical common spectroscopic techniques like FT-IR, UV-Visible, 1H NMR, 13C NMR and ESI-MS. The receptor A1 and A2 exhibit a significant naked-eye response towards F- and AcO- ions in DMSO. Due to presences of the NO2 group at para and ortho position with extended π-conjugation of naphthyl group carrying OH as a binding site. Compared to receptor A2, A1 is extremely capable of detecting F- and AcO- ions present in the form of sodium salts in an aqueous medium. This is owed to the occurrence of NO2 group at para position induced in increasing the acidity of OH proton. Consequently, it easily gets deprotonated in aqueous media. The detection limit of receptor A1 was turned out to be 0.40 and 0.35ppm for F- and AcO- ions which is beneath WHO permission level (1.0ppm). Receptor A1 shows a solitary property of solvatochromism in different aprotic solvents in presence of AcO- ion. Receptor A1 depicts high selectivity towards AcO- ion in DMSO: HEPES buffer (9:1, v/v). Receptor A1 proved itself for real life application by detecting anion in solution and solid state. The binding mechanism of receptor A1 with AcO- and F- ions was monitored from 1HNMR titration and DFT study.
Collapse
Affiliation(s)
- Archana Singh
- Supramolecular Chemistry Laboratory, Department of Chemistry, National Institute of Technology Karnataka (NITK) Surathkal, Srinivasnagar, 575 025, Karnataka, India
| | - Suban K Sahoo
- Department of Applied Chemistry, S.V. National Institute Technology Surat, 395 007, Gujarat, India
| | - Darshak R Trivedi
- Supramolecular Chemistry Laboratory, Department of Chemistry, National Institute of Technology Karnataka (NITK) Surathkal, Srinivasnagar, 575 025, Karnataka, India.
| |
Collapse
|
34
|
Diagnostic accuracy of C-11 choline and C-11 acetate for lymph node staging in patients with bladder cancer: a systematic review and meta-analysis. World J Urol 2018; 36:331-340. [PMID: 29294164 DOI: 10.1007/s00345-017-2168-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 12/26/2017] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVE We aimed to assess the diagnostic accuracy of C-11 choline and C-11 acetate positron emission tomography/computed tomography (PET/CT) for lymph node (LN) staging in bladder cancer (BC) patients through a systematic review and meta-analysis. METHODS The MEDLINE, EMBASE, and Cochrane Library database, from the earliest available date of indexing through June 30, 2017, were searched for studies evaluating the diagnostic performance of C-11 choline and C-11 acetate PET/CT for LN staging in BC. We determined the sensitivities and specificities across studies, calculated positive and negative likelihood ratios (LR+ and LR-), and constructed summary receiver operating characteristic curves. RESULTS Across 10 studies (282 patients), the pooled sensitivity was 0.66 (95% CI 0.54-0.75) without heterogeneity (χ2 = 12.4, p = 0.19) and a pooled specificity of 0.89 (95% CI 0.76-0.95) with heterogeneity (χ2 = 29.1, p = 0.00). Likelihood ratio (LR) syntheses gave an overall positive likelihood ratio (LR+) of 5.8 (95% CI 2.7-12.7) and negative likelihood ratio (LR-) of 0.39 (95% CI 0.28-0.53). The pooled diagnostic odds ratio (DOR) was 15 (95% CI 6-38). In meta-regression analysis, the study design (prospective vs retrospective) was the source of the study heterogeneity. CONCLUSION C-11 choline and C-11 acetate PET/CT shows a low sensitivity and moderate specificity for the detection of metastatic LNs in patients with BC. Moreover, heterogeneity among the studies should be considered a limitation. Further large multicenter studies would be necessary to substantiate the diagnostic accuracy of C-11 choline and C-11 acetate PET/CT for this purpose.
Collapse
|
35
|
Momcilovic M, Shackelford DB. Imaging Cancer Metabolism. Biomol Ther (Seoul) 2018; 26:81-92. [PMID: 29212309 PMCID: PMC5746040 DOI: 10.4062/biomolther.2017.220] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 11/11/2017] [Accepted: 11/13/2017] [Indexed: 12/23/2022] Open
Abstract
It is widely accepted that altered metabolism contributes to cancer growth and has been described as a hallmark of cancer. Our view and understanding of cancer metabolism has expanded at a rapid pace, however, there remains a need to study metabolic dependencies of human cancer in vivo. Recent studies have sought to utilize multi-modality imaging (MMI) techniques in order to build a more detailed and comprehensive understanding of cancer metabolism. MMI combines several in vivo techniques that can provide complementary information related to cancer metabolism. We describe several non-invasive imaging techniques that provide both anatomical and functional information related to tumor metabolism. These imaging modalities include: positron emission tomography (PET), computed tomography (CT), magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS) that uses hyperpolarized probes and optical imaging utilizing bioluminescence and quantification of light emitted. We describe how these imaging modalities can be combined with mass spectrometry and quantitative immunochemistry to obtain more complete picture of cancer metabolism. In vivo studies of tumor metabolism are emerging in the field and represent an important component to our understanding of how metabolism shapes and defines cancer initiation, progression and response to treatment. In this review we describe in vivo based studies of cancer metabolism that have taken advantage of MMI in both pre-clinical and clinical studies. MMI promises to advance our understanding of cancer metabolism in both basic research and clinical settings with the ultimate goal of improving detection, diagnosis and treatment of cancer patients.
Collapse
Affiliation(s)
- Milica Momcilovic
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - David B Shackelford
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| |
Collapse
|
36
|
Zarzour JG, Galgano S, McConathy J, Thomas JV, Rais-Bahrami S. Lymph node imaging in initial staging of prostate cancer: An overview and update. World J Radiol 2017; 9:389-399. [PMID: 29104741 PMCID: PMC5661167 DOI: 10.4329/wjr.v9.i10.389] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 05/26/2017] [Accepted: 07/17/2017] [Indexed: 02/06/2023] Open
Abstract
Accurate nodal staging at the time of diagnosis of prostate cancer is crucial in determining a treatment plan for the patient. Pelvic lymph node dissection is the most reliable method, but is less than perfect and has increased morbidity. Cross sectional imaging with computed tomography (CT) and magnetic resonance imaging (MRI) are non-invasive tools that rely on morphologic characteristics such as shape and size of the lymph nodes. However, lymph nodes harboring metastatic disease may be normal sized and non-metastatic lymph nodes may be enlarged due to reactive hyperplasia. The optimal strategy for preoperative staging remains a topic of ongoing research. Advanced imaging techniques to assess lymph nodes in the setting of prostate cancer utilizing novel MRI contrast agents as well as positron emission tomography (PET) tracers have been developed and continue to be studied. Magnetic resonance lymphography utilizing ultra-small super paramagnetic iron oxide has shown promising results in detection of metastatic lymph nodes. Combining MRL with diffusion-weighted imaging may also improve accuracy. Considerable efforts are being made to develop effective PET radiotracers that are performed using hybrid-imaging systems that combine PET with CT or MRI. PET tracers that will be reviewed in this article include [18F]fluoro-D-glucose, sodium [18F]fluoride, [18F]choline, [11C]choline, prostate specific membrane antigen binding ligands, [11C]acetate, [18F]fluciclovine, gastrin releasing peptide receptor ligands, and androgen binding receptors. This article will review these advanced imaging modalities and ability to detect prostate cancer metastasis to lymph nodes. While more research is needed, these novel techniques to image lymph nodes in the setting of prostate cancer show a promising future in improving initial lymph node staging.
Collapse
Affiliation(s)
- Jessica G Zarzour
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL 35249, United States
| | - Sam Galgano
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL 35249, United States
| | - Jonathan McConathy
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL 35249, United States
| | - John V Thomas
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL 35249, United States
| | - Soroush Rais-Bahrami
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL 35249, United States
- Department of Urology, University of Alabama at Birmingham, Birmingham, AL 35249, United States
| |
Collapse
|
37
|
McClinton C, Niroumand M, Sood S, Shah V, Hill J, Dusing RW, Shen X. Patterns of lymph node positivity on 11 C-acetate PET imaging in correlation to the RTOG pelvic radiation field for prostate cancer. Pract Radiat Oncol 2017; 7:325-331. [DOI: 10.1016/j.prro.2017.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/27/2017] [Accepted: 03/01/2017] [Indexed: 02/03/2023]
|
38
|
Abdelbary AM, Abd-El Raouf SM. Expression of fatty acid synthase and E-cadherin markers in cancer of the prostate. EGYPTIAN JOURNAL OF PATHOLOGY 2017; 37:197-203. [DOI: 10.1097/01.xej.0000520911.05599.41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
39
|
Abstract
OBJECTIVE In this article, we provide a general overview of how cancer cells subvert critical metabolic pathways to support their growth and unchecked division. Furthermore, we outline how molecular imaging can diagnostically exploit the resulting differences between cancer and normal cells. CONCLUSION Molecular PET can provide valuable information about the metabolic dysregulation in cancer.
Collapse
|
40
|
Spick C, Herrmann K, Czernin J. Evaluation of Prostate Cancer with 11C-Acetate PET/CT. J Nucl Med 2017; 57:30S-37S. [PMID: 27694168 DOI: 10.2967/jnumed.115.169599] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 03/10/2016] [Indexed: 11/16/2022] Open
Abstract
In this article, we will first describe the metabolic fate of 11C-acetate; then discuss its biodistribution in health and disease; and subsequently focus on its key clinical applications, the detection and localization of prostate cancer tissue in patients with primary or recurrent disease. Finally, we will discuss the potential role of 11C-acetate in the context of other prostate cancer imaging probes and non-radionuclide-based imaging approaches.
Collapse
Affiliation(s)
- Claudio Spick
- Ahmanson Translational Imaging Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Ken Herrmann
- Ahmanson Translational Imaging Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Johannes Czernin
- Ahmanson Translational Imaging Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California
| |
Collapse
|
41
|
Clark PM, Ebiana VA, Gosa L, Cloughesy TF, Nathanson DA. Harnessing Preclinical Molecular Imaging to Inform Advances in Personalized Cancer Medicine. J Nucl Med 2017; 58:689-696. [PMID: 28385796 PMCID: PMC12079153 DOI: 10.2967/jnumed.116.181693] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 03/27/2017] [Indexed: 12/11/2022] Open
Abstract
Comprehensive molecular analysis of individual tumors provides great potential for personalized cancer therapy. However, the presence of a particular genetic alteration is often insufficient to predict therapeutic efficacy. Drugs with distinct mechanisms of action can affect the biology of tumors in specific and unique ways. Therefore, assays that can measure drug-induced perturbations of defined functional tumor properties can be highly complementary to genomic analysis. PET provides the capacity to noninvasively measure the dynamics of various tumor biologic processes in vivo. Here, we review the underlying biochemical and biologic basis for a variety of PET tracers and how they may be used to better optimize cancer therapy.
Collapse
Affiliation(s)
- Peter M Clark
- Department of Molecular and Medical Pharmacology, David Geffen UCLA School of Medicine, Los Angeles, California
- Crump Institute for Molecular Imaging, David Geffen UCLA School of Medicine, Los Angeles, California
| | - Victoria A Ebiana
- Department of Neurology, David Geffen UCLA School of Medicine, Los Angeles, California; and
| | - Laura Gosa
- Department of Molecular and Medical Pharmacology, David Geffen UCLA School of Medicine, Los Angeles, California
- Ahmanson Translational Imaging Division, David Geffen UCLA School of Medicine, Los Angeles, California
| | - Timothy F Cloughesy
- Department of Neurology, David Geffen UCLA School of Medicine, Los Angeles, California; and
| | - David A Nathanson
- Department of Molecular and Medical Pharmacology, David Geffen UCLA School of Medicine, Los Angeles, California
- Ahmanson Translational Imaging Division, David Geffen UCLA School of Medicine, Los Angeles, California
| |
Collapse
|
42
|
Singh A, Kulkarni HR, Baum RP. Imaging of Prostate Cancer Using 64 Cu-Labeled Prostate-Specific Membrane Antigen Ligand. PET Clin 2017; 12:193-203. [DOI: 10.1016/j.cpet.2016.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
43
|
Yip J, Geng X, Shen J, Ding Y. Cerebral Gluconeogenesis and Diseases. Front Pharmacol 2017; 7:521. [PMID: 28101056 PMCID: PMC5209353 DOI: 10.3389/fphar.2016.00521] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 12/15/2016] [Indexed: 01/08/2023] Open
Abstract
The gluconeogenesis pathway, which has been known to normally present in the liver, kidney, intestine, or muscle, has four irreversible steps catalyzed by the enzymes: pyruvate carboxylase, phosphoenolpyruvate carboxykinase, fructose 1,6-bisphosphatase, and glucose 6-phosphatase. Studies have also demonstrated evidence that gluconeogenesis exists in brain astrocytes but no convincing data have yet been found in neurons. Astrocytes exhibit significant 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 activity, a key mechanism for regulating glycolysis and gluconeogenesis. Astrocytes are unique in that they use glycolysis to produce lactate, which is then shuttled into neurons and used as gluconeogenic precursors for reduction. This gluconeogenesis pathway found in astrocytes is becoming more recognized as an important alternative glucose source for neurons, specifically in ischemic stroke and brain tumor. Further studies are needed to discover how the gluconeogenesis pathway is controlled in the brain, which may lead to the development of therapeutic targets to control energy levels and cellular survival in ischemic stroke patients, or inhibit gluconeogenesis in brain tumors to promote malignant cell death and tumor regression. While there are extensive studies on the mechanisms of cerebral glycolysis in ischemic stroke and brain tumors, studies on cerebral gluconeogenesis are limited. Here, we review studies done to date regarding gluconeogenesis to evaluate whether this metabolic pathway is beneficial or detrimental to the brain under these pathological conditions.
Collapse
Affiliation(s)
- James Yip
- Department of Neurosurgery, Wayne State University School of Medicine Detroit, MI, USA
| | - Xiaokun Geng
- Department of Neurosurgery, Wayne State University School of MedicineDetroit, MI, USA; China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical UniversityBeijing, China; Department of Neurology, Beijing Luhe Hospital, Capital Medical UniversityBeijing, China
| | - Jiamei Shen
- Department of Neurosurgery, Wayne State University School of MedicineDetroit, MI, USA; China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical UniversityBeijing, China
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of MedicineDetroit, MI, USA; China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical UniversityBeijing, China
| |
Collapse
|
44
|
Kwee SA, Lim J. Metabolic positron emission tomography imaging of cancer: Pairing lipid metabolism with glycolysis. World J Radiol 2016; 8:851-856. [PMID: 27928466 PMCID: PMC5120244 DOI: 10.4329/wjr.v8.i11.851] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 09/16/2016] [Accepted: 10/18/2016] [Indexed: 02/06/2023] Open
Abstract
The limitations of fluorine-18 fluorodeoxy-D-glucose (FDG) in detecting some cancers has prompted a longstanding search for other positron emission tomography (PET) tracers to complement the imaging of glycolysis in oncology, with much attention paid to lipogenesis based on observations that the production of various lipid and lipid-containing compounds is increased in most cancers. Radiolabeled analogs of choline and acetate have now been used as oncologic PET probes for over a decade, showing convincingly improved detection sensitivity over FDG for certain cancers. However, neither choline nor acetate have been thoroughly validated as lipogenic biomarkers, and while acetyl-CoA produced from acetate is used in de-novo lipogenesis to synthesize fatty acids, acetate is also consumed by various other synthetic and metabolic pathways, with recent experimental observations challenging the assumption that lipogenesis is its predominant role in all cancers. Since tumors detected by acetate PET are also frequently detected by choline PET, imaging of choline metabolism might serve as an alternative albeit indirect marker of lipogenesis, particularly if the fatty acids produced in cancer cells are mainly destined for membrane synthesis through incorporation into phosphatidylcholines. Aerobic glycolysis may or may not coincide with changes in lipid metabolism, resulting in combinatorial metabolic phenotypes that may have different prognostic or therapeutic implications. Consequently, PET imaging using dual metabolic tracers, in addition to being diagnostically superior to imaging with individual tracers, could eventually play a greater role in supporting precision medicine, as efforts to develop small-molecule metabolic pathway inhibitors are coming to fruition. To prepare for this advent, clinical and translational studies of metabolic PET tracers must go beyond simply estimating tracer diagnostic utility, and aim to uncover potential therapeutic avenues associated with these metabolic alterations.
Collapse
|
45
|
Abstract
Recent high-profile reports have reignited an interest in acetate metabolism in cancer. Acetyl-CoA synthetases that catalyse the conversion of acetate to acetyl-CoA have now been implicated in the growth of hepatocellular carcinoma, glioblastoma, breast cancer and prostate cancer. In this Review, we discuss how acetate functions as a nutritional source for tumours and as a regulator of cancer cell stress, and how preventing its (re)capture by cancer cells may provide an opportunity for therapeutic intervention.
Collapse
Affiliation(s)
- Zachary T Schug
- Cancer Metabolism Research Unit, Cancer Research UK Beatson Institute, Switchback Road, Glasgow G61 1BD, Scotland, UK
- Wistar Institute, 3601 Spruce Street, Philadelphia, Pennsylvania 19104, USA
| | - Johan Vande Voorde
- Cancer Metabolism Research Unit, Cancer Research UK Beatson Institute, Switchback Road, Glasgow G61 1BD, Scotland, UK
| | - Eyal Gottlieb
- Cancer Metabolism Research Unit, Cancer Research UK Beatson Institute, Switchback Road, Glasgow G61 1BD, Scotland, UK
| |
Collapse
|
46
|
Ni JC, Yan J, Zhang LJ, Shang D, Du N, Li S, Zhao JX, Wang Y, Xing YH. Bifunctional fluorescent quenching detection of 2,4,6-trinitrophenol (TNP) and acetate ions via 4,4′-(9,9-dimethyl-9H-fluorene-2,7-diyl)dibenzoic acid. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.09.089] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
47
|
PET imaging for lymph node dissection in prostate cancer. World J Urol 2016; 35:507-515. [PMID: 27752756 DOI: 10.1007/s00345-016-1954-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 10/07/2016] [Indexed: 12/15/2022] Open
Abstract
The detection of neoplastic lymph nodal involvement in prostate cancer (PCa) patients has relevant therapeutic and prognostic significance, both in the clinical settings of primary staging and restaging. Lymph nodal dissection (LND) currently represents the gold standard for evaluating the presence of lymph nodal involvement. However, this procedure is invasive, associated with morbidity, and may fail in detecting all potential lymph nodal metastatic regions. Currently the criteria for lymph nodal detection using conventional imaging techniques mainly rely on morphological assessment with unsatisfactory diagnostic accuracy. Positron emission tomography (PET) represents a helpful imaging technique for a proper staging of lymph nodal status. The most investigated PET radiotracer is choline, although many others have been explored as guide for both primary and salvage LND, such as fluorodeoxyglucose, acetate, fluorocyclobutanecarboxylic acid and prostate-specific membrane antigen. In the present review, a comprehensive literature review addressing the role of PET for LND in PCa patients is reported, with the use of the above-mentioned radiotracers.
Collapse
|
48
|
Lehuédé C, Dupuy F, Rabinovitch R, Jones RG, Siegel PM. Metabolic Plasticity as a Determinant of Tumor Growth and Metastasis. Cancer Res 2016; 76:5201-8. [DOI: 10.1158/0008-5472.can-16-0266] [Citation(s) in RCA: 206] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 04/21/2016] [Indexed: 12/11/2022]
|
49
|
Mertan FV, Lindenberg L, Choyke PL, Turkbey B. PET imaging of recurrent and metastatic prostate cancer with novel tracers. Future Oncol 2016; 12:2463-2477. [PMID: 27527923 DOI: 10.2217/fon-2016-0270] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Early detection of recurrent prostate cancer (PCa) is of paramount importance to deliver prompt and accurate therapy reducing the chance of progression to metastatic disease. However, current imaging modalities such as conventional computed tomography, MRI and PET scanning do not provide sufficient sensitivity, especially at lower prostate-specific antigen values. Moreover, biological characterization of PCa has become increasingly important to provide patient-specific therapy and current imaging poorly characterizes disease aggressiveness. The current uprise of novel PET tracers in recurrent and metastatic PCa shows promising, yet variable sensitivities and specificities in detection, indicating the need for further studies. In this review, we highlight current and new PET tracers that have been developed to improve the detection of recurrent and metastatic PCa.
Collapse
Affiliation(s)
- Francesca V Mertan
- Molecular Imaging Program, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Liza Lindenberg
- Molecular Imaging Program, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Peter L Choyke
- Molecular Imaging Program, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Baris Turkbey
- Molecular Imaging Program, National Cancer Institute, NIH, Bethesda, MD, USA
| |
Collapse
|
50
|
Farnebo J, Wadelius A, Sandström P, Nilsson S, Jacobsson H, Blomqvist L, Ullén A. Progression-free and overall survival in metastatic castration-resistant prostate cancer treated with abiraterone acetate can be predicted with serial C11-acetate PET/CT. Medicine (Baltimore) 2016; 95:e4308. [PMID: 27495034 PMCID: PMC4979788 DOI: 10.1097/md.0000000000004308] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In this retrospective study, we evaluated the benefit of repeated carbon 11 (C11)-acetate positron emission tomography/computed tomography (PET/CT) to assess response in patients with metastatic castration-resistant prostate cancer (mCRPC) treated with abiraterone acetate (AA).A total of 30 patients with mCRPC were monitored with C11-acetate PET/CT and PSA levels during their treatment with AA. Retrospective evaluation of their response was made after 102 days (median; range 70-155) of treatment. Statistical analyses were employed to detect predictors of progression-free survival (PFS) and overall survival (OS), and potential correlation between serum levels of PSA, standardized uptake values (SUVpeak), and bone lesion index measured from PET were investigated.At follow-up 10 patients exhibited partial response (PR), 10 progressive disease (PD), and 10 stable disease (SD), as assessed by PET/CT. In survival analysis, both PR and PD were significantly associated with PFS and OS. CT response was also associated with OS, but only 19/30 patients demonstrated a lesion meeting target lesion criteria according to RECIST 1.1. No PET/CT baseline characteristic was significantly associated with PFS or OS. A PSA response (reduction in the level by >50%) could also predict PFS and OS. In the subgroup lacking a PSA response, those with PD had significantly shorter OS than those with PR or SD.PFS and OS in patients with mCRPC treated with AA can be predicted from repeated C11-acetate PET/CT. This may be of particular clinical value in patients who do not exhibit a PSA response to treatment.
Collapse
Affiliation(s)
- Jacob Farnebo
- Department of Diagnostic Radiology and Nuclear Medicine, Karolinska University Hospital and Department of Molecular Medicine and Surgery
- Correspondence: Jacob Farnebo, Stavgårdsgatan, Bromma, Sweden (e-mail: )
| | - Agnes Wadelius
- Department of Oncology, Karolinska University Hospital and Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Per Sandström
- Department of Oncology, Karolinska University Hospital and Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Sten Nilsson
- Department of Oncology, Karolinska University Hospital and Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Hans Jacobsson
- Department of Diagnostic Radiology and Nuclear Medicine, Karolinska University Hospital and Department of Molecular Medicine and Surgery
| | - Lennart Blomqvist
- Department of Diagnostic Radiology and Nuclear Medicine, Karolinska University Hospital and Department of Molecular Medicine and Surgery
| | - Anders Ullén
- Department of Oncology, Karolinska University Hospital and Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|