1
|
Goto H, Shiraishi Y, Okada S. Recent preclinical and clinical advances in radioimmunotherapy for non-Hodgkin's lymphoma. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:208-224. [PMID: 38464386 PMCID: PMC10918239 DOI: 10.37349/etat.2024.00213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 12/28/2023] [Indexed: 03/12/2024] Open
Abstract
Radioimmunotherapy (RIT) is a therapy that combines a radioactive nucleotide with a monoclonal antibody (mAb). RIT enhances the therapeutic effect of mAb and reduces toxicity compared with conventional treatment. The purpose of this review is to summarize the current progress of RIT for treating non-Hodgkin's lymphoma (NHL) based on recent preclinical and clinical studies. The efficacy of RIT targeting the B-lymphocyte antigen cluster of differentiation 20 (CD20) has been demonstrated in clinical trials. Two radioimmunoconjugates targeting CD20, yttrium-90 (90Y)-ibritumomab-tiuxetan (Zevalin) and iodine-131 (131I)-tositumomab (Bexxar), have been approved in the USA Food and Drug Administration (FDA) for treating relapsed/refractory indolent or transformed NHL in 2002 and 2003, respectively. Although these two radioimmunoconjugates are effective and least toxic, they have not achieved popularity due to increasing access to novel therapies and the complexity of their delivery process. RIT is constantly evolving with the identification of novel targets and novel therapeutic strategies using newer radionuclides such as alpha-particle isotopes. Alpha-particles show very short path lengths and high linear energy transfer. These characteristics provide increased tumor cell-killing activities and reduced non-specific bystander responses on normal tissue. This review also discusses reviewed pre-targeted RIT (PRIT) and immuno-positron emission tomography (PET). PRIT potentially increases the dose of radionuclide delivered to tumors while toxicities to normal tissues are limited. Immuno-PET is a molecular imaging tracer that combines the high sensitivity of PET with the specific targeting capability of mAb. Immuno-PET strategies targeting CD20 and other antigens are currently being developed. The theragnostic approach by immuno-PET will be useful in monitoring the treatment response.
Collapse
Affiliation(s)
- Hiroki Goto
- Division of Radioisotope and Tumor Pathobiology, Institute of Resource Development and Analysis, Kumamoto University, Kumamoto 860-0811, Japan
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0811, Japan
| | - Yoshioki Shiraishi
- Radioisotope Center, Institute of Resource Development and Analysis, Kumamoto University, Kumamoto 860-0811, Japan
| | - Seiji Okada
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0811, Japan
| |
Collapse
|
2
|
Kerr CP, Grudzinski JJ, Nguyen TP, Hernandez R, Weichert JP, Morris ZS. Developments in Combining Targeted Radionuclide Therapies and Immunotherapies for Cancer Treatment. Pharmaceutics 2022; 15:128. [PMID: 36678756 PMCID: PMC9865370 DOI: 10.3390/pharmaceutics15010128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 01/01/2023] Open
Abstract
Targeted radionuclide therapy (TRT) and immunotherapy are rapidly growing classes of cancer treatments. Basic, translational, and clinical research are now investigating therapeutic combinations of these agents. In comparison to external beam radiation therapy (EBRT), TRT has the unique advantage of treating all disease sites following intravenous injection and selective tumor uptake and retention-a particularly beneficial property in metastatic disease settings. The therapeutic value of combining radiation therapy with immune checkpoint blockade to treat metastases has been demonstrated in preclinical studies, whereas results of clinical studies have been mixed. Several clinical trials combining TRT and immune checkpoint blockade have been initiated based on preclinical studies combining these with EBRT and/or TRT. Despite the interest in translation of TRT and immunotherapy combinations, many questions remain surrounding the mechanisms of interaction and the optimal approach to clinical implementation of these combinations. This review highlights the mechanisms of interaction between anti-tumor immunity and radiation therapy and the status of basic and translational research and clinical trials investigating combinations of TRT and immunotherapies.
Collapse
Affiliation(s)
- Caroline P. Kerr
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Joseph J. Grudzinski
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Thanh Phuong Nguyen
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Reinier Hernandez
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Jamey P. Weichert
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Zachary S. Morris
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
3
|
Bhatia K, Bhumika, Das A. Combinatorial drug therapy in cancer - New insights. Life Sci 2020; 258:118134. [PMID: 32717272 DOI: 10.1016/j.lfs.2020.118134] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/18/2020] [Accepted: 07/20/2020] [Indexed: 12/19/2022]
Abstract
Cancer can arise due to mutations in numerous pathways present in our body and thus has many alternatives for getting aggravated. Due to this attribute, it gets difficult to treat cancer patients with monotherapy alone and has a risk of not being eliminated to the full extent. This necessitates the introduction of combinatorial therapy as it employs cancer treatment using more than one method and shows a greater success rate. Combinatorial therapy involves a complementary combination of two different therapies like a combination of radio and immunotherapy or a combination of drugs that can target more than one pathway of cancer formation like combining CDK targeting drugs with Growth factors targeting drugs. In this review, we discuss the various aspects of cancer which include, its causes; four regulatory mechanisms namely: apoptosis, cyclin-dependent kinases, tumor suppressor genes, and growth factors; some of the pathways involved; treatment: monotherapy and combinatorial therapy and combinatorial drug formulation in chemotherapy. The present review gives a holistic account of the different mechanisms of therapies and also drug combinations that may serve to not only complement the monotherapy but can also surpass the resistance against monotherapy agents.
Collapse
Affiliation(s)
- Karanpreet Bhatia
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Delhi 110042, India
| | - Bhumika
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Delhi 110042, India
| | - Asmita Das
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Delhi 110042, India.
| |
Collapse
|
4
|
van Helden EJ, Elias SG, Gerritse SL, van Es SC, Boon E, Huisman MC, van Grieken NCT, Dekker H, van Dongen GAMS, Vugts DJ, Boellaard R, van Herpen CML, de Vries EGE, Oyen WJG, Brouwers AH, Verheul HMW, Hoekstra OS, Menke-van der Houven van Oordt CW. [ 89Zr]Zr-cetuximab PET/CT as biomarker for cetuximab monotherapy in patients with RAS wild-type advanced colorectal cancer. Eur J Nucl Med Mol Imaging 2019; 47:849-859. [PMID: 31705176 PMCID: PMC7076055 DOI: 10.1007/s00259-019-04555-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 09/24/2019] [Indexed: 10/29/2022]
Abstract
PURPOSE One-third of patients with RAS wild-type mCRC do not benefit from anti-EGFR monoclonal antibodies. This might be a result of variable pharmacokinetics and insufficient tumor targeting. We evaluated cetuximab tumor accumulation on [89Zr]Zr-cetuximab PET/CT as a potential predictive biomarker and determinant for an escalating dosing strategy. PATIENTS AND METHODS PET/CT imaging of [89Zr]Zr-cetuximab (37 MBq/10 mg) after a therapeutic pre-dose (500 mg/m2 ≤ 2 h) cetuximab was performed at the start of treatment. Patients without visual tumor uptake underwent dose escalation and a subsequent [89Zr]Zr-cetuximab PET/CT. Treatment benefit was defined as stable disease or response on CT scan evaluation after 8 weeks. RESULTS Visual tumor uptake on [89Zr]Zr-cetuximab PET/CT was observed in 66% of 35 patients. There was no relationship between PET positivity and treatment benefit (52% versus 80% for PET-negative, P = 0.16), progression-free survival (3.6 versus 5.7 months, P = 0.15), or overall survival (7.1 versus 9.4 months, P = 0.29). However, in 67% of PET-negative patients, cetuximab dose escalation (750-1250 mg/m2) was applied, potentially influencing outcome in this group. None of the second [89Zr]Zr-cetuximab PET/CT was positive. Eighty percent of patients without visual tumor uptake had treatment benefit, making [89Zr]Zr-cetuximab PET/CT unsuitable as a predictive biomarker. Tumor SUVpeak did not correlate to changes in tumor size on CT (P = 0.23), treatment benefit, nor progression-free survival. Cetuximab pharmacokinetics were not related to treatment benefit. BRAF mutations, right-sidedness, and low sEGFR were correlated with intrinsic resistance to cetuximab. CONCLUSION Tumor uptake on [89Zr]Zr-cetuximab PET/CT failed to predict treatment benefit in patients with RAS wild-type mCRC receiving cetuximab monotherapy. BRAF mutations, right-sidedness, and low sEGFR correlated with intrinsic resistance to cetuximab.
Collapse
Affiliation(s)
- E J van Helden
- Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Location VU Medical Center, Amsterdam, The Netherlands
| | - S G Elias
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - S L Gerritse
- Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Location VU Medical Center, Amsterdam, The Netherlands
| | - S C van Es
- Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - E Boon
- Medical Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - M C Huisman
- Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam UMC, Location VU Medical Center, Amsterdam, The Netherlands
| | - N C T van Grieken
- Pathology, Cancer Center Amsterdam, Amsterdam UMC, Location VU Medical Center, Amsterdam, The Netherlands
| | - H Dekker
- Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Location VU Medical Center, Amsterdam, The Netherlands
| | - G A M S van Dongen
- Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam UMC, Location VU Medical Center, Amsterdam, The Netherlands
| | - D J Vugts
- Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam UMC, Location VU Medical Center, Amsterdam, The Netherlands
| | - R Boellaard
- Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam UMC, Location VU Medical Center, Amsterdam, The Netherlands
| | - C M L van Herpen
- Medical Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - E G E de Vries
- Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - W J G Oyen
- Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- The Institute of Cancer Research and The Royal Marsden Hospital, London, UK
| | - A H Brouwers
- Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - H M W Verheul
- Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Location VU Medical Center, Amsterdam, The Netherlands
| | - O S Hoekstra
- Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam UMC, Location VU Medical Center, Amsterdam, The Netherlands
| | | |
Collapse
|
5
|
Therapeutic Applications of Pretargeting. Pharmaceutics 2019; 11:pharmaceutics11090434. [PMID: 31480515 PMCID: PMC6781323 DOI: 10.3390/pharmaceutics11090434] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/09/2019] [Accepted: 08/10/2019] [Indexed: 02/06/2023] Open
Abstract
Targeted therapies, such as radioimmunotherapy (RIT), present a promising treatment option for the eradication of tumor lesions. RIT has shown promising results especially for hematologic malignancies, but the therapeutic efficacy is limited by unfavorable tumor-to-background ratios resulting in high radiotoxicity. Pretargeting strategies can play an important role in addressing the high toxicity profile of RIT. Key to pretargeting is the concept of decoupling the targeting vehicle from the cytotoxic agent and administrating them separately. Studies have shown that this approach has the ability to enhance the therapeutic index as it can reduce side effects caused by off-target irradiation and thereby increase curative effects due to higher tolerated doses. Pretargeted RIT (PRIT) has been explored for imaging and treatment of different cancer types over the years. This review will give an overview of the various targeted therapies in which pretargeting has been applied, discussing PRIT with alpha- and beta-emitters and as part of combination therapy, plus its use in drug delivery systems.
Collapse
|
6
|
Eskian M, Khorasanizadeh M, Zinzani PL, Illidge TM, Rezaei N. Novel Methods to Improve the Efficiency of Radioimmunotherapy for Non-Hodgkin Lymphoma. Int Rev Immunol 2019; 38:79-91. [PMID: 30931651 DOI: 10.1080/08830185.2019.1588266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Radioimmunotherapy (RIT) is a novel strategy for treating non-Hodgkin lymphoma (NHL). Several studies have shown the promising results of using RIT in NHL, which have led to FDA approval for two RIT agents in treating low grade NHL. In spite of these favorable results in low-grade NHL, most of the aggressive or relapsed/refractory NHL subjects experience relapses following RIT. Although more aggressive treatments such as myeloablative doses of RIT followed by stem cell transplantation appear to be able to provide a longer survival for some patients these approaches are associated with significant treatment-related adverse events and challenging to deliver in most centers. Therefore, it seems reasonable to develop treatment approaches that enhance the efficiency of RIT, while reducing its toxicity. In this paper, novel methods that improve the efficiency of RIT and reduce its toxicity through various mechanisms are reviewed. Further clinical development of these methods could expand the NHL patient groups eligible for receiving RIT, and even extend the use of RIT to new indications and disease groups in future.
Collapse
Affiliation(s)
- Mahsa Eskian
- a Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences , Tehran , Iran.,b Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN) , Tehran , Iran
| | - MirHojjat Khorasanizadeh
- a Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences , Tehran , Iran.,b Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN) , Tehran , Iran
| | - Pier Luigi Zinzani
- c Institute of Hematology "L. e A. Seràgnoli", University of Bologna , Bologna , Italy
| | - Tim M Illidge
- d Manchester Academic Health Sciences Centre, University of Manchester, Christie NHS Foundation Trust , Manchester , UK
| | - Nima Rezaei
- a Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences , Tehran , Iran.,e Department of Immunology, School of Medicine , Tehran University of Medical Sciences , Tehran , Iran.,f Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN) , Tehran , Iran
| |
Collapse
|
7
|
Vezina HE, Cotreau M, Han TH, Gupta M. Antibody-Drug Conjugates as Cancer Therapeutics: Past, Present, and Future. J Clin Pharmacol 2018; 57 Suppl 10:S11-S25. [PMID: 28921650 DOI: 10.1002/jcph.981] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 06/19/2017] [Indexed: 12/22/2022]
Abstract
Antibody-drug conjugates (ADCs) represent an innovative therapeutic approach that provides novel treatment options and hope for patients with cancer. By coupling monoclonal antibodies (mAbs) to cytotoxic small-molecule payloads with a plasma-stable linker, ADCs offer the potential for increased drug specificity and fewer off-target effects than systemic chemotherapy. As evidence for the potential of these therapies, many new ADCs are in various stages of clinical development. Because their structure poses unique challenges to pharmacokinetic and pharmacodynamic characterization, it is critical to recognize the differences between ADCs and conventional chemotherapy in the design of ADC clinical development strategies. Although some properties may be determined mainly by either the mAb or the small-molecule portion, the behavior of these agents is not always predictable. Furthermore, because the absorption, distribution, metabolism, and excretion (ADME) of ADCs are influenced by all 3 of its components (mAb, linker, and payload), it is important to characterize the intact molecule, any target-mediated catabolic clearance of the mAb, and the ADME properties of the small-molecule payload. Here we describe key issues in the clinical development of ADCs, including considerations for designing first-in-human studies for ADCs. We discuss some difficulties of ADC pharmacokinetic characterization and current approaches to overcoming these challenges. Finally, we consider all aspects of clinical pharmacology assessment required during drug development, using examples from the literature to illustrate the discussion.
Collapse
Affiliation(s)
| | | | - Tae H Han
- AbbVie Stemcentrx LLC, South San Francisco, CA, USA
| | | |
Collapse
|
8
|
Weber T, Bötticher B, Arndt MA, Mier W, Sauter M, Exner E, Keller A, Krämer S, Leotta K, Wischnjow A, Grosse-Hovest L, Strumberg D, Jäger D, Gröne HJ, Haberkorn U, Brem G, Krauss J. Preclinical evaluation of a diabody-based 177Lu-radioimmunoconjugate for CD22-directed radioimmunotherapy in a non-Hodgkin lymphoma mouse model. Cancer Lett 2016; 381:296-304. [DOI: 10.1016/j.canlet.2016.08.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 07/15/2016] [Accepted: 08/09/2016] [Indexed: 10/21/2022]
|
9
|
Goldenberg DM, Sharkey RM. Radioactive antibodies: a historical review of selective targeting and treatment of cancer. Hosp Pract (1995) 2016; 38:82-93. [PMID: 20890056 DOI: 10.3810/hp.2010.06.300] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Radioactive antibodies have served as imaging and therapeutic agents for several decades, but recent developments raise enthusiasm that a new generation of cancer therapeutics and diverse molecular imaging agents for various cancers are more likely than ever before. This article traces the development of tumor-targeting antibodies labeled with diagnostic or therapeutic radionuclides, and describes the problems encountered and the clinical advances made. We also emphasize recent attempts to improve both molecular imaging and radioimmunotherapy with multistep pretargeting methods that separate the delivery of the tumor-binding, bispecific antibody given in the first step from the radionuclide carrier, which, in the second step, will localize to the "anti-carrier" binding arm of the pretargeted bispecific antibody.
Collapse
Affiliation(s)
- David M Goldenberg
- Garden State Cancer Center at the Center for Molecular Medicine and Immunology, Bellville, NJ 07109, USA.
| | | |
Collapse
|
10
|
Abstract
The eradication of cancer remains a vexing problem despite recent advances in our understanding of the molecular basis of neoplasia. One therapeutic approach that has demonstrated potential involves the selective targeting of radionuclides to cancer-associated cell surface antigens using monoclonal antibodies. Such radioimmunotherapy (RIT) permits the delivery of a high dose of therapeutic radiation to cancer cells, while minimizing the exposure of normal cells. Although this approach has been investigated for several decades, the cumulative advances in cancer biology, antibody engineering and radiochemistry in the past decade have markedly enhanced the ability of RIT to produce durable remissions of multiple cancer types.
Collapse
Affiliation(s)
- Steven M Larson
- Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA
| | - Jorge A Carrasquillo
- Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA
| | - Nai-Kong V Cheung
- 1] Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA. [2]
| | - Oliver W Press
- 1] Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, P.O. BOX 19024, Seattle, Washington 98109, USA. [2]
| |
Collapse
|
11
|
Lamberts LE, Williams SP, Terwisscha van Scheltinga AG, Lub-de Hooge MN, Schröder CP, Gietema JA, Brouwers AH, de Vries EG. Antibody Positron Emission Tomography Imaging in Anticancer Drug Development. J Clin Oncol 2015; 33:1491-504. [DOI: 10.1200/jco.2014.57.8278] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
More than 50 monoclonal antibodies (mAbs), including several antibody–drug conjugates, are in advanced clinical development, forming an important part of the many molecularly targeted anticancer therapeutics currently in development. Drug development is a relatively slow and expensive process, limiting the number of drugs that can be brought into late-stage trials. Development decisions could benefit from quantitative biomarkers, enabling visualization of the tissue distribution of (potentially modified) therapeutic mAbs to confirm effective whole-body target expression, engagement, and modulation and to evaluate heterogeneity across lesions and patients. Such biomarkers may be realized with positron emission tomography imaging of radioactively labeled antibodies, a process called immunoPET. This approach could potentially increase the power and value of early trials by improving patient selection, optimizing dose and schedule, and rationalizing observed drug responses. In this review, we summarize the available literature and the status of clinical trials regarding the potential of immunoPET during early anticancer drug development.
Collapse
Affiliation(s)
- Laetitia E. Lamberts
- Laetitia E. Lamberts, Anton G.T. Terwisscha van Scheltinga, Marjolijn N. Lub-de Hooge, Carolien P. Schröder, Jourik A. Gietema, Adrienne H. Brouwers, and Elisabeth G.E. de Vries, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; and Simon P. Williams, Genentech, South San Francisco, CA
| | - Simon P. Williams
- Laetitia E. Lamberts, Anton G.T. Terwisscha van Scheltinga, Marjolijn N. Lub-de Hooge, Carolien P. Schröder, Jourik A. Gietema, Adrienne H. Brouwers, and Elisabeth G.E. de Vries, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; and Simon P. Williams, Genentech, South San Francisco, CA
| | - Anton G.T. Terwisscha van Scheltinga
- Laetitia E. Lamberts, Anton G.T. Terwisscha van Scheltinga, Marjolijn N. Lub-de Hooge, Carolien P. Schröder, Jourik A. Gietema, Adrienne H. Brouwers, and Elisabeth G.E. de Vries, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; and Simon P. Williams, Genentech, South San Francisco, CA
| | - Marjolijn N. Lub-de Hooge
- Laetitia E. Lamberts, Anton G.T. Terwisscha van Scheltinga, Marjolijn N. Lub-de Hooge, Carolien P. Schröder, Jourik A. Gietema, Adrienne H. Brouwers, and Elisabeth G.E. de Vries, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; and Simon P. Williams, Genentech, South San Francisco, CA
| | - Carolien P. Schröder
- Laetitia E. Lamberts, Anton G.T. Terwisscha van Scheltinga, Marjolijn N. Lub-de Hooge, Carolien P. Schröder, Jourik A. Gietema, Adrienne H. Brouwers, and Elisabeth G.E. de Vries, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; and Simon P. Williams, Genentech, South San Francisco, CA
| | - Jourik A. Gietema
- Laetitia E. Lamberts, Anton G.T. Terwisscha van Scheltinga, Marjolijn N. Lub-de Hooge, Carolien P. Schröder, Jourik A. Gietema, Adrienne H. Brouwers, and Elisabeth G.E. de Vries, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; and Simon P. Williams, Genentech, South San Francisco, CA
| | - Adrienne H. Brouwers
- Laetitia E. Lamberts, Anton G.T. Terwisscha van Scheltinga, Marjolijn N. Lub-de Hooge, Carolien P. Schröder, Jourik A. Gietema, Adrienne H. Brouwers, and Elisabeth G.E. de Vries, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; and Simon P. Williams, Genentech, South San Francisco, CA
| | - Elisabeth G.E. de Vries
- Laetitia E. Lamberts, Anton G.T. Terwisscha van Scheltinga, Marjolijn N. Lub-de Hooge, Carolien P. Schröder, Jourik A. Gietema, Adrienne H. Brouwers, and Elisabeth G.E. de Vries, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; and Simon P. Williams, Genentech, South San Francisco, CA
| |
Collapse
|
12
|
Liu YH, Lin JY. Recent advances of cluster of differentiation 74 in cancer. World J Immunol 2014; 4:174-184. [DOI: 10.5411/wji.v4.i3.174] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Revised: 06/03/2014] [Accepted: 07/29/2014] [Indexed: 02/05/2023] Open
Abstract
Cluster of differentiation 74 (CD74) performs multiple roles in B cells, T cells, and antigen-presenting cells within the immune system; it also participates in major histocompatibility complex class II-restricted antigen presentation and inflammation. Recently, a role for CD74 in carcinogenesis has been described. CD74 promotes cell proliferation and motility and prevents cell death in a macrophage migration inhibitory factor-dependent manner. Its roles as an accessory signal receptor on the cell surface and the ability to interact with other signaling molecules make CD74 an attractive therapeutic target for the treatment of cancer. This review focuses on the original role of CD74 in the immune system and its emerging tumor-related functions. First, the structure of CD74 will be summarized. Second, the current understandings about the expression, cellular localization, molecular mechanisms and signaling pathways of CD74 in immunity and cancer will be reviewed. Third, the examples that suggest CD74 is a promising molecular therapeutic target are reviewed and discussed. Although the safety and efficacy of CD74-targeted strategies are under development, deeply understanding of the regulation of CD74 will hold promise for the use of CD74 as a therapeutic target and may develop the CD74-targeted therapeutic agents such as neutralized antibody and compounds.
Collapse
|
13
|
Radioimmunotherapy: a specific treatment protocol for cancer by cytotoxic radioisotopes conjugated to antibodies. ScientificWorldJournal 2014; 2014:492061. [PMID: 25379535 PMCID: PMC4213411 DOI: 10.1155/2014/492061] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 08/04/2014] [Indexed: 12/23/2022] Open
Abstract
Radioimmunotherapy (RIT) represents a selective internal radiation therapy, that is, the use of radionuclides conjugated to tumor-directed monoclonal antibodies (including those fragments) or peptides. In a clinical field, two successful examples of this treatment protocol are currently extended by 90Y-ibritumomab tiuxetan (Zevalin) and 131I-tositumomab (Bexxar), both of which are anti-CD20 monoclonal antibodies coupled to cytotoxic radioisotopes and are approved for the treatment of non-Hodgkin lymphoma patients. In addition, some beneficial observations are obtained in preclinical studies targeting solid tumors. To date, in order to reduce the unnecessary exposure and to enhance the therapeutic efficacy, various biological, chemical, and treatment procedural improvements have been investigated in RIT. This review outlines the fundamentals of RIT and current knowledge of the preclinical/clinical trials for cancer treatment.
Collapse
|
14
|
Hess C, Venetz D, Neri D. Emerging classes of armed antibody therapeutics against cancer. MEDCHEMCOMM 2014. [DOI: 10.1039/c3md00360d] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
15
|
Bodet-Milin C, Ferrer L, Pallardy A, Eugène T, Rauscher A, Alain Faivre-Chauvet, Barbet J, Kraeber-Bodéré F. Radioimmunotherapy of B-Cell Non-Hodgkin's Lymphoma. Front Oncol 2013; 3:177. [PMID: 23875170 PMCID: PMC3708100 DOI: 10.3389/fonc.2013.00177] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 06/21/2013] [Indexed: 01/27/2023] Open
Abstract
This manuscript reviews current advances in the use of radioimmunotherapy (RIT) for the treatment of B-cell non-Hodgkin's lymphoma (NHL). RIT has been in use for more than 20 years and has progressed significantly with the discovery of new molecular targets, the development of new stable chelates, the humanization of monoclonal antibodies (MAbs), and the use of pretargeting techniques. Today, two products targeting the CD20 antigen are approved: (131)I-tositumomab (Bexxar(®)), and (90)Y-ibritumomab tiuxetan (Zevalin(®)). (131)I-tositumomab is available in the United States, and (90)Y-ibritumumab tiuxetan in Europe, the United States, Asia, and Africa. RIT can be integrated in clinical practice using non-ablative activities for treatment of patients with relapsed or refractory follicular lymphoma (FL) or as consolidation after induction chemotherapy in front-line treatment in FL patients. Despite the lack of phase III studies to clearly define the efficacy of RIT in the management of B lymphoma in the era of rituximab-based therapy, RIT efficacy in NHL has been demonstrated. In relapsing refractory FL and transformed NHL, RIT as a monotherapy induces around 30% complete response with a possibility of durable remissions. RIT consolidation after induction therapy significantly improves the quality of the response. Dose-limiting toxicity of RIT is hematological, depending on bone marrow involvement and prior treatment. Non-hematological toxicity is generally low. Different studies have been published assessing innovative protocols of RIT or new indications, in particular treatment in patients with aggressive lymphomas. High-dose treatment, RIT as consolidation after different therapeutic induction modalities, RIT in first-line treatment or fractionated RIT showed promising results. New MAbs, in particular humanized MAbs, or combinations of naked and radiolabeled MAbs, also appear promising. Personalized dosimetry protocols should be developed to determine injected activity.
Collapse
Affiliation(s)
- Caroline Bodet-Milin
- Nuclear Medicine Department, University Hospital , Nantes , France ; CRCNA, INSERM U892, CNRS UMR 7299, Université de Nantes, IRS-UN , Nantes , France
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Steiner M, Gutbrodt K, Krall N, Neri D. Tumor-Targeting Antibody–Anticalin Fusion Proteins for in Vivo Pretargeting Applications. Bioconjug Chem 2013; 24:234-41. [DOI: 10.1021/bc300567a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Martina Steiner
- Department of Chemistry and Applied Biosciences, Swiss
Federal Institute of Technology (ETH Zürich), Wolfgang-Pauli-Strasse 10, CH-8093 Zürich, Switzerland
| | - Katrin Gutbrodt
- Department of Chemistry and Applied Biosciences, Swiss
Federal Institute of Technology (ETH Zürich), Wolfgang-Pauli-Strasse 10, CH-8093 Zürich, Switzerland
| | - Nikolaus Krall
- Department of Chemistry and Applied Biosciences, Swiss
Federal Institute of Technology (ETH Zürich), Wolfgang-Pauli-Strasse 10, CH-8093 Zürich, Switzerland
| | - Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss
Federal Institute of Technology (ETH Zürich), Wolfgang-Pauli-Strasse 10, CH-8093 Zürich, Switzerland
| |
Collapse
|
17
|
Abstract
BACKGROUND Radioimmunotherapy (RIT) is a safe and effective therapeutic option for patients with indolent B-cell non-Hodgkin lymphomas (NHL), in both up-front and relapsed/refractory settings. Two approved agents (90Y-ibritumomab tiuxetan and 131I-tositumomab) are available in the United States. Both target CD20 with similar clinical outcomes but with unique clinical considerations and radiation precautions due to the use of varying radioisotopes. METHODS This paper reviews the available evidence for these approved RIT agents and examines the recently published and ongoing clinical trials of potential novel indications for aggressive B-cell NHL. RESULTS A pretreatment biodistribution evaluation required before administering the 90Y-ibritumomab tiuxetan therapeutic dose has been removed, which once limited its usage. The potential clinical applications of RIT include relapsed/refractory indolent B-cell NHL, diffuse large B-cell lymphoma, indolent lymphoma in the front-line setting, and mantle cell lymphoma. Multiple novel RIT agents are in preclinical and clinical development, and the addition of radiosensitizers or external-beam radiotherapy may act in synergy with RIT for both indolent and aggressive lymphomas. The risk of treatment-related myelodysplastic syndrome does not appear to be higher in patients treated with RIT over those receiving chemotherapy alone. CONCLUSIONS RIT is a safe, effective, and significantly underutilized therapy for patients with B-cell NHL, and many studies have demonstrated the efficacy of 90Y-ibritumomab tiuxetan and 131I-tositumomab for relapsed/refractory indolent B-cell lymphomas. Continued research to establish its efficacy for other lymphoma subtypes is warranted.
Collapse
Affiliation(s)
- Michael Tomblyn
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, FL 33612, USA.
| |
Collapse
|
18
|
Sharkey RM, van Rij CM, Karacay H, Rossi EA, Frielink C, Regino C, Cardillo TM, McBride WJ, Chang CH, Boerman OC, Goldenberg DM. A new Tri-Fab bispecific antibody for pretargeting Trop-2-expressing epithelial cancers. J Nucl Med 2012; 53:1625-32. [PMID: 22952342 DOI: 10.2967/jnumed.112.104364] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED RS7 is an internalizing anti-Trop-2 pancarcinoma antibody capable of targeting most epithelial cancers. Because pretargeting strategies could improve the tumor localization of radionuclides, a new anti-Trop-2 × antihapten bispecific antibody for pretargeting, based on humanized RS7, was prepared and evaluated with a radiolabeled hapten-peptide in vitro and in vivo to determine whether its internalization properties would interfere with pretargeting. METHODS The anti-Trop-2 × antihapten bispecific antibody, TF12, was prepared using the modular dock-and-lock method. TF12 and humanized RS7 binding was assessed by cell binding assays and fluorescence-activated cell sorting analysis in a variety of human carcinoma cell lines. The internalization of TF12 was evaluated in vitro using a fluorescent TF12 conjugate or hapten-peptide and (111)In-labeled TF12 and RS7. The biodistribution of TF12 and its use as a pretargeting agent with an (111)In-labeled hapten-peptide were assessed in several human epithelial cancer xenografts. Dose optimization was examined in 2 tumor models. RESULTS TF12 internalizes, but a substantial fraction remained accessible on the tumor surface. Fluorescence-activated cell sorting analysis showed only a minor change in fluorescent signal when the tumor was probed with a fluorescent hapten-peptide over 4 h, and microscopy showed substantial membrane staining when reassessed at 24 h after TF12 exposure. Only 40.1% of (111)In-TF12 was internalized after 24 h. In vivo, excellent tumor localization of the (111)In-labeled peptide was observed in several tumor models. CONCLUSION TF12 was retained sufficiently on the cell surface in several epithelial cancers, thereby making it suitable for pretargeted imaging and therapy of various Trop-2-expressing carcinomas.
Collapse
Affiliation(s)
- Robert M Sharkey
- Garden State Cancer Center, Center for Molecular Medicine and Immunology, Morris Plains, New Jersey 07950, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Rossi EA, Goldenberg DM, Chang CH. Complex and defined biostructures with the dock-and-lock method. Trends Pharmacol Sci 2012; 33:474-81. [DOI: 10.1016/j.tips.2012.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 05/24/2012] [Accepted: 06/01/2012] [Indexed: 11/30/2022]
|
20
|
Boswell CA, Mundo EE, Zhang C, Stainton SL, Yu SF, Lacap JA, Mao W, Kozak KR, Fourie A, Polakis P, Khawli LA, Lin K. Differential effects of predosing on tumor and tissue uptake of an 111In-labeled anti-TENB2 antibody-drug conjugate. J Nucl Med 2012; 53:1454-61. [PMID: 22872740 DOI: 10.2967/jnumed.112.103168] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
UNLABELLED TENB2, also known as tomoregulin or transmembrane protein with epidermal growth factor-like and 2 follistatin-like domains, is a transmembrane proteoglycan overexpressed in human prostate tumors. This protein is a promising target for antimitotic monomethyl auristatin E (MMAE)-based antibody-drug conjugate (ADC) therapy. Nonlinear pharmacokinetics in normal mice suggested that antigen expression in normal tissues may contribute to targeted mediated disposition. We evaluated a predosing strategy with unconjugated antibody to block ADC uptake in target-expressing tissues in a mouse model while striving to preserve tumor uptake and efficacy. METHODS Unconjugated, unlabeled antibody was preadministered to mice bearing the TENB2-expressing human prostate explant model, LuCaP 77, followed by a single administration of (111)In-labeled anti-TENB2-MMAE for biodistribution and SPECT/CT studies. A tumor-growth-inhibition study was conducted to determine the pharmacodynamic consequences of predosing. RESULTS Preadministration of anti-TENB2 at 1 mg/kg significantly increased blood exposure of the radiolabeled ADC and reduced intestinal, hepatic, and splenic uptake while not affecting tumor accretion. Similar tumor-to-heart ratios were measured by SPECT/CT at 24 h with and without the predose. Consistent with this, the preadministration of 0.75 mg/kg did not interfere with efficacy in a tumor-growth study dosed at 0.75 mg or 2.5 mg of ADC per kilogram. CONCLUSION Overall, the potential to mask peripheral, nontumor antigen uptake while preserving tumor uptake and efficacy could ameliorate toxicity and may significantly affect future dosing strategies for ADCs.
Collapse
Affiliation(s)
- C Andrew Boswell
- Genentech Research and Early Development, South San Francisco, California 94080, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
INTRODUCTION Over a half a century ago, radiolabeled antibodies were shown to localize selectively in tissues based on the expression of unique antigens. Antibodies have since become the de facto targeting agent, even inspiring the development of non-antibody compounds for targeting purposes. AREAS COVERED In this article, we review various aspects of how antibodies are transforming the way cancer is being detected and treated, with the growing demand for unconjugated and many new antibody conjugates. While unconjugated antibodies continue to garner most of the attention, interest in new antibody drug conjugates and immunotoxins has expanded over the past few years. However, there continues to be active research with new radioimmunoconjugates for imaging and therapy, particularly with α-emitters, as well as antibody-targeted cytokines and other biological response modifiers. EXPERT OPINION The increasing number of new agents being developed and tested clinically suggests that antibody-targeted compounds will have an expanding role in the future.
Collapse
Affiliation(s)
- David M Goldenberg
- Center for Molecular Medicine and Immunology, 300 The American Road, Morris Plains, NJ 07950, USA
| | | |
Collapse
|
22
|
Goldenberg DM, Chang CH, Rossi EA, McBride WJ, Sharkey RM, Sharkey RM. Pretargeted molecular imaging and radioimmunotherapy. Am J Cancer Res 2012; 2:523-40. [PMID: 22737190 PMCID: PMC3364558 DOI: 10.7150/thno.3582] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2011] [Accepted: 10/31/2011] [Indexed: 01/31/2023] Open
Abstract
Pretargeting is a multi-step process that first has an unlabeled bispecific antibody (bsMAb) localize within a tumor by virtue of its anti-tumor binding site(s) before administering a small, fast-clearing radiolabeled compound that then attaches to the other portion of the bsMAb. The compound's rapid clearance significantly reduces radiation exposure outside of the tumor and its small size permits speedy delivery to the tumor, creating excellent tumor/nontumor ratios in less than 1 hour. Haptens that bind to an anti-hapten antibody, biotin that binds to streptavidin, or an oligonucleotide binding to a complementary oligonucleotide sequence have all been radiolabeled for use by pretargeting. This review will focus on a highly flexible anti-hapten bsMAb platform that has been used to target a variety of radionuclides to image (SPECT and PET) as well as treat tumors.
Collapse
|
23
|
Orcutt KD, Rhoden JJ, Ruiz-Yi B, Frangioni JV, Wittrup KD. Effect of small-molecule-binding affinity on tumor uptake in vivo: a systematic study using a pretargeted bispecific antibody. Mol Cancer Ther 2012; 11:1365-72. [PMID: 22491799 DOI: 10.1158/1535-7163.mct-11-0764] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Small-molecule ligands specific for tumor-associated surface receptors have wide applications in cancer diagnosis and therapy. Achieving high-affinity binding to the desired target is important for improving detection limits and for increasing therapeutic efficacy. However, the affinity required for maximal binding and retention remains unknown. Here, we present a systematic study of the effect of small-molecule affinity on tumor uptake in vivo with affinities spanning a range of three orders of magnitude. A pretargeted bispecific antibody with different binding affinities to different DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid)-based small molecules is used as a receptor proxy. In this particular system targeting carcinoembryonic antigen, a small-molecule-binding affinity of 400 pmol/L was sufficient to achieve maximal tumor targeting, and an improvement in affinity to 10 pmol/L showed no significant improvement in tumor uptake at 24 hours postinjection. We derive a simple mathematical model of tumor targeting using measurable parameters that correlates well with experimental observations. We use relations derived from the model to develop design criteria for the future development of small-molecule agents for targeted cancer therapeutics.
Collapse
Affiliation(s)
- Kelly Davis Orcutt
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | |
Collapse
|
24
|
Eriksson SE, Ohlsson T, Nilsson R, Tennvall J. Treatment with Unlabeled mAb BR96 After Radioimmunotherapy with 177Lu-DOTA-BR96 in a Syngeneic Rat Colon Carcinoma Model. Cancer Biother Radiopharm 2012; 27:175-82. [DOI: 10.1089/cbr.2011.1132] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
| | - Tomas Ohlsson
- Department of Medical Radiation Physics, Lund University, Lund, Sweden
| | - Rune Nilsson
- Department of Oncology, Lund University, Lund, Sweden
| | - Jan Tennvall
- Department of Oncology, Lund University, Lund, Sweden
- Department of Oncology, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
25
|
Sharkey RM, Chang CH, Rossi EA, McBride WJ, Goldenberg DM. Pretargeting: taking an alternate route for localizing radionuclides. Tumour Biol 2012; 33:591-600. [DOI: 10.1007/s13277-012-0367-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Accepted: 02/15/2012] [Indexed: 11/25/2022] Open
|
26
|
Steiner M, Neri D. Antibody-radionuclide conjugates for cancer therapy: historical considerations and new trends. Clin Cancer Res 2012; 17:6406-16. [PMID: 22003068 DOI: 10.1158/1078-0432.ccr-11-0483] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
When delivered at a sufficient dose and dose rate to a neoplastic mass, radiation can kill tumor cells. Because cancer frequently presents as a disseminated disease, it is imperative to deliver cytotoxic radiation not only to the primary tumor but also to distant metastases, while reducing exposure of healthy organs as much as possible. Monoclonal antibodies and their fragments, labeled with therapeutic radionuclides, have been used for many years in the development of anticancer strategies, with the aim of concentrating radioactivity at the tumor site and sparing normal tissues. This review surveys important milestones in the development and clinical implementation of radioimmunotherapy and critically examines new trends for the antibody-mediated targeted delivery of radionuclides to sites of cancer.
Collapse
Affiliation(s)
- Martina Steiner
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | | |
Collapse
|
27
|
Rossi EA, Goldenberg DM, Chang CH. The dock-and-lock method combines recombinant engineering with site-specific covalent conjugation to generate multifunctional structures. Bioconjug Chem 2012; 23:309-23. [PMID: 22168393 DOI: 10.1021/bc2004999] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Advances in recombinant protein technology have facilitated the production of increasingly complex fusion proteins with multivalent, multifunctional designs for use in various in vitro and in vivo applications. In addition, traditional chemical conjugation remains a primary choice for linking proteins with polyethylene glycol (PEG), biotin, fluorescent markers, drugs, and others. More recently, site-specific conjugation of two or more interactive modules has emerged as a valid approach to expand the existing repertoires produced by either recombinant engineering or chemical conjugation alone, thus advancing the range of potential applications. Five such methods, each involving a specific binding event, are highlighted in this review, with a particular focus on the Dock-and-Lock (DNL) method, which exploits the natural interaction between the dimerization and docking domain (DDD) of cAMP-dependent protein kinase (PKA) and the anchoring domain (AD) of A-kinase anchoring proteins (AKAP). The various enablements of DNL to date include trivalent, tetravalent, pentavalent, and hexavalent antibodies of monospecificity or bispecificity; immnocytokines comprising multiple copies of interferon-alpha (IFNα); and site-specific PEGylation. These achievements attest to the power of the DNL platform technology to develop novel therapeutic and diagnostic agents from both proteins and nonproteins for unmet medical needs.
Collapse
Affiliation(s)
- Edmund A Rossi
- IBC Pharmaceuticals, Inc., Morris Plains, New Jersey, USA.
| | | | | |
Collapse
|
28
|
Sharkey RM, Govindan SV, Cardillo TM, Goldenberg DM. Epratuzumab-SN-38: a new antibody-drug conjugate for the therapy of hematologic malignancies. Mol Cancer Ther 2011; 11:224-34. [PMID: 22039078 DOI: 10.1158/1535-7163.mct-11-0632] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We previously found that slowly internalizing antibodies conjugated with SN-38 could be used successfully when prepared with a linker that allows approximately 50% of the IgG-bound SN-38 to dissociate in serum every 24 hours. In this study, the efficacy of SN-38 conjugates prepared with epratuzumab (rapidly internalizing) and veltuzumab (slowly internalizing), humanized anti-CD22 and anti-CD20 IgG, respectively, was examined for the treatment of B-cell malignancies. Both antibody-drug conjugates had similar nanomolar activity against a variety of human lymphoma/leukemia cell lines, but slow release of SN-38 compromised potency discrimination in vitro even against an irrelevant conjugate. When SN-38 was stably linked to the anti-CD22 conjugate, its potency was reduced 40- to 55-fold. Therefore, further studies were conducted only with the less stable, slowly dissociating linker. In vivo, similar antitumor activity was found between CD22 and CD20 antibody-drug conjugate in mice-bearing Ramos xenografts, even though Ramos expressed 15-fold more CD20 than CD22, suggesting that the internalization of the epratuzumab-SN-38 conjugate (Emab-SN-38) enhanced its activity. Emab-SN-38 was more efficacious than a nonbinding, irrelevant IgG-SN-38 conjugate in vivo, eliminating a majority of well-established Ramos xenografts at nontoxic doses. In vitro and in vivo studies showed that Emab-SN-38 could be combined with unconjugated veltuzumab for a more effective treatment. Thus, Emab-SN-38 is active in lymphoma and leukemia at doses well below toxic levels and therefore represents a new promising agent with therapeutic potential alone or combined with anti-CD20 antibody therapy.
Collapse
Affiliation(s)
- Robert M Sharkey
- Garden State Cancer Center, 300 American Road, Morris Plains, New Jersey 07950, USA.
| | | | | | | |
Collapse
|
29
|
Orcutt KD, Nasr KA, Whitehead DG, Frangioni JV, Wittrup KD. Biodistribution and clearance of small molecule hapten chelates for pretargeted radioimmunotherapy. Mol Imaging Biol 2011; 13:215-21. [PMID: 20533093 DOI: 10.1007/s11307-010-0353-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE The favorable pharmacokinetics and clinical safety profile of metal-chelated 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) suggests that it might be an ideal hapten for pretargeted radioimmunotherapy. In an effort to minimize hapten retention in normal tissues and determine the effect of various chemical adducts on in vivo properties, a series of DOTA-based derivatives were evaluated. PROCEDURES Biodistribution and whole-body clearance were evaluated for (177)Lu-labeled DOTA, DOTA-biotin, a di-DOTA peptide, and DOTA-aminobenzene in normal CD1 mice. Kidney, liver, and bone marrow doses were estimated using standard Medical Internal Radiation Dose methodology. RESULTS All haptens demonstrated similar low tissue and whole-body retention, with 2-4% of the injected dose remaining in mice 4 h postinjection. The kidney is predicted to be dose limiting for all (177)Lu-labeled haptens tested with an estimated kidney dose of approximately 0.1 mGy/MBq. CONCLUSIONS We present here a group of DOTA-based haptens that exhibit rapid clearance and exceptionally low whole-body retention 4 h postinjection. Aminobenzene, tyrosine-lysine, and biotin groups have minimal effects on the blood clearance and biodistribution of (177)Lu-DOTA.
Collapse
Affiliation(s)
- Kelly Davis Orcutt
- Department of Chemical Engineering, Massachusetts Institute of Technology, 400 Main Street E19-551, Cambridge, MA 02139, USA
| | | | | | | | | |
Collapse
|
30
|
Sharkey RM, Karacay H, Govindan SV, Goldenberg DM. Combination radioimmunotherapy and chemoimmunotherapy involving different or the same targets improves therapy of human pancreatic carcinoma xenograft models. Mol Cancer Ther 2011; 10:1072-81. [PMID: 21467164 PMCID: PMC5654622 DOI: 10.1158/1535-7163.mct-11-0115] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Chemoimmunotherapy with antibody-drug conjugates (ADC) is emerging as a promising therapy for solid tumors, whereas radioimmunotherapy (RAIT) of solid tumors has been relatively ineffective because of their resistance to radiation. We developed antibody-SN-38 conjugates that have significant antitumor activity in xenograft models at nontoxic doses. The goal of this study was to determine if an ADC could be combined with RAIT to enhance efficacy without a commensurate increase in host toxicity. Nude mice bearing human pancreatic cancer xenografts (Capan-1 and BxPC-3) were treated with a single dose of 90Y-labeled antimucin antibody (hPAM4; clivatuzumab tetraxetan) alone or in combination with an anti-Trop-2-SN-38 conjugate, typically administered twice weekly over 4 weeks. The combination, even at RAIT's maximum tolerated dose, controlled tumor progression and cured established xenografts significantly better than the individual treatments without appreciable toxicity. The ADC could be started 1 week after or up to 2 weeks before RAIT with similar enhanced responses, but delaying RAIT for 2 weeks after the ADC was less effective. A nonspecific ADC provided additional benefit over using free drug (irinotecan), but the response was enhanced with the specific ADC. When targeting Capan-1 with ample mucin, hPAM4 could be used as the RAIT and the ADC agent without losing effectiveness, but in BxPC-3 with less mucin, targeting of different antigens was preferred. These studies show the feasibility of combining ADC and RAIT for improved efficacy without increased toxicity.
Collapse
Affiliation(s)
- Robert M Sharkey
- Garden State Cancer Center, Center for Molecular Medicine and Immunology, 300 American Way, Morris Plains, NJ 07950, USA.
| | | | | | | |
Collapse
|
31
|
Abstract
Targeting of radionuclides with antibodies, or radioimmunotherapy, has been an active field of research spanning nearly 50 years, evolving with advancing technologies in molecular biology and chemistry, and with many important preclinical and clinical studies illustrating the benefits, but also the challenges, which all forms of targeted therapies face. There are currently two radiolabeled antibodies approved for the treatment of non-Hodgkin lymphoma, but radioimmunotherapy of solid tumors remains a challenge. Novel antibody constructs, focusing on treatment of localized and minimal disease, and pretargeting are all promising new approaches that are currently under investigation.
Collapse
|
32
|
Kletting P, Meyer C, Reske SN, Glatting G. Potential of optimal preloading in anti-CD20 antibody radioimmunotherapy: an investigation based on pharmacokinetic modeling. Cancer Biother Radiopharm 2011; 25:279-87. [PMID: 20578833 DOI: 10.1089/cbr.2009.0746] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Recently, it has been suggested that the concept of preloading is limited by using a standard amount of unlabeled antibody. To identify the potential of optimal preloading, a pharmacokinetic model that describes the biodistribution of anti-CD20 antibody was developed. Simulations were conducted for different tumor burdens, spleen sizes, and tumor permeabilities. The optimal amount of unlabeled antibody was determined for each scenario. These simulations show that the currently administered standard amount is not optimal. A preload of 150 mg or lower would result in equal or higher tumor uptake in all cases. For tumors with high permeability, the uptake of labeled antibody could be increased by a factor of 8.5 using the considerably reduced optimal preload. The most sensitive parameter for the choice of the optimal amount of unlabeled antibody is the tumor uptake index. The results indicate that a personalized approach for radioimmunotherapy (RIT) with anti-CD20 antibody is required to account for the interpatient variability. The optimal amount of unlabeled antibody, which has to be determined by using a pharmacokinetic model, could substantially improve tumor uptake and thus RIT with anti-CD20 antibody.
Collapse
Affiliation(s)
- Peter Kletting
- Klinik für Nuklearmedizin, Universität Ulm, Ulm, Germany
| | | | | | | |
Collapse
|
33
|
Song H, Sgouros G. Radioimmunotherapy of solid tumors: searching for the right target. Curr Drug Deliv 2011; 8:26-44. [PMID: 21034423 PMCID: PMC4337879 DOI: 10.2174/156720111793663651] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Accepted: 05/25/2010] [Indexed: 11/22/2022]
Abstract
Radioimmunotherapy of solid tumors remains a challenge despite the tremendous success of ⁹⁰Y ibritumomab tiuxetan (Zevalin) and ¹³¹I Tositumomab (Bexxar) in treating non-Hodgkin's lymphoma. For a variety of reasons, clinical trials of radiolabeled antibodies against solid tumors have not led to responses equivalent to those seen against lymphoma. In contrast, promising responses have been observed with unlabeled antibodies that target solid tumor receptors associated with cellular signaling pathways. These observations suggest that anti-tumor efficacy of the carrier antibody might be critical to achieving clinical responses. Here, we review and compare tumor antigens targeted by radiolabeled antibodies and unlabeled antibodies used in immunotherapy. The review shows that the trend for radiolabeled antibodies under pre-clinical development is to also target antigens associated with signaling pathways that are essential for the growth and survival of the tumor.
Collapse
Affiliation(s)
- Hong Song
- Division of Nuclear Medicine, Russell H. Morgan, Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA. hsong6jhmi.edu
| | | |
Collapse
|
34
|
Sharkey RM, Rossi EA, Chang CH, Goldenberg DM. Improved cancer therapy and molecular imaging with multivalent, multispecific antibodies. Cancer Biother Radiopharm 2010; 25:1-12. [PMID: 20187791 DOI: 10.1089/cbr.2009.0690] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Antibodies are highly versatile proteins with the ability to be used to target diverse compounds, such as radionuclides for imaging and therapy, or drugs and toxins for therapy, but also can be used unconjugated to elicit therapeutically beneficial responses, usually with minimal toxicity. This update describes a new procedure for forming multivalent and/or multispecific proteins, known as the dock-and-lock (DNL) technique. Developed as a procedure for preparing bispecific antibodies capable of binding divalently to a tumor antigen and monovalently to a radiolabeled hapten-peptide for pretargeted imaging and therapy, this methodology has the flexibility to create a number of other biologic agents of therapeutic interest. A variety of constructs, based on anti-CD20 and CD22 antibodies, have been made, with results showing that multispecific antibodies have very different properties from the respective parental monospecific antibodies. The technique is not restricted to antibody combination, but other biologics, such as interferon-alpha2b, have been prepared. These types of constructs not only allow small biologics to be sustained in the blood longer, but also to be selectively targeted. Thus, DNL technology is a highly flexible platform that can be used to prepare many different types of agents that could further improve cancer detection and therapy.
Collapse
Affiliation(s)
- Robert M Sharkey
- Center for Molecular Medicine and Immunology (CMMI), Belleville, New Jersey, USA
| | | | | | | |
Collapse
|
35
|
Ahmed S, Winter JN, Gordon LI, Evens AM. Radioimmunotherapy for the treatment of non-Hodgkin lymphoma: current status and future applications. Leuk Lymphoma 2010; 51:1163-77. [PMID: 20470217 DOI: 10.3109/10428191003793366] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Radioimmunotherapy (RIT) has proved to be a safe and effective treatment for patients with relapsed or refractory indolent non-Hodgkin lymphoma (NHL) including rituximab-refractory follicular lymphoma. Further, FDA approval was recently granted for use in newly diagnosed follicular lymphoma as consolidative therapy immediately following induction chemotherapy. We detail herein the scope of clinical studies performed in relapsed/refractory and newly diagnosed indolent lymphoma and summarize the associated safety data. In addition, we discuss new applications of RIT that have been investigated in a variety of clinical scenarios (e.g. single-agent and sequential therapy in aggressive NHLs and as a component of stem cell transplant conditioning). The wide array of RIT-based studies have yielded encouraging data, although randomized controlled trials will be needed to prove superiority over conventional therapy. Novel therapeutic RIT-based strategies that continue to be explored include radiation-enhancing agents combined with RIT, pre-targeting, RIT fractionation, as well as the integration of new humanized antibodies. The field of RIT continues to evolve scientifically and grow clinically. A reappraisal of prior data and examination of recently published and ongoing studies will be important in recognizing the potential benefit of RIT in the treatment of NHL.
Collapse
Affiliation(s)
- Sairah Ahmed
- Division of Hematology/Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | | | | |
Collapse
|
36
|
Cicone F, Russo E, Carpaneto A, Prior JO, Delaloye AB, Scopinaro F, Ketterer N. Follicular lymphoma at relapse after rituximab containing regimens: comparison of time to event intervals prior to and after 90 Y-ibritumomab-tiuxetan. Hematol Oncol 2010; 29:131-8. [PMID: 20862654 DOI: 10.1002/hon.968] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2010] [Revised: 07/08/2010] [Accepted: 08/06/2010] [Indexed: 11/10/2022]
Abstract
Radioimmunotherapies with Zevalin® (RIT-Z) showed encouraging results in patients with relapsed/refractory follicular lymphoma (FL), leading frequently to failure-free intervals longer than those achieved by the last previous therapy. We compared time-to-event variables obtained before and after RIT-Z in patients with relapsed FL, previously exposed to rituximab. All patients with relapsed non-transformed, non-refractory, non-rituximab-naïve FL who have been treated with RIT-Z in two different centres in Europe were included. Staging and response were assessed by contrast-enhanced CT in all patients; PET/CT was performed according to local availability. Event-free survival (EFS) and time to next treatment (TTNT) following the last previous therapy and after RIT-Z were compared. Pre-therapy characteristics were tested in univariate analyses for prediction of outcomes. A description of the patterns of relapse was also provided. Among 70 patients treated, only 16 fulfilled the inclusion criteria. They were treated with a median of 3 prior lines of chemo-immunotherapies, including a median of 2 rituximab-containing regimens; 6 patients had undergone myeloablative chemotherapy with autologous stem cell rescue (ASCT). Overall response rates were 10 (62%) CR/CRu, 3 (19%) PR and 3 (19%) PD; response rates were similar in patients with prior ASCT. After RIT-Z only few patients obtained EFS and TTNT longer than after the last previous therapy. All four patients receiving rituximab maintenance were without progression 12 months after RIT-Z. Relapses occurred in both previously and newly involved sites; a significant association was found between the number of pathologic sites involved prior to RIT-Z and subsequent TTNT. Despite the excellent response rate, the duration of response was shorter than the previous one confirming the known trend of relapses to occur earlier after subsequent treatments. Rituximab maintenance after RIT-Z showed encouraging results in terms of prolonging EFS, warranting further studies.
Collapse
Affiliation(s)
- Francesco Cicone
- Department of Nuclear Medicine, Sant'Andrea Hospital, University La Sapienza of Rome, Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
37
|
Walter RB, Press OW, Pagel JM. Pretargeted radioimmunotherapy for hematologic and other malignancies. Cancer Biother Radiopharm 2010; 25:125-42. [PMID: 20423225 DOI: 10.1089/cbr.2010.0759] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Radioimmunotherapy (RIT) has emerged as one of the most promising treatment options, particularly for hematologic malignancies. However, this approach has generally been limited by a suboptimal therapeutic index (target-to-nontarget ratio) and an inability to deliver sufficient radiation doses to tumors selectively. Pretargeted RIT (PRIT) circumvents these limitations by separating the targeting vehicle from the subsequently administered therapeutic radioisotope, which binds to the tumor-localized antibody or is quickly excreted if unbound. A growing number of preclinical proof-of-principle studies demonstrate that PRIT is feasible and safe and provides improved directed radionuclide delivery to malignant cells compared with conventional RIT while sparing normal cells from nonspecific radiotoxicity. Early phase clinical studies corroborate these preclinical findings and suggest better efficacy and lesser toxicities in patients with hematologic and other malignancies. With continued research, PRIT-based treatment strategies promise to become cornerstones to improved outcomes for cancer patients despite their complexities.
Collapse
Affiliation(s)
- Roland B Walter
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA.
| | | | | |
Collapse
|
38
|
Sharkey RM, Rossi EA, McBride WJ, Chang CH, Goldenberg DM. Recombinant bispecific monoclonal antibodies prepared by the dock-and-lock strategy for pretargeted radioimmunotherapy. Semin Nucl Med 2010; 40:190-203. [PMID: 20350628 PMCID: PMC2855818 DOI: 10.1053/j.semnuclmed.2009.12.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The selective delivery of therapeutic radionuclides is a promising approach for treating cancer. Antibody-targeted radionuclides are of particular interest, with 2 products approved for the treatment of certain forms of non-Hodgkin lymphoma. However, for many other cancers, radioimmunotherapy has been ineffective, being limited by prolonged exposure to the highly radiosensitive bone marrow. An alternative approach, known as pretargeting, separates radionuclide from the antibody, allowing the radiation to be delivered on a small molecule that can quickly and efficiently migrate into the tumor, and then rapidly clear from the body with minimal retention in tissues. Several pretargeting methods have been developed that differ in the way they selectively capture the radionuclide. This review focuses on the development of a novel form of bispecific monoclonal antibody (bsMAb) pretargeting that uses a unique radiolabeled hapten-peptide system that can be modified to bind numerous therapeutic and imaging radionuclides. Together with a specialized recombinant humanized bsMAb prepared with by a technique known as the Dock-and-Lock method, this pretargeting procedure has been examined in many different animal models, showing a high level of sensitivity and specificity for localizing tumors, and improved efficacy with less hematologic toxicity associated with directly radiolabeled IgG. The bsMAb is a tri-Fab structure, having 2 binding arms for the tumor antigen and 1 capable of binding a hapten-peptide. Preclinical studies were preformed to support the clinical use of a bsMAb and a hapten-peptide bearing a single DOTA moiety (IMP-288). A phase 0 trial found an (131)I-tri-Fab bsMAb, TF2, that targets carcinoembryonic antigen was stable in vivo, quickly clears from the blood, and localizes known tumors. The first-in-patient pretargeting experience with the (111)In-IMP-288 also observed rapid clearance and low tissue (kidney) retention, as well as localization of tumors, providing initial promising evidence for developing these materials for radioimmunotherapy.
Collapse
Affiliation(s)
- Robert M Sharkey
- Garden State Cancer Center, Center for Molecular Medicine and Immunology, Belleville, NJ, USA.
| | | | | | | | | |
Collapse
|
39
|
Sharkey RM, Karacay H, Goldenberg DM. Improving the treatment of non-Hodgkin lymphoma with antibody-targeted radionuclides. Cancer 2010; 116:1134-45. [PMID: 20127947 DOI: 10.1002/cncr.24802] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Radioimmunotherapy of non-Hodgkin lymphoma comprises a (90)Y- or (131)I-labeled murine anti-CD20 IgG, but both agents also include a substantial dose of unlabeled anti-CD20 IgG given immediately before the radioconjugate to reduce its uptake in the spleen (primary normal B-cell antigen sink); this extends its plasma half-life and improves tumor visualization. Thus, these treatments combine an effective anti-CD20 radioconjugate with an unconjugated anti-CD20 antibody that is also therapeutically active, but the large anti-CD20 IgG predose ( approximately 900 mg) may diminish the tumor localization of the radioimmunoconjugate (eg, 10-35 mg). We have examined alternative approaches that enhance radionuclide targeting and improve antitumor responses. One uses a (90)Y-labeled anti-CD22 IgG (epratuzumab) combined with an antibody therapy regimen of a humanized anti-CD20 IgG (veltuzumab). Pretargeted radionuclide therapy using a trivalent, humanized, recombinant bispecific anti-CD20 antibody with a (90)Y-hapten-peptide is another highly effective method that is also less toxic than directly radiolabeled IgG. Finally, all approaches benefit from the addition of a consolidation-dosing regimen of the anti-CD20 IgG antibody. This article reviews these various options and discusses how some fundamental changes could potentially enhance the response and duration from radionuclide-targeted therapy.
Collapse
Affiliation(s)
- Robert M Sharkey
- Center for Molecular Medicine and Immunology, Garden State Cancer Center, 520 Belleville Avenue, Belleville, NJ 07109, USA.
| | | | | |
Collapse
|
40
|
Palanca-Wessels MCA, Press OW. Improving the efficacy of radioimmunotherapy for non-Hodgkin lymphomas. Cancer 2010; 116:1126-33. [PMID: 20127945 DOI: 10.1002/cncr.24801] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Approximately 66,000 Americans develop non-Hodgkin lymphoma (NHL) each year. Although the use of unlabeled antibodies such as rituximab has significantly improved survival when combined with standard chemotherapy regimens, approximately two-thirds of lymphoma patients eventually develop disease recurrence and die of their disease. Novel treatments are urgently needed to cure these patients. One strategy involves the use of radiolabeled immunoconjugates that specifically localize radiation delivery to sites of lymphoma while minimizing toxicity to normal tissues. A growing number of studies support the contention that radiolabeled antibody therapy can improve overall survival of lymphoma patients and lead to durable remissions, with probable cures, in many patients. Various approaches for enhancing the effectiveness of radioimmunoconjugates have been studied, including: use in newly diagnosed lymphoma patients, combination with chemotherapy or other monoclonal antibodies, use with hematopoietic stem cell transplantation, multistep pretargeting strategies to further minimize toxicity, and simultaneous targeting of multiple B-cell antigens. This article summarizes the current knowledge supporting the use of radioimmunotherapy, an underused but effective treatment modality in NHL patients.
Collapse
Affiliation(s)
- M Corinna A Palanca-Wessels
- Division of Hematology, Department of Medicine, Fred Hutchinson Cancer Research Center, University of Washington, 1100 Fairview Avenue N., Seattle, WA 98109, USA
| | | |
Collapse
|
41
|
A re-examination of radioimmunotherapy in the treatment of non-Hodgkin lymphoma: prospects for dual-targeted antibody/radioantibody therapy. Blood 2009; 113:3891-5. [PMID: 19182204 DOI: 10.1182/blood-2008-11-188896] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antibody-based therapies, both unconjugated antibodies and radioimmunotherapy, have had a significant impact on the treatment of non-Hodgkin lymphoma. Single-agent rituximab is an effective therapy, but it is being increasingly used with combination chemotherapy to improve the objective response and its duration. The approved anti-CD20 radioimmunoconjugates ((90)Y-ibritumomab tiuxetan or (131)I-tositumomab) have had encouraging results, with trials now seeking to incorporate a radioimmunoconjugate in various settings. However, new preclinical data raise important questions concerning current radioimmunoconjugate treatment regimens and ways to improve them. In radioconjugate therapy, nearly 900 mg of the unlabeled anti-CD20 IgG antibody is predosed to the patient before the anti-CD20 antibody conjugated to either (90)Y or (131)I is given. Combining an unconjugated anti-CD20 antibody therapy with a radioimmunoconjugate binding to a noncompeting antigen might improve responses by allowing optimal uptake of each agent. Preclinical models have indicated that careful consideration should be given to predosing when using competing antibodies, but that consolidation anti-CD20 therapy enhances the efficacy of radioimmunoconjugate therapy. New technologies, such as pretargeted radioimmunotherapy, also hold promise by reducing toxicity without sacrificing efficacy, and consideration should be given to fractionating or giving multiple radioimmunoconjugate treatments. This perspective discusses how these issues could affect current and future clinical trials.
Collapse
|