1
|
Krishnamoorthy S, Surti S. Advances in Breast PET Instrumentation. PET Clin 2024; 19:37-47. [PMID: 37949606 PMCID: PMC10712960 DOI: 10.1016/j.cpet.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Dedicated breast PET scanners currently have a spatial resolution in the 1.5 to 2 mm range, and the ability to provide tomographic images and quantitative data. They are also commercially available from a few vendors. A review of past and recent advances in the development and performance of dedicated breast PET scanners is summarized.
Collapse
Affiliation(s)
- Srilalan Krishnamoorthy
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA.
| | - Suleman Surti
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
2
|
Abstract
Breast-specific positron imaging systems provide higher sensitivity than whole-body PET for breast cancer detection. The clinical applications for breast-specific positron imaging are similar to breast MRI including preoperative local staging and neoadjuvant therapy response assessment. Breast-specific positron imaging may be an alternative for patients who cannot undergo breast MRI. Further research is needed in expanding the field-of-view for posterior breast lesions, increasing biopsy capability, and reducing radiation dose. Efforts are also necessary for developing appropriate use criteria, increasing availability, and advancing insurance coverage.
Collapse
Affiliation(s)
- Amy M Fowler
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, Madison, WI 53792-3252, USA; Department of Medical Physics, University of Wisconsin-Madison; University of Wisconsin Carbone Cancer Center, Madison, WI, USA.
| | - Kanae K Miyake
- Department of Advanced Medical Imaging Research, Graduate School of Medicine Kyoto University, Kyoto, Japan
| | - Yuji Nakamoto
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine Kyoto University, Kyoto, Japan
| |
Collapse
|
3
|
Abstract
There is growing interest in application of functional imaging modalities for adjunct breast imaging due to their unique ability to evaluate molecular/pathophysiologic changes, not visible by standard anatomic breast imaging. This has led to increased use of nuclear medicine dedicated breast-specific single photon and coincidence imaging systems for multiple indications, such as supplemental screening, staging of newly diagnosed breast cancer, evaluation of response to neoadjuvant treatment, diagnosis of local disease recurrence in the breast, and problem solving. Studies show that these systems maybe especially useful for specific subsets of patients, not well served by available anatomic breast imaging modalities.
Collapse
Affiliation(s)
- Miral M Patel
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, 1515 Holcombe, CPB5.3208, Houston, TX 77030, USA.
| | - Beatriz Elena Adrada
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, 1515 Holcombe, CPB5.3208, Houston, TX 77030, USA
| | - Amy M Fowler
- Department of Radiology, Section of Breast Imaging and Intervention, University of Wisconsin - Madison, 600 Highland Avenue, Madison, WI 53792-3252, USA; Department of Medical Physics, University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI 53792-3252, USA
| | - Gaiane M Rauch
- Department of Abdominal Imaging, The University of Texas MD Anderson Cancer Center, 1515 Holcombe, Unit 1473, Houston, TX 77030, USA; Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, 1515 Holcombe, Unit 1473, Houston, TX 77030, USA
| |
Collapse
|
4
|
Tashima H, Nishina T, Takyu S, Nishikido F, Suga M, Yamaya T. Optimum selection for multi-interaction events in Compton-PET hybrid reconstruction: a Monte Carlo study. Radiol Phys Technol 2023; 16:254-261. [PMID: 36943646 DOI: 10.1007/s12194-023-00714-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 03/13/2023] [Accepted: 03/13/2023] [Indexed: 03/23/2023]
Abstract
In Compton PET, that has a scatterer inserted inside a PET ring, there are multi-interaction events that can be treated as both PET and Compton events. A PET event from multi-interaction events that include a Compton event and a photoelectric absorption event or two Compton events can be extracted by applying a PET recovery method. In this study, we aimed to establish a method to maximize image quality by utilizing such redundant events. We conducted brain-scale Monte Carlo simulations of a C-shaped Compton-PET geometry and a whole gamma imaging (WGI) geometry. Images were reconstructed by a hybrid image reconstruction method combining both PET and Compton events. The result showed that the spatial resolution was improved when treated as PET events while keeping the noise level. The effect of improvement was more significant in WGI than in C-shaped Compton PET because the number of events recovered as PET events having more accurate spatial information was much larger in WGI. When the PET-recovered multi-interaction events were also included as Compton events in the hybrid reconstruction, we did not observe any improvement in image quality, while the number of used events was largest. The results suggested that treating events as PET events exclusively was better for image quality.
Collapse
Affiliation(s)
- Hideaki Tashima
- National Institutes for Quantum Science and Technology, 4-9-1, Anagawa, Inage-ku, Chiba-shi, Chiba, 263-8555, Japan.
| | - Takumi Nishina
- National Institutes for Quantum Science and Technology, 4-9-1, Anagawa, Inage-ku, Chiba-shi, Chiba, 263-8555, Japan
- Medical Engineering Course, Graduate School of Science and Engineering, Chiba University, 1-33, Yayoicho, Inage-ku, Chiba-shi, Chiba, 263-8522, Japan
| | - Sodai Takyu
- National Institutes for Quantum Science and Technology, 4-9-1, Anagawa, Inage-ku, Chiba-shi, Chiba, 263-8555, Japan
| | - Fumihiko Nishikido
- National Institutes for Quantum Science and Technology, 4-9-1, Anagawa, Inage-ku, Chiba-shi, Chiba, 263-8555, Japan
| | - Mikio Suga
- Medical Engineering Course, Graduate School of Science and Engineering, Chiba University, 1-33, Yayoicho, Inage-ku, Chiba-shi, Chiba, 263-8522, Japan
- Center for Frontier Medical Engineering, Chiba University, 1-33, Yayoicho, Inage-ku, Chiba-shi, Chiba, 263-8522, Japan
| | - Taiga Yamaya
- National Institutes for Quantum Science and Technology, 4-9-1, Anagawa, Inage-ku, Chiba-shi, Chiba, 263-8555, Japan
| |
Collapse
|
5
|
Okamoto M, Hasegawa T, Oda K, Miyatake H, Kikuchi K, Inoue Y, Satoh Y, Inaoka Y, Kawamoto M, Shima K, Kanbayashi K, Yoshii M, Kanno T, Wagatsuma K, Hashimoto M. Dedicated phantom tools using traceable 68Ge/ 68Ga point-like sources for dedicated-breast PET and positron emission mammography scanners. Radiol Phys Technol 2023; 16:49-56. [PMID: 36622563 DOI: 10.1007/s12194-022-00692-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 01/10/2023]
Abstract
Since the early 2000s, many types of positron emission tomography (PET) scanners dedicated to breast imaging for the diagnosis of breast cancer have been introduced. However, conventional performance evaluation methods developed for whole-body PET scanners cannot be used for such devices. In this study, we developed phantom tools for evaluating the quantitative accuracy of positron emission mammography (PEM) and dedicated-breast PET (dbPET) scanners using novel traceable point-like 68Ge/68 Ga sources. The PEM phantom consisted of an acrylic cube (100 × 100 × 40 mm) and three point-like sources. The dbPET phantom comprised an acrylic cylinder (ø100 × 100 mm) and five point-like sources. These phantoms were used for evaluating the fundamental responses of clinical PEM and dbPET scanners to point-like inputs in a medium. The results showed that reasonable recovery values were obtained based on region-of-interest analyses of the reconstructed images. The developed phantoms using traceable 68Ge/68 Ga point-like sources were useful for evaluating the physical characteristics of PEM and dbPET scanners. Thus, they offer a practical, reliable, and universal measurement scheme for evaluating various types of PET scanners using common sets of sealed sources.
Collapse
Affiliation(s)
- Mio Okamoto
- Juntendo University Hospital, 3-1-3, Hongo, Bunkyo-ku, Tokyo, 113-8431, Japan.,Kitasato University Graduate School of Medical Sciences, 1-15-1, Kitasato, Minamiku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Tomoyuki Hasegawa
- Kitasato University Graduate School of Medical Sciences, 1-15-1, Kitasato, Minamiku, Sagamihara, Kanagawa, 252-0373, Japan. .,School of Allied Health Sciences, Kitasato University, 1-15-1, Kitasato, Minamiku, Sagamihara, Kanagawa, 252-0373, Japan.
| | - Keiichi Oda
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, 35-2, Sakae-cho, Itabashi-ku, Tokyo, Japan
| | - Hiroki Miyatake
- Department of Radiology, Kitasato University Hospital, 1-15-1, Kitasato, Minamiku, Sagamihara, Kanagawa, 252-0375, Japan
| | - Kei Kikuchi
- Department of Radiology, Kitasato University Hospital, 1-15-1, Kitasato, Minamiku, Sagamihara, Kanagawa, 252-0375, Japan
| | - Yusuke Inoue
- Department of Diagnostic Radiology, Kitasato University School of Medicine, 1-15-1, Kitasato, Minamiku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Yoko Satoh
- Yamanashi PET Imaging Clinic, 3046-2, Shimokato, Chuo, Yamanashi, 409-3821, Japan
| | - Yuichi Inaoka
- Shimadzu Corporation, 1, Nishinokyo Kuwabara-cho, Nakagyo-ku, Kyoto, 604-8511, Japan
| | - Masami Kawamoto
- Advanced Medical Center, Shonan Kamakura General Hospital, 1370-1, Okamoto, Kamakura, Kanagawa, 247-8533, Japan
| | - Koji Shima
- Division of Radiology, Yuai Clinic, 1-6-2, Shinyokohama, Kouhokuku, Yokohama, Kanagawa, 223-0059, Japan
| | - Kenji Kanbayashi
- Division of Radiology, Yuai Clinic, 1-6-2, Shinyokohama, Kouhokuku, Yokohama, Kanagawa, 223-0059, Japan
| | - Miho Yoshii
- Division of Radiology, Yuai Clinic, 1-6-2, Shinyokohama, Kouhokuku, Yokohama, Kanagawa, 223-0059, Japan
| | - Tomoyuki Kanno
- Division of Radiology, Yuai Clinic, 1-6-2, Shinyokohama, Kouhokuku, Yokohama, Kanagawa, 223-0059, Japan
| | - Kei Wagatsuma
- Kitasato University Graduate School of Medical Sciences, 1-15-1, Kitasato, Minamiku, Sagamihara, Kanagawa, 252-0373, Japan.,School of Allied Health Sciences, Kitasato University, 1-15-1, Kitasato, Minamiku, Sagamihara, Kanagawa, 252-0373, Japan.,Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, 35-2, Sakae-cho, Itabashi-ku, Tokyo, Japan
| | - Masatoshi Hashimoto
- Kitasato University Graduate School of Medical Sciences, 1-15-1, Kitasato, Minamiku, Sagamihara, Kanagawa, 252-0373, Japan.,School of Allied Health Sciences, Kitasato University, 1-15-1, Kitasato, Minamiku, Sagamihara, Kanagawa, 252-0373, Japan
| |
Collapse
|
6
|
Hanaoka K, Watanabe S, Ishikawa D, Ishii K. [[PET] 2. Dedicated Breast PET System]. Nihon Hoshasen Gijutsu Gakkai Zasshi 2023; 79:90-96. [PMID: 36682784 DOI: 10.6009/jjrt.2023-2144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Kohei Hanaoka
- Division of Positron Emission Tomography, Institute of Advanced Clinical Medicine, Kindai University
| | - Shota Watanabe
- Division of Positron Emission Tomography, Institute of Advanced Clinical Medicine, Kindai University
| | - Daisuke Ishikawa
- Division of Positron Emission Tomography, Institute of Advanced Clinical Medicine, Kindai University
| | - Kazunari Ishii
- Division of Positron Emission Tomography, Institute of Advanced Clinical Medicine, Kindai University
- Department of Radiology, Kindai University Faculty of Medicine
| |
Collapse
|
7
|
Hashimoto R, Akashi-Tanaka S, Watanabe C, Masuda H, Taruno K, Takamaru T, Ide Y, Kuwayama T, Kobayashi Y, Takimoto M, Nakamura S. Diagnostic performance of dedicated breast positron emission tomography. Breast Cancer 2022; 29:1013-1021. [PMID: 35768684 PMCID: PMC9587931 DOI: 10.1007/s12282-022-01381-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 06/12/2022] [Indexed: 11/18/2022]
Abstract
Background Dedicated breast positron emission tomography (dbPET) has been developed for detecting smaller breast cancer. We investigated the diagnostic performance of dbPET in patients with known breast cancer. Methods Eighty-two preoperative patients with breast cancer were included in the study (84 tumours: 11 ductal carcinomas in situ [DCIS], 73 invasive cancers). They underwent mammography (MMG), ultrasonography (US), and contrast-enhanced breast magnetic resonance imaging (MRI) before whole-body PET/MRI (WBPET/MRI) and dbPET. We evaluated the sensitivity of all modalities, and the association between the maximum standard uptake value (SUVmax) level and histopathological features. Results The sensitivities of MMG, US, MRI, WBPET/MRI and dbPET for all tumours were 81.2% (65/80), 98.8% (83/84), 98.6% (73/74), 86.9% (73/84), and 89.2% (75/84), respectively. For 11 DCIS and 22 small invasive cancers (≤ 2 cm), the sensitivity of dbPET (84.9%) tended to be higher than that of WBPET/MRI (69.7%) (p = 0.095). Seven tumours were detected by dbPET only, but not by WBPET/MRI. Five tumours were detected by only WBPET/MRI because of the blind area of dbPET detector, requiring a wider field of view. After making the mat of dbPET detector thinner, all 22 scanned tumours were depicted. The higher SUVmax of dbPET was significantly related to the negative oestrogen receptor status, higher nuclear grade, and higher Ki67 (p < 0.001). Conclusions The sensitivity of dbPET for early breast cancer was higher than that of WBPET/MRI. High SUVmax was related to aggressive features of tumours. Moreover, dbPET can be used for the diagnosis and oncological evaluation of breast cancer.
Collapse
Affiliation(s)
- Rikako Hashimoto
- Division of Breast Surgical Oncology, Department of Surgery, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8666, Japan.
| | - Sadako Akashi-Tanaka
- Division of Breast Surgical Oncology, Department of Surgery, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8666, Japan
| | - Chie Watanabe
- Division of Breast Surgical Oncology, Department of Surgery, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8666, Japan
| | - Hiroko Masuda
- Division of Breast Surgical Oncology, Department of Surgery, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8666, Japan
| | - Kanae Taruno
- Division of Breast Surgical Oncology, Department of Surgery, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8666, Japan
| | - Tomoko Takamaru
- Division of Breast Surgical Oncology, Department of Surgery, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8666, Japan
| | - Yoshimi Ide
- Division of Breast Surgical Oncology, Department of Surgery, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8666, Japan
| | - Takashi Kuwayama
- Division of Breast Surgical Oncology, Department of Surgery, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8666, Japan
| | - Yasuhiro Kobayashi
- Tokyo Midtown Clinic, Midtown Tower 6F, Akasaka 9-7-1, Minato, Tokyo, 107-6206, Japan
| | - Masafumi Takimoto
- Department of Pathology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8666, Japan
| | - Seigo Nakamura
- Division of Breast Surgical Oncology, Department of Surgery, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8666, Japan
| |
Collapse
|
8
|
Hatazawa J. The Clinical Value of Breast Specific Gamma Imaging and Positron Imaging: An Update. Semin Nucl Med 2022; 52:619-627. [PMID: 35346487 DOI: 10.1053/j.semnuclmed.2022.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 02/21/2022] [Indexed: 01/15/2023]
Abstract
In the management of patients with breast cancer (BC), a mammography contributed to screen an early-stage patient, to plan a therapy strategy, to evaluate a therapy outcome, to detect a recurrence, and to reduce a mortality. Currently, various imaging modalities, such as CT, MR, Ultrasound (US), SPECT/CT, PET/CT, PET/MR have been utilized for the management of BC patients. In order to overcome a limited spatial resolution and sensitivity of whole-body systems in nuclear medicine imaging, dedicated breast imaging modalities were developed. One is a gamma imaging system with single/dual head scintillation detectors or semiconductor detectors associated with light compression device for breast parenchyma. Radiopharmaceutical for the gamma imaging is 99mTc-sestamibi. Another is a positron imaging system with opposite-type panel detectors and ring-shaped type detectors. Radiopharmaceutical for positron imaging is 18F-fluorodeoxyglucose. The breast-specific gamma and positron imaging systems were utilized mainly to detect small lesions less than 1 cm in diameter especially in patients with dense breast, to evaluate an effect of preoperative neo-adjuvant therapy, to plan surgical procedures (conservative-surgery vs mastectomy), and to detect a recurrence. By combining higher sensitivity and spatial resolution scanners with new radiopharmaceuticals, an information on molecular-level pathology of BC is increasingly available in an individual patient. This article reviewed clinical impact and future perspective of this field.
Collapse
Affiliation(s)
- Jun Hatazawa
- Department of Quantum Cancer Therapy, Research Center for Nuclear Physics, Osaka University, Osaka, Japan; Department of Nuclear Medicine and Tracer Kinetics, Osaka University Graduate School of Medicine, Osaka, Japan; Institute for Radiation Sciences, Osaka University, Osaka, Japan; Immunology Frontier Research Center, Osaka University, Osaka, Japan.
| |
Collapse
|
9
|
Sasada S, Kai A, Kimura Y, Masumoto N, Kadoya T. Four Patterns of Abnormal Ring-Like Uptakes on Dedicated Breast PET. Clin Nucl Med 2022; 47:e192-e193. [PMID: 35006117 DOI: 10.1097/rlu.0000000000003877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
ABSTRACT The high resolution of dedicated breast PET (dbPET) enables the visualization of small breast cancers and a heterogeneity of breast tumors. Some tumors present with a ring-like appearance, the central uptake defect possibly reflecting intratumoral fibrosis and necrosis, associated with high-grade malignancy, and a triple-negative subtype. However, a ring-like finding is not only found in high-grade breast cancers. We describe 4 representative patterns of ring-like uptakes on dbPET: high-grade invasive cancer, intracystic tumor, extended noninvasive carcinoma, and change after vacuum-assisted breast biopsy. Ring-like uptakes on dbPET should be evaluated in association with clinical information.
Collapse
Affiliation(s)
- Shinsuke Sasada
- From the Department of Surgical Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | | | | | | | | |
Collapse
|
10
|
Zeng T, Zheng J, Xia X, Chen X, Wang B, Zhang S, Chandler A, Cao T, Hu L, Chen Q, Chu X. Design and system evaluation of a dual-panel portable PET (DP-PET). EJNMMI Phys 2021; 8:47. [PMID: 34117943 PMCID: PMC8197684 DOI: 10.1186/s40658-021-00392-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/03/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Integrated whole-body PET/MR technology continues to mature and is now extensively used in clinical settings. However, due to the special design architecture, integrated whole-body PET/MR comes with a few inherent limitations. Firstly, whole-body PET/MR lacks sensitivity and resolution for focused organs. Secondly, broader clinical access of integrated PET/MR has been significantly restricted due to its prohibitively high cost. The MR-compatible PET insert is an independent and removable PET scanner which can be placed within an MRI bore. However, the mobility and configurability of all existing MR-compatible PET insert prototypes remain limited. METHODS An MR-compatible portable PET insert prototype, dual-panel portable PET (DP-PET), has been developed for simultaneous PET/MR imaging. Using SiPM, digital readout electronics, novel carbon fiber shielding, phase-change cooling, and MRI compatible battery power, DP-PET was designed to achieve high-sensitivity and high-resolution with compatibility with a clinical 3-T MRI scanner. A GPU-based reconstruction method with resolution modeling (RM) has been developed for the DP-PET reconstruction. We evaluated the system performance on PET resolution, sensitivity, image quality, and the PET/MR interference. RESULTS The initial results reveal that the DP-PET prototype worked as expected in the MRI bore and caused minimal compromise to the MRI image quality. The PET performance was measured to show a spatial resolution ≤ 2.5 mm (parallel to the detector panels), maximum sensitivity = 3.6% at the center of FOV, and energy resolution = 12.43%. MR pulsing introduces less than 2% variation to the PET performance measurement results. CONCLUSIONS We developed a MR-compatible PET insert prototype and performed several studies to begin to characterize the performance of the proposed DP-PET. The results showed that the proposed DP-PET performed well in the MRI bore and would cause little influence on the MRI images. The Derenzo phantom test showed that the proposed reconstruction method could obtain high-quality images using DP-PET.
Collapse
Affiliation(s)
- Tianyi Zeng
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiaxu Zheng
- Shanghai United Imaging Healthcare Co., Ltd., Shanghai, 201807, China
| | - Xinyuan Xia
- Shanghai United Imaging Healthcare Co., Ltd., Shanghai, 201807, China
| | - Xin Chen
- Shanghai United Imaging Healthcare Co., Ltd., Shanghai, 201807, China
| | - Beien Wang
- Shanghai United Imaging Healthcare Co., Ltd., Shanghai, 201807, China
| | - Shuangyue Zhang
- Shanghai United Imaging Healthcare Co., Ltd., Shanghai, 201807, China
| | - Adam Chandler
- United Imaging Healthcare, America, Houston, TX, 77054, USA
| | - Tuoyu Cao
- Shanghai United Imaging Healthcare Co., Ltd., Shanghai, 201807, China
| | - Lingzhi Hu
- United Imaging Healthcare, America, Houston, TX, 77054, USA.
| | - Qun Chen
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
- Shanghai United Imaging Healthcare Co., Ltd., Shanghai, 201807, China
| | - Xu Chu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
- Shanghai United Imaging Healthcare Co., Ltd., Shanghai, 201807, China
| |
Collapse
|
11
|
Chaudhari AJ, Badawi RD. Application-specific nuclear medical in vivoimaging devices. Phys Med Biol 2021; 66:10TR01. [PMID: 33770765 DOI: 10.1088/1361-6560/abf275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/26/2021] [Indexed: 11/11/2022]
Abstract
Nuclear medical imaging devices, such as those enabling photon emission imaging (gamma camera, single photon emission computed tomography, or positron emission imaging), that are typically used in today's clinics are optimized for assessing large portions of the human body, and are classified as whole-body imaging systems. These systems have known limitations for organ imaging, therefore application-specific devices have been designed, constructed and evaluated. These devices, given their compact nature and superior technical characteristics, such as their higher detection sensitivity and spatial resolution for organ imaging compared to whole-body imaging systems, have shown promise for niche applications. Several of these devices have further been integrated with complementary anatomical imaging devices. The objectives of this review article are to (1) provide an overview of such application-specific nuclear imaging devices that were developed over the past two decades (in the twenty-first century), with emphasis on brain, cardiac, breast, and prostate imaging; and (2) discuss the rationale, advantages and challenges associated with the translation of these devices for routine clinical imaging. Finally, a perspective on the future prospects for application-specific devices is provided, which is that sustained effort is required both to overcome design limitations which impact their utility (where these exist) and to collect the data required to define their clinical value.
Collapse
Affiliation(s)
- Abhijit J Chaudhari
- Department of Radiology, University of California Davis, Sacramento, CA 95817, United States of America
- Center for Molecular and Genomic Imaging, University of California Davis, Davis, CA 95616, United States of America
| | - Ramsey D Badawi
- Department of Radiology, University of California Davis, Sacramento, CA 95817, United States of America
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, United States of America
| |
Collapse
|
12
|
Sasada S, Kimura Y, Masumoto N, Emi A, Kadoya T, Arihiro K, Okada M. Breast cancer detection by dedicated breast positron emission tomography according to the World Health Organization classification of breast tumors. Eur J Surg Oncol 2021; 47:1588-1592. [PMID: 33685728 DOI: 10.1016/j.ejso.2021.02.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/15/2021] [Accepted: 02/24/2021] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE Considering the difficulty in detecting primary breast cancers using whole-body positron emission tomography (WBPET) owing to its limited spatial resolution, we aimed to evaluate the detectability of breast cancer by ring-type dedicated breast PET (DbPET) on the World Health Organization (WHO) histological classification in comparison with WBPET. METHODS A total of 938 patients with breast cancer underwent WBPET and ring-type DbPET, and 1021 lesions were histologically assessed based on the WHO classification of tumors of the breast. The findings of WBPET and DbPET were retrospectively evaluated and compared. RESULTS The size-related sensitivity of DbPET was superior to that of WBPET for subcentimetric tumors (81.9% vs. 52.4%, P < 0.001). The histological distribution was as follows: 11 lobular carcinoma in situ, 158 ductal carcinoma in situ, 738 infiltrating duct carcinoma not otherwise specified (NOS), 12 lobular carcinoma NOS, 40 mucinous adenocarcinoma, 13 tubular carcinoma, 36 invasive breast carcinoma others, and 13 papillary neoplasms. WBPET had low sensitivity for lobular carcinoma in situ, ductal carcinoma in situ, lobular carcinoma NOS, mucinous adenocarcinoma, and tubular carcinoma. DbPET showed improved sensitivity for all the above except lobular and tubular carcinoma. The maximum standardized uptake values (SUVmax) of DbPET were significantly higher than those of WBPET for histological types, excluding lobular carcinoma in situ. The SUVmax of papillary neoplasms was high regardless of low-grade histology and Ki-67 labeling index. CONCLUSIONS DBPET was found to have high sensitivity and SUVmax values for all histologic types that showed low sensitivity of detection on WBPET, except lobular carcinoma in situ.
Collapse
Affiliation(s)
- Shinsuke Sasada
- Department of Surgical Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan.
| | - Yuri Kimura
- Department of Surgical Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Norio Masumoto
- Department of Surgical Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Akiko Emi
- Department of Surgical Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Takayuki Kadoya
- Department of Surgical Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Koji Arihiro
- Department of Anatomical Pathology, Hiroshima University Hospital, Hiroshima, Japan
| | - Morihito Okada
- Department of Surgical Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
13
|
Satoh Y, Kawamoto M, Kubota K, Murakami K, Hosono M, Senda M, Sasaki M, Momose T, Ito K, Okamura T, Oda K, Kuge Y, Sakurai M, Tateishi U, Fujibayashi Y, Magata Y, Yoshida T, Waki A, Kato K, Hashimoto T, Uchiyama M, Kinuya S, Higashi T, Magata Y, Machitori A, Maruno H, Minamimoto R, Yoshinaga K. Clinical practice guidelines for high-resolution breast PET, 2019 edition. Ann Nucl Med 2021; 35:406-414. [PMID: 33492646 PMCID: PMC7902575 DOI: 10.1007/s12149-021-01582-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 12/28/2020] [Indexed: 02/08/2023]
Abstract
Breast positron emission tomography (PET) has had insurance coverage when performed with conventional whole-body PET in Japan since 2013. Together with whole-body PET, accurate examination of breast cancer and diagnosis of metastatic disease are possible, and are expected to contribute significantly to its treatment planning. To facilitate a safer, smoother, and more appropriate examination, the Japanese Society of Nuclear Medicine published the first edition of practice guidelines for high-resolution breast PET in 2013. Subsequently, new types of breast PET have been developed and their clinical usefulness clarified. Therefore, the guidelines for breast PET were revised in 2019. This article updates readers as to what is new in the second edition. This edition supports two different types of breast PET depending on the placement of the detector: the opposite-type (positron emission mammography; PEM) and the ring-shaped type (dedicated breast PET; dbPET), providing an overview of these scanners and appropriate imaging methods, their clinical applications, and future prospects. The name "dedicated breast PET" from the first edition is widely used to refer to ring-shaped type breast PET. In this edition, "breast PET" has been defined as a term that refers to both opposite- and ring-shaped devices. Up-to-date breast PET practice guidelines would help provide useful information for evidence-based breast imaging.
Collapse
Affiliation(s)
- Yoko Satoh
- PET Nuclear Medicine Committee, Japanese Society of Nuclear Medicine, Tokyo, Japan.
- Yamanashi PET Imaging Clinic, Shimokato 3046-2, Chuo City, Yamanashi Prefecture, 409-3821, Japan.
| | - Masami Kawamoto
- PET Nuclear Medicine Committee, Japanese Society of Nuclear Medicine, Tokyo, Japan
| | | | - Koji Murakami
- PET Nuclear Medicine Committee, Japanese Society of Nuclear Medicine, Tokyo, Japan
| | - Makoto Hosono
- PET Nuclear Medicine Committee, Japanese Society of Nuclear Medicine, Tokyo, Japan
| | - Michio Senda
- PET Nuclear Medicine Committee, Japanese Society of Nuclear Medicine, Tokyo, Japan
| | - Masayuki Sasaki
- PET Nuclear Medicine Committee, Japanese Society of Nuclear Medicine, Tokyo, Japan
| | - Toshimitsu Momose
- PET Nuclear Medicine Committee, Japanese Society of Nuclear Medicine, Tokyo, Japan
| | - Kengo Ito
- PET Nuclear Medicine Committee, Japanese Society of Nuclear Medicine, Tokyo, Japan
| | - Terue Okamura
- PET Nuclear Medicine Committee, Japanese Society of Nuclear Medicine, Tokyo, Japan
| | - Keiichi Oda
- PET Nuclear Medicine Committee, Japanese Society of Nuclear Medicine, Tokyo, Japan
| | - Yuji Kuge
- PET Nuclear Medicine Committee, Japanese Society of Nuclear Medicine, Tokyo, Japan
| | - Minoru Sakurai
- PET Nuclear Medicine Committee, Japanese Society of Nuclear Medicine, Tokyo, Japan
| | - Ukihide Tateishi
- PET Nuclear Medicine Committee, Japanese Society of Nuclear Medicine, Tokyo, Japan
| | - Yasuhisa Fujibayashi
- PET Nuclear Medicine Committee, Japanese Society of Nuclear Medicine, Tokyo, Japan
| | - Yasuhiro Magata
- PET Nuclear Medicine Committee, Japanese Society of Nuclear Medicine, Tokyo, Japan
| | - Takeshi Yoshida
- PET Nuclear Medicine Committee, Japanese Society of Nuclear Medicine, Tokyo, Japan
| | - Atsuo Waki
- PET Nuclear Medicine Committee, Japanese Society of Nuclear Medicine, Tokyo, Japan
| | - Katsuhiko Kato
- Health Insurance Committee, Japanese Society of Nuclear Medicine, Tokyo, Japan
| | - Teisuke Hashimoto
- Health Insurance Committee, Japanese Society of Nuclear Medicine, Tokyo, Japan
| | - Mayuki Uchiyama
- Health Insurance Committee, Japanese Society of Nuclear Medicine, Tokyo, Japan
| | - Seigo Kinuya
- Health Insurance Committee, Japanese Society of Nuclear Medicine, Tokyo, Japan
| | - Tatsuya Higashi
- Health Insurance Committee, Japanese Society of Nuclear Medicine, Tokyo, Japan
| | - Yasuhiro Magata
- Health Insurance Committee, Japanese Society of Nuclear Medicine, Tokyo, Japan
| | - Akihiro Machitori
- Health Insurance Committee, Japanese Society of Nuclear Medicine, Tokyo, Japan
| | - Hirotaka Maruno
- Health Insurance Committee, Japanese Society of Nuclear Medicine, Tokyo, Japan
| | - Ryogo Minamimoto
- Health Insurance Committee, Japanese Society of Nuclear Medicine, Tokyo, Japan
| | - Keiichiro Yoshinaga
- Health Insurance Committee, Japanese Society of Nuclear Medicine, Tokyo, Japan
| |
Collapse
|
14
|
Krishnamoorthy S, Vent T, Barufaldi B, Maidment ADA, Karp JS, Surti S. Evaluating attenuation correction strategies in a dedicated, single-gantry breast PET-tomosynthesis scanner. Phys Med Biol 2020; 65:235028. [PMID: 33113520 PMCID: PMC7870546 DOI: 10.1088/1361-6560/abc5a8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We are developing a dedicated, combined breast positron emission tomography (PET)-tomosynthesis scanner. Both the PET and digital breast tomosynthesis (DBT) scanners are integrated in a single gantry to provide spatially co-registered 3D PET-tomosynthesis images. The DBT image will be used to identify the breast boundary and breast density to improve the quantitative accuracy of the PET image. This paper explores PET attenuation correction (AC) strategies that can be performed with the combined breast PET-DBT scanner to obtain more accurate, quantitative high-resolution 3D PET images. The PET detector is comprised of a 32 × 32 array of 1.5 × 1.5 × 15 mm3 LYSO crystals. The PET scanner utilizes two detector heads separated by either 9 or 11 cm, with each detector head having a 4 × 2 arrangement of PET detectors. GEANT4 Application for Tomographic Emission simulations were performed using an anthropomorphic breast phantom with heterogeneous attenuation under clinical DBT-compression. FDG-avid lesions, each 5 mm in diameter with 8:1 uptake, were simulated at four locations within the breast. Simulations were performed with a scan time of 2 min. PET AC was performed using the actual breast simulation model as well as DBT reconstructed volumetric images to derive the breast outline. In addition to using the known breast density as defined by the breast model, we also modeled it as uniform patient-independent soft-tissue, and as a uniform patient-specific material derived from breast tissue composition. Measured absolute lesion uptake was used to evaluate the quantitative accuracy of performing AC using the various strategies. This study demonstrates that AC is necessary to obtain a closer estimate of the true lesion uptake and background activity in the breast. The DBT image dataset assists in measuring lesion uptake with low bias by facilitating accurate breast delineation as well as providing accurate information related to the breast tissue composition. While both the uniform soft-tissue and patient-specific material approaches provides a close estimate to the ground truth, <5% bias can be achieved by using a uniform patient-specific material to define the attenuation map.
Collapse
Affiliation(s)
- Srilalan Krishnamoorthy
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Trevor Vent
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Bruno Barufaldi
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Andrew D A Maidment
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Joel S Karp
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States of America
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Suleman Surti
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States of America
| |
Collapse
|
15
|
Jiang J, Li K, Wang Q, Puterbaugh K, Young JW, Siegel SB, O'Sullivan JA, Tai YC. A second-generation virtual-pinhole PET device for enhancing contrast recovery and improving lesion detectability of a whole-body PET/CT scanner. Med Phys 2019; 46:4165-4176. [PMID: 31315157 DOI: 10.1002/mp.13724] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 07/10/2019] [Accepted: 07/11/2019] [Indexed: 02/03/2023] Open
Abstract
PURPOSE We have developed a second-generation virtual-pinhole (VP) positron emission tomography (PET) device that can position a flat-panel PET detector around a patient's body using a robotic arm to enhance the contrast recovery coefficient (CRC) and detectability of lesions in any region-of-interest using a whole-body PET/computed tomography (CT) scanner. METHODS We constructed a flat-panel VP-PET device using 32 high-resolution detectors, each containing a 4 × 4 MPPC array and 16 × 16 LYSO crystals of 1.0 × 1.0 × 3.0 mm3 each. The flat-panel detectors can be positioned around a patient's body anywhere in the imaging field-of-view (FOV) of a Siemens Biograph 40 PET/CT scanner by a robotic arm. New hardware, firmware and software have been developed to support the additional detector signals without compromising a scanner's native functions. We stepped a 22 Na point source across the axial FOV of the scanner to measure the sensitivity profile of the VP-PET device. We also recorded the coincidence events measured by the scanner detectors and by the VP-PET detectors when imaging phantoms of different sizes. To assess the improvement in the CRC of small lesions, we imaged an elliptical torso phantom measuring 316 × 228 × 162 mm3 that contains spherical tumors with diameters ranging from 3.3 to 11.4 mm with and without the VP-PET device. Images were reconstructed using a list mode Maximum-Likelihood Estimation-Maximization algorithm implemented on multiple graphics processing units (GPUs) to support the unconventional geometries enabled by a VP-PET system. The mean and standard deviation of the CRC were calculated for tumors of different sizes. Monte Carlo simulation was also conducted to image clusters of lesions in a torso phantom using a PET/CT scanner alone or the same scanner equipped with VP-PET devices. Receiver operating characteristic (ROC) curves were analyzed for three system configurations to evaluate the improvement in lesion detectability by the VP-PET device over the native PET/CT scanner. RESULTS The repeatability in positioning the flat-panel detectors using a robotic arm is better than 0.15 mm in all three directions. Experimental results show that the average CRC of 3.3, 4.3, and 6.0 mm diameter tumors was 0.82%, 2.90%, and 5.25%, respectively, when measured by the native scanner. The corresponding CRC was 2.73%, 6.21% and 10.13% when imaged by the VP-PET insert device with the flat-panel detector under the torso phantom. These values may be further improved to 4.31%, 9.65% and 18.01% by a future dual-panel VP-PET insert device if DOI detectors are employed to triple its detector efficiency. Monte Carlo simulation results show that the tumor detectability can be improved by a VP-PET device that has a single flat-panel detector. The improvement is greater if the VP-PET device employs a dual-panel design. CONCLUSIONS We have developed a prototype flat-panel VP-PET device and integrated it with a clinical PET/CT scanner. It significantly enhances the contrast of lesions, especially for those that are borderline detectable by the native scanner, within regions-of-interest specified by users. Simulation demonstrated the enhancement in lesion detectability with the VP-PET device. This technology may become a cost-effective solution for organ-specific imaging tasks.
Collapse
Affiliation(s)
- Jianyong Jiang
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Ke Li
- Department of Electrical and Systems Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Qiang Wang
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Kenneth Puterbaugh
- Molecular Imaging, Siemens Medical Solutions USA, Inc, Knoxville, TN, 37932, USA
| | - John W Young
- Molecular Imaging, Siemens Medical Solutions USA, Inc, Knoxville, TN, 37932, USA
| | - Stefan B Siegel
- Molecular Imaging, Siemens Medical Solutions USA, Inc, Knoxville, TN, 37932, USA
| | - Joseph A O'Sullivan
- Department of Electrical and Systems Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Yuan-Chuan Tai
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO, 63110, USA
| |
Collapse
|
16
|
Sasada S, Shiroma N, Goda N, Kajitani K, Emi A, Masumoto N, Kadoya T, Arihiro K, Okada M. The relationship between ring-type dedicated breast PET and immune microenvironment in early breast cancer. Breast Cancer Res Treat 2019; 177:651-657. [PMID: 31267329 DOI: 10.1007/s10549-019-05339-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 06/27/2019] [Indexed: 11/27/2022]
Abstract
PURPOSE 18F-fluorodeoxyglucose (FDG) uptake on positron emission tomography (PET) is related to the biological parameters and prognosis of breast cancer. However, whether whole-body PET (WBPET) and dedicated breast PET (DbPET) can reflect the tumor microenvironment is unclear. This study investigated the relationship between stromal tumor-infiltrating lymphocytes (TILs) and maximum standardized uptake value (SUVmax) in WBPET and DbPET. METHODS A total of 125 invasive breast cancers underwent WBPET and ring-type DbPET and resected specimens were pathologically assessed. The impact of SUVmax on the tumor biological parameters and TILs was retrospectively evaluated. SUVmax was classified as high and low relative to the median values (WBPET-SUVmax: 2.2 and DbPET-SUVmax: 6.0). RESULTS SUVmax correlated with tumor size, nuclear grade, Ki-67 labeling index, and TILs in both WBPET and DbPET (all p < 0.001). In multiple linear regression analysis, tumor size, Ki-67 labeling index, and TILs predicted SUVmax in WBPET and DbPET. The cutoff values of tumor size, Ki-67 labeling index, and TILs predicting high SUVmax were 20 mm, 20%, and 20%, respectively. In multivariate analysis, the predictive factors for high SUVmax were tumor size and Ki-67 labeling index for WBPET and tumor size and TILs for DbPET. High SUVmax in DbPET was related to high numbers of TILs after propensity score matching analysis; however, WBPET was not (p = 0.007 and p = 0.624, respectively). CONCLUSIONS Both SUVmax values in WBPET and DbPET predicted TIL concentration of the primary breast cancer. In DbPET, SUVmax represented the immune microenvironment after adjusting for tumor biological factors.
Collapse
Affiliation(s)
- Shinsuke Sasada
- Department of Surgical Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima, Hiroshima, 734-8551, Japan.
| | - Noriyuki Shiroma
- Department of Anatomical Pathology, Hiroshima University Hospital, Hiroshima, Japan
| | - Noriko Goda
- Department of Surgical Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima, Hiroshima, 734-8551, Japan
| | - Keiko Kajitani
- Department of Surgical Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima, Hiroshima, 734-8551, Japan
| | - Akiko Emi
- Department of Surgical Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima, Hiroshima, 734-8551, Japan
| | - Norio Masumoto
- Department of Surgical Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima, Hiroshima, 734-8551, Japan
| | - Takayuki Kadoya
- Department of Surgical Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima, Hiroshima, 734-8551, Japan
| | - Koji Arihiro
- Department of Anatomical Pathology, Hiroshima University Hospital, Hiroshima, Japan
| | - Morihito Okada
- Department of Surgical Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima, Hiroshima, 734-8551, Japan
| |
Collapse
|
17
|
Minoura N, Teramoto A, Ito A, Yamamuro O, Nishio M, Saito K, Fujita H. A complementary scheme for automated detection of high-uptake regions on dedicated breast PET and whole-body PET/CT. Radiol Phys Technol 2019; 12:260-267. [PMID: 31129787 DOI: 10.1007/s12194-019-00516-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/16/2019] [Accepted: 05/17/2019] [Indexed: 11/25/2022]
Abstract
In this study, we aimed to develop a hybrid method for automated detection of high-uptake regions in the breast and axilla using dedicated breast positron-emission tomography (db PET) and whole-body PET/computed tomography (CT) images. In our proposed method, high-uptake regions in the breast and axilla were detected using db PET images and whole-body PET/CT images. In db PET images, high-uptake regions in the breast were detected using adaptive thresholding technique based on the noise characteristics. In whole-body PET/CT images, the region of the breast that includes the axilla was first extracted using CT images. Next, high-uptake regions in the extracted breast region were detected on the PET images. By integration of the results of the two types of PET images, a final candidate region was obtained. In the experiments, the accuracy of extracting the region of the breast and detection ability was evaluated using clinical data. As a result, all breast regions were extracted correctly. The sensitivity of detection was 0.765, and the number of false positive cases were 1.8, which was 30% better than those on whole-body PET/CT alone. These results suggested that the proposed method, combining the two types of PET images is effective for improving detection performance.
Collapse
Affiliation(s)
- Natsuki Minoura
- Graduate School of Health Sciences, Fujita Health University, 1-98 Dengakugakubo, Kutsukake, Toyoake, Aichi, 470-1192, Japan
- Nagoya City University Hospital, Nagoya, Japan
| | - Atsushi Teramoto
- Graduate School of Health Sciences, Fujita Health University, 1-98 Dengakugakubo, Kutsukake, Toyoake, Aichi, 470-1192, Japan.
| | - Akari Ito
- East Nagoya Imaging Diagnosis Center, Nagoya, Japan
| | | | | | - Kuniaki Saito
- Graduate School of Health Sciences, Fujita Health University, 1-98 Dengakugakubo, Kutsukake, Toyoake, Aichi, 470-1192, Japan
| | - Hiroshi Fujita
- Department of Electrical, Electronic and Computer Engineering, Faculty of Engineering, Gifu University, Gifu, Japan
| |
Collapse
|
18
|
Sakaguchi R, Kataoka M, Kanao S, Miyake KK, Nakamoto Y, Sugie T, Toi M, Mikami Y, Togashi K. Distribution pattern of FDG uptake using ring-type dedicated breast PET in comparison to whole-body PET/CT scanning in invasive breast cancer. Ann Nucl Med 2019; 33:570-578. [PMID: 31115856 DOI: 10.1007/s12149-019-01364-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/03/2019] [Indexed: 01/19/2023]
Abstract
PURPOSE This study aimed to investigate the incidence of rim uptake (RU) or multifocal uptake (MU) by invasive breast cancers on a ring-type dedicated breast positron emission tomography (dbPET) scanner compared with whole-body PET (wbPET) scanner imaging and to correlate uptake patterns with pathological features and prognosis. METHODS Between 2009 and 2011, 76 lesions in 74 patients with primary invasive breast cancers were included. Each patient underwent dbPET and wbPET scanning on the same day after administration of 18F-fluorodeoxyglucose (FDG). The images were evaluated to identify specific uptake patterns (RU and MU). Their association with pathological characteristics and prognosis was analyzed. RESULTS On dbPET, RU and MU patterns were observed in 18 lesions (24%) and 28 lesions (37%), respectively. On wbPET, RU and MU patterns were observed in six lesions (8%) and 17 lesions (22%), respectively. Lesions with RU on dbPET were of higher grade than lesions without RU (P = 0.024) and a higher Ki-67 index (mean; 31% vs. 18%, P = 0.015). They tended to be triple-negative (33% vs. 12%, P = 0.046) and less likely to be luminal A subtype (17% vs. 47%, P = 0.020). On wbPET, however, no significant differences in these markers were seen between RU and non-RU. The MU pattern did not correlate with pathological characteristics in either scanner. Lesions with RU or MU were not significantly associated with disease-free survival. CONCLUSIONS DbPET can identify detailed FDG distribution patterns of breast cancer better than wbPET. Breast cancer with RU on dbPET was associated with higher grade and triple-negative subtype.
Collapse
Affiliation(s)
- Rena Sakaguchi
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Shogoinkawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Masako Kataoka
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Shogoinkawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Shotaro Kanao
- Department of Radiology, Kobe City Medical Center General Hospital, 2-1-1 Minatojikaminamicho, Chou-ku, Kobe, Hyogo, 650-0047, Japan
| | - Kanae K Miyake
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Shogoinkawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yuji Nakamoto
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Shogoinkawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Tomohatru Sugie
- Department of Breast Surgery, Kansai Medical University Hospital, 2-3-1 Shinmachi, Hirakata, Osaka, 573-1191, Japan
| | - Masakazu Toi
- Department of Breast Surgery, Kyoto University Hospital, 54 Shogoinkawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yoshiki Mikami
- Department of Diagnostic Pathology, Kumamoto University Hospital, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Kaori Togashi
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Shogoinkawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan
| |
Collapse
|
19
|
Narayanan D, Berg WA. Dedicated Breast Gamma Camera Imaging and Breast PET: Current Status and Future Directions. PET Clin 2018; 13:363-381. [PMID: 30100076 DOI: 10.1016/j.cpet.2018.02.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Recent advances in nuclear medicine instrumentation have led to the emergence of improved molecular imaging techniques to image breast cancer: dedicated gamma cameras using γ-emitting 99mTc-sestamibi and breast-specific PET cameras using 18F-fluorodeoxyglucose. This article focuses on the current role of such approaches in the clinical setting including diagnosis, assessing local extent of disease, monitoring response to therapy, and, for gamma camera imaging, possible supplemental screening in women with dense breasts. Barriers to clinical adoption and technologies and radiotracers under development are also discussed.
Collapse
Affiliation(s)
- Deepa Narayanan
- National Cancer Institute, 9609 Medical Center Drive, Rockville, MD 20850, USA.
| | - Wendie A Berg
- Department of Radiology, University of Pittsburgh School of Medicine, Magee-Womens Hospital of UPMC, 300 Halket Street, Pittsburgh, PA 15213
| |
Collapse
|
20
|
Narayanan D, Berg WA. Use of Breast-Specific PET Scanners and Comparison with MR Imaging. Magn Reson Imaging Clin N Am 2018; 26:265-272. [PMID: 29622131 DOI: 10.1016/j.mric.2017.12.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The goals of this article are to discuss the role of breast-specific PET imaging of women with breast cancer, compare the clinical performance of positron emission mammography (PEM) and MR imaging for current indications, and provide recommendations for when women should undergo PEM instead of breast MR imaging.
Collapse
Affiliation(s)
- Deepa Narayanan
- SBIR Development Center, National Cancer Institute, 9609 Medical Center Drive, Rockville, MD 20850, USA.
| | - Wendie A Berg
- Department of Radiology, University of Pittsburgh School of Medicine, Magee-Womens Hospital of UPMC, 300 Halket Street, Pittsburgh, PA 15213, USA
| |
Collapse
|
21
|
Which type of breast cancers is undetectable on ring-type dedicated breast PET? Clin Imaging 2018; 51:186-191. [DOI: 10.1016/j.clinimag.2018.05.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/04/2018] [Accepted: 05/21/2018] [Indexed: 01/24/2023]
|
22
|
Gonzalez AJ, Sanchez F, Benlloch JM. Organ-Dedicated Molecular Imaging Systems. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2018. [DOI: 10.1109/trpms.2018.2846745] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
23
|
Abstract
PET scanners are sophisticated and highly sensitive biomedical imaging devices that can produce highly quantitative images showing the 3-dimensional distribution of radiotracers inside the body. PET scanners are commonly integrated with x-ray CT or MRI scanners in hybrid devices that can provide both molecular imaging (PET) and anatomical imaging (CT or MRI). Despite decades of development, significant opportunities still exist to make major improvements in the performance of PET systems for a variety of clinical and research tasks. These opportunities stem from new ideas and concepts, as well as a range of enabling technologies and methodologies. In this paper, we review current state of the art in PET instrumentation, detectors and systems, describe the major limitations in PET as currently practiced, and offer our own personal insights into some of the recent and emerging technological innovations that we believe will impact the field. Our focus is on the technical aspects of PET imaging, specifically detectors and system design, and the opportunity and necessity to move closer to PET systems for diagnostic patient use and in vivo biomedical research that truly approach the physical performance limits while remaining mindful of imaging time, radiation dose, and cost. However, other key endeavors, which are not covered here, including innovations in reconstruction and modeling methodology, radiotracer development, and expanding the range of clinical and research applications, also will play an equally important, if not more important, role in defining the future of the field.
Collapse
Affiliation(s)
- Eric Berg
- Department of Biomedical Engineering, University of California, Davis, CA
| | - Simon R Cherry
- Department of Biomedical Engineering, University of California, Davis, CA.; Department of Radiology, University of California, Davis, CA.
| |
Collapse
|
24
|
Intratumoral heterogeneity on dedicated breast positron emission tomography predicts malignancy grade of breast cancer. Breast Cancer Res Treat 2018; 171:315-323. [DOI: 10.1007/s10549-018-4791-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 04/13/2018] [Indexed: 01/02/2023]
|
25
|
Raylman RR, Van Kampen W, Stolin AV, Gong W, Jaliparthi G, Martone PF, Smith MF, Sarment D, Clinthorne NH, Perna M. A dedicated breast-PET/CT scanner: Evaluation of basic performance characteristics. Med Phys 2018; 45:1603-1613. [PMID: 29389017 DOI: 10.1002/mp.12780] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/05/2018] [Accepted: 01/05/2018] [Indexed: 12/29/2022] Open
Abstract
PURPOSE Application of advanced imaging techniques, such as PET and x ray CT, can potentially improve detection of breast cancer. Unfortunately, both modalities have challenges in the detection of some lesions. The combination of the two techniques, however, could potentially lead to an overall improvement in diagnostic breast imaging. The purpose of this investigation is to test the basic performance of a new dedicated breast-PET/CT. METHODS The PET component consists of a rotating pair of detectors. Its performance was evaluated using the NEMA NU4-2008 protocols. The CT component utilizes a pulsed x ray source and flat panel detector mounted on the same gantry as the PET scanner. Its performance was assessed using specialized phantoms. The radiation dose to a breast during CT imaging was explored by the measurement of free-in-air kerma and air kerma measured at the center of a 16 cm-diameter PMMA cylinder. Finally, the combined capabilities of the system were demonstrated by imaging of a micro-hot-rod phantom. RESULTS Overall, performance of the PET component is comparable to many pre-clinical and other dedicated breast-PET scanners. Its spatial resolution is 2.2 mm, 5 mm from the center of the scanner using images created with the single-sliced-filtered-backprojection algorithm. Peak NECR is 24.6 kcps; peak sensitivity is 1.36%; the scatter fraction is 27%. Spatial resolution of the CT scanner is 1.1 lp/mm at 10% MTF. The free-in-air kerma is 2.33 mGy, while the PMMA-air kerma is 1.24 mGy. Finally, combined imaging of a micro-hot-rod phantom illustrated the potential utility of the dual-modality images produced by the system. CONCLUSION The basic performance characteristics of a new dedicated breast-PET/CT scanner are good, demonstrating that its performance is similar to current dedicated PET and CT scanners. The potential value of this system is the capability to produce combined duality-modality images that could improve detection of breast disease. The next stage in development of this system is testing with more advanced phantoms and human subjects.
Collapse
Affiliation(s)
- Raymond R Raylman
- Center for Advanced Imaging, Department of Radiology, 1 Medical Center Dr., West Virginia University, Morgantown, WV, 26506, USA
| | - Will Van Kampen
- Xoran Technologies Inc., 5210 S State Rd., Ann Arbor, MI, 48108, USA
| | - Alexander V Stolin
- Center for Advanced Imaging, Department of Radiology, 1 Medical Center Dr., West Virginia University, Morgantown, WV, 26506, USA
| | - Wenbo Gong
- Xoran Technologies Inc., 5210 S State Rd., Ann Arbor, MI, 48108, USA
| | - Gangadhar Jaliparthi
- Center for Advanced Imaging, Department of Radiology, 1 Medical Center Dr., West Virginia University, Morgantown, WV, 26506, USA
| | - Peter F Martone
- Center for Advanced Imaging, Department of Radiology, 1 Medical Center Dr., West Virginia University, Morgantown, WV, 26506, USA
| | - Mark F Smith
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD, 21201, USA
| | - David Sarment
- Xoran Technologies Inc., 5210 S State Rd., Ann Arbor, MI, 48108, USA
| | | | - Mark Perna
- Perna Health Physics, Inc., 705 Augusta Dr, Bridgeville, PA, 15017, USA
| |
Collapse
|
26
|
Diagnostic performance of a novel dedicated breast PET scanner with C-shaped ring detectors. Nucl Med Commun 2017; 38:388-395. [DOI: 10.1097/mnm.0000000000000661] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Nishimatsu K, Nakamoto Y, Miyake KK, Ishimori T, Kanao S, Toi M, Togashi K. Higher breast cancer conspicuity on dbPET compared to WB-PET/CT. Eur J Radiol 2017; 90:138-145. [PMID: 28583624 DOI: 10.1016/j.ejrad.2017.02.046] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 02/24/2017] [Accepted: 02/28/2017] [Indexed: 11/16/2022]
Abstract
OBJECTIVES The purpose of this study was to evaluate lesion detectability of a dedicated breast positron-emission tomography (dbPET) scanner for breast cancers with an updated reconstruction mode, comparing it to whole-body positron-emission tomography/computed tomography (WB-PET/CT). MATERIALS AND METHODS A total of 179 histologically-proven breast cancer lesions in 150 females who underwent both WB-PET/CT and dbPET with 18F-fluorodeoxyglucose were retrospectively analyzed. The patient/breast/lesion-based sensitivities based on visual analysis were compared between dbPET and WB-PET/CT. For lesions visible on both PET images, SUVmax values of the tumors were measured, and tumor-to-background ratios (T/B ratios) of SUVmax were compared between the two scans. Subgroup analyses according to clinical tumor stage, histopathology and histological grade were also performed. RESULTS Patient/breast/lesion-based sensitivities were 95%, 95%, and 92%, respectively, for dbPET, and 95%, 94%, and 88%, respectively, for WB-PET/CT. Mean±standard deviation SUVmax values of FDG-avid tumors were 13.0±9.7 on dbPET and 6.4±4.8 on WB-PET. T/B ratios were also significantly higher in dbPET than in WB-PET/CT (8.1±7.1 vs. 5.1±4.5). In the subgroup analysis, no significant differences in sensitivities between dbPET and WB-PET/CT were found. However, T/B ratios of dbPET were significantly higher than those of WB-PET/CT in cT1c, cT2, cT3, invasive cancer, invasive carcinoma of no special type, mucinous carcinoma and Grades 1-3. CONCLUSION No significant differences in sensitivities were identified between dbPET using an updated reconstruction mode and WB-PET/CT; however, T/B ratios of dbPET were significantly higher than those of WB-PET/CT, indicating higher tumor conspicuity on dbPET.
Collapse
Affiliation(s)
- Kayo Nishimatsu
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yuji Nakamoto
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | - Kanae K Miyake
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takayoshi Ishimori
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shotaro Kanao
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masakazu Toi
- Department of Breast Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kaori Togashi
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
28
|
The application of positron emission tomography (PET/CT) in diagnosis of breast cancer. Part II. Diagnosis after treatment initiation, future perspectives. Contemp Oncol (Pozn) 2016; 20:205-9. [PMID: 27647983 PMCID: PMC5013681 DOI: 10.5114/wo.2016.61560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 07/20/2015] [Indexed: 11/17/2022] Open
Abstract
Similarly to the applications described in the first part of this publication, positron emission tomography with computed tomography (PET/CT) is also gaining importance in monitoring a tumour's response to therapy and diagnosing breast cancer recurrences. This is additionally caused by the fact that many new techniques (dual-time point imaging, positron emission tomography with magnetic resonance PET/MR, PET/CT mammography) and radiotracers (16α-18F-fluoro-17β-estradiol, 18F-fluorothymidine) are under investigation. The highest sensitivity and specificity when monitoring response to treatment is achieved when the PET/CT scan is made after one or two chemotherapy courses. Response to anti-hormonal treatment can also be monitored, also when new radiotracers, such as FES, are used. When monitoring breast cancer recurrences during follow-up, PET/CT has higher sensitivity than conventional imaging modalities, making it possible to monitor the whole body simultaneously. New techniques and radiotracers enhance the sensitivity and specificity of PET and this is why, despite relatively high costs, it might become more widespread in monitoring response to treatment and breast cancer recurrences.
Collapse
|
29
|
Abstract
Breast-dedicated radionuclide imaging systems show promise for increasing clinical sensitivity for breast cancer while minimizing patient dose and cost. We present several breast-dedicated coincidence-photon and single-photon camera designs that have been described in the literature and examine their intrinsic performance, clinical relevance, and impact. Recent tracer development is mentioned, results from recent clinical tests are summarized, and potential areas for improvement are highlighted.
Collapse
Affiliation(s)
- David F C Hsu
- Department of Electrical Engineering, Stanford University, Stanford, California; and
| | - David L Freese
- Department of Electrical Engineering, Stanford University, Stanford, California; and
| | - Craig S Levin
- Department of Electrical Engineering, Stanford University, Stanford, California; and Departments of Radiology, Bioengineering, and Physics, Stanford University, Stanford, California
| |
Collapse
|
30
|
|
31
|
Ferrero A, Peng Q, Burkett GW, Sumanasena B, Moses WW, Badawi RD. Preliminary performance characterization of DbPET2.1, a PET scanner dedicated to the imaging of the breast and extremities. Biomed Phys Eng Express 2015; 1. [PMID: 31798968 DOI: 10.1088/2057-1976/1/1/015202] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The combined effort of several laboratories at our institution resulted in the building of the first high resolution PET/CT prototype dedicated to imaging the body extremities. Ongoing clinical trials for breast cancer diagnosis and assessment of response to treatment underlined the need for a second generation prototype with improved electronics and spatial resolution. A preliminary version has been assembled and fully characterized. In this work we present further improvements in the detector performance as well as the readout electronics for the PET component. The detector consists of a 16×16 array of 1.27×1.27×20mm3 LYSO crystals, the smallest crystal size for completed breast PET prototypes to date, directly coupled to a position-sensitive photomultiplier tube (PSPMT). The scintillator crystals are polished on all 6 faces and separated by ~70 μm ESR reflector. The readout electronics were redesigned to reduce their footprint and improve timing resolution. We report a detector energy and timing resolution of 12% and 1.0 ns, respectively, and an average intrinsic spatial resolution of 1.29 mm (central row in one detector array). The new PET/CT has been fully assembled and initial system characterization is being perfomed. We report a system energy resolution of 15.7%, a timing resolution of 1.5 ns and an FBP image spatial resolution in the center of the FOV of 1.6 mm.
Collapse
Affiliation(s)
- Andrea Ferrero
- Biomedical Engineering Graduate Group, UC Davis, CA, USA
| | - Qiyu Peng
- Lawrence Berkeley National Lab, Berkeley, CA, USA
| | - George W Burkett
- Department of Radiology, UC Davis Medical Center, Sacramento, CA, USA
| | | | | | - Ramsey D Badawi
- Biomedical Engineering Graduate Group, UC Davis, CA, USA.,Department of Radiology, UC Davis Medical Center, Sacramento, CA, USA
| |
Collapse
|
32
|
Ren S, Yang Y, Cherry SR. Effects of reflector and crystal surface on the performance of a depth-encoding PET detector with dual-ended readout. Med Phys 2015; 41:072503. [PMID: 24989406 DOI: 10.1118/1.4881097] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Depth encoding detectors are required to improve the spatial resolution and spatial resolution uniformity of small animal positron emission tomography (PET) scanners, as well as dedicated breast and brain scanners. Depth of interaction (DOI) can be measured by using dual-ended readout of lutetium oxyorthosilicate (LSO) scintillator arrays with position-sensitive avalanche photodiodes. Inter-crystal reflectors and crystal surface treatments play important roles in determining the performance of dual-ended detectors. In this paper, the authors evaluated five LSO arrays made with three different intercrystal reflectors and with either polished or unpolished crystal surfaces. METHODS The crystal size in all arrays was 1.5 mm, which is typical of the detector size used in small animal and dedicated breast scanners. The LSO arrays were measured with dual-ended readout and were compared in terms of flood histogram, energy resolution, and DOI resolution performance. RESULTS The four arrays using enhanced specular reflector (ESR) and Toray reflector provided similar quality flood histograms and the array using Crystal Wrap reflector gave the worst flood histogram. The two arrays using ESR reflector provided the best energy resolution and the array using Crystal Wrap reflector yielded the worst energy resolution. All arrays except the polished ESR array provided good DOI resolution ranging from 1.9 mm to 2.9 mm. DOI resolution improved as the gradient in light collection efficiency with depth (GLCED) increased. The geometric mean energies were also calculated for these dual-ended readout detectors as an alternative to the conventional summed total energy. It was shown that the geometric mean energy is advantageous in that it provides more uniform photopeak amplitude at different depths for arrays with high GLCED, and is beneficial in event selection by allowing a fixed energy window independent of depth. A new method of DOI calculation that improved the linearity of DOI ratio vs depth and simplifies the DOI calibration procedure also was developed and tested. CONCLUSIONS The results of these studies provide useful guidance in selecting the proper reflectors and crystal surface treatments when LSO arrays are used for high-resolution PET applications in small animal scanners or dedicated breast and brain scanners.
Collapse
Affiliation(s)
- Silin Ren
- Department of Biomedical Engineering, University of California-Davis, One Shields Avenue, Davis, California 95616
| | - Yongfeng Yang
- Department of Biomedical Engineering, University of California-Davis, One Shields Avenue, Davis, California 95616
| | - Simon R Cherry
- Department of Biomedical Engineering, University of California-Davis, One Shields Avenue, Davis, California 95616
| |
Collapse
|
33
|
Clinical practice guideline for dedicated breast PET. Ann Nucl Med 2014; 28:597-602. [PMID: 24878887 PMCID: PMC4328123 DOI: 10.1007/s12149-014-0857-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 03/13/2014] [Indexed: 12/25/2022]
|
34
|
Abstract
Breast cancer mammography is a well-acknowledged technique for patient screening due to its high sensitivity. However, in addition to its low specificity the sensitivity of mammography is limited when imaging patients with dense breasts. Radionuclide imaging techniques, such as coincidence photon-based positron emission tomography and single photon emission computed tomography or scintimammography, can play a role in assisting screening of such patients. Radionuclide techniques can also be useful in assessing treatment response of patients with breast cancer to therapy, and staging of patients to diagnose the disease extent. However, the performance of these imaging modalities is generally limited because of the poor spatial resolution and sensitivity of the commercially available multipurpose imaging systems. Here, we describe some of the dedicated imaging systems (positron emission mammography [PEM] and breast-specific gamma imaging [BSGI]) that have been developed both commercially and in research laboratories for radionuclide imaging of breast cancer. Clinical studies with dedicated PEM scanners show improved sensitivity to detecting cancer in patients when using PEM in conjunction with additional imaging modalities, such as magnetic resonance imaging or mammography or both, as well as improved disease staging that can have an effect on surgical planning. High-resolution BSGI systems are more widely available commercially and several clinical studies have shown very high sensitivity and specificity in detecting cancer in high-risk patients. Further development of dedicated PEM and BSGI systems is ongoing, promising further expansion of radionuclide imaging techniques in the realm of breast cancer detection and treatment.
Collapse
Affiliation(s)
- Suleman Surti
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
35
|
Hruska CB, O'Connor MK. Nuclear imaging of the breast: translating achievements in instrumentation into clinical use. Med Phys 2013; 40:050901. [PMID: 23635248 DOI: 10.1118/1.4802733] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Approaches to imaging the breast with nuclear medicine and∕or molecular imaging methods have been under investigation since the late 1980s when a technique called scintimammography was first introduced. This review charts the progress of nuclear imaging of the breast over the last 20 years, covering the development of newer techniques such as breast specific gamma imaging, molecular breast imaging, and positron emission mammography. Key issues critical to the adoption of these technologies in the clinical environment are discussed, including the current status of clinical studies, the efforts at reducing the radiation dose from procedures associated with these technologies, and the relevant radiopharmaceuticals that are available or under development. The necessary steps required to move these technologies from bench to bedside are also discussed.
Collapse
Affiliation(s)
- Carrie B Hruska
- Department of Radiology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | |
Collapse
|
36
|
MacDonald LR, Hunter WCJ, Kinahan PE, Miyaoka RS. Effects of Detector Thickness on Geometric Sensitivity and Event Positioning Errors in the Rectangular PET/X Scanner. IEEE TRANSACTIONS ON NUCLEAR SCIENCE 2013; 60:3242-3252. [PMID: 26160982 PMCID: PMC4494122 DOI: 10.1109/tns.2013.2278841] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We used simulations to investigate the relationship between sensitivity and spatial resolution as a function of crystal thickness in a rectangular PET scanner intended for quantitative assessment of breast cancers. The system had two 20 × 15-cm2 and two 10 × 15-cm2 flat detectors forming a box, with the larger detectors separated by 4 or 8 cm. Depth-of-interaction (DOI) resolution was modeled as a function of crystal thickness based on prior measurements. Spatial resolution was evaluated independent of image reconstruction by deriving and validating a surrogate metric from list-mode data (dFWHM). When increasing crystal thickness from 5 to 40 mm, and without using DOI information, the dFWHM for a centered point source increased from 0.72 to 1.6 mm. Including DOI information improved dFWHM by 12% and 27% for 5- and 40-mm-thick crystals, respectively. For a point source in the corner of the FOV, use of DOI information improved dFWHM by 20% (5-mm crystal) and 44% (40-mm crystal). Sensitivity was 7.7% for 10-mm-thick crystals (8-cm object). Increasing crystal thickness on the smaller side detectors from 10 to 20 mm (keeping 10-mm crystals on the larger detectors) boosted sensitivity by 24% (relative) and degraded dFWHM by only ~3%/8% with/without DOI information. The benefits of measuring DOI must be evaluated in terms of the intended clinical task of assessing tracer uptake in small lesions. Increasing crystal thickness on the smaller side detectors provides substantial sensitivity increase with minimal accompanying loss in resolution.
Collapse
|
37
|
Tessonnier L, Siles P. Que peut-on attendre des nouvelles techniques de médecine nucléaire dans le bilan local du cancer du sein ? IMAGERIE DE LA FEMME 2013. [DOI: 10.1016/j.femme.2013.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
38
|
De Lorenzo G, Chmeissani M, Uzun D, Kolstein M, Ozsahin I, Mikhaylova E, Arce P, Cañadas M, Ariño G, Calderón Y. Pixelated CdTe detectors to overcome intrinsic limitations of crystal based positron emission mammographs. JOURNAL OF INSTRUMENTATION : AN IOP AND SISSA JOURNAL 2013; 8:C01030. [PMID: 23750176 PMCID: PMC3672962 DOI: 10.1088/1748-0221/8/01/c01030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
A positron emission mammograph (PEM) is an organ dedicated positron emission tomography (PET) scanner for breast cancer detection. State-of-the-art PEMs employing scintillating crystals as detection medium can provide metabolic images of the breast with significantly higher sensitivity and specificity with respect to standard whole body PET scanners. Over the past few years, crystal PEMs have dramatically increased their importance in the diagnosis and treatment of early stage breast cancer. Nevertheless, designs based on scintillators are characterized by an intrinsic deficiency of the depth of interaction (DOI) information from relatively thick crystals constraining the size of the smallest detectable tumor. This work shows how to overcome such intrinsic limitation by substituting scintillating crystals with pixelated CdTe detectors. The proposed novel design is developed within the Voxel Imaging PET (VIP) Pathfinder project and evaluated via Monte Carlo simulation. The volumetric spatial resolution of the VIP-PEM is expected to be up to 6 times better than standard commercial devices with a point spread function of 1 mm full width at half maximum (FWHM) in all directions. Pixelated CdTe detectors can also provide an energy resolution as low as 1.5% FWHM at 511 keV for a virtually pure signal with negligible contribution from scattered events.
Collapse
Affiliation(s)
- G. De Lorenzo
- Institut de Física d’Altes Energies (IFAE), Universitat Autónoma de Barcelona (UAB), 08193 Bellaterra (Barcelona), Spain
- Corresponding author.
| | - M. Chmeissani
- Institut de Física d’Altes Energies (IFAE), Universitat Autónoma de Barcelona (UAB), 08193 Bellaterra (Barcelona), Spain
| | - D. Uzun
- Institut de Física d’Altes Energies (IFAE), Universitat Autónoma de Barcelona (UAB), 08193 Bellaterra (Barcelona), Spain
| | - M. Kolstein
- Institut de Física d’Altes Energies (IFAE), Universitat Autónoma de Barcelona (UAB), 08193 Bellaterra (Barcelona), Spain
| | - I. Ozsahin
- Institut de Física d’Altes Energies (IFAE), Universitat Autónoma de Barcelona (UAB), 08193 Bellaterra (Barcelona), Spain
| | - E. Mikhaylova
- Institut de Física d’Altes Energies (IFAE), Universitat Autónoma de Barcelona (UAB), 08193 Bellaterra (Barcelona), Spain
| | - P. Arce
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Av. Complutense, 22, 28040 Madrid, Spain
| | - M. Cañadas
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Av. Complutense, 22, 28040 Madrid, Spain
| | - G. Ariño
- Institut de Física d’Altes Energies (IFAE), Universitat Autónoma de Barcelona (UAB), 08193 Bellaterra (Barcelona), Spain
| | - Y. Calderón
- Institut de Física d’Altes Energies (IFAE), Universitat Autónoma de Barcelona (UAB), 08193 Bellaterra (Barcelona), Spain
| |
Collapse
|