1
|
Davidenko A, Bogomazova A, Illarioshkin S, Lagarkova M. Molecular Mechanisms of Spinocerebellar Ataxia Type 17. Mol Neurobiol 2025; 62:5720-5729. [PMID: 39614971 DOI: 10.1007/s12035-024-04645-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/25/2024] [Indexed: 03/29/2025]
Abstract
Spinocerebellar ataxia type 17 (SCA17) is a hereditary neurodegenerative disorder characterized by progressive motor and cognitive decline, leading to severe disability and death. SCA17 is caused by a CAG repeat expansion mutation in the TBP gene, resulting in the production of an abnormally long polyglutamine tract, which classifies it as a polyglutamine disorder. At present, there is no effective treatment for SCA17, and existing therapies provide only symptomatic relief. While the exact pathogenic mechanisms of SCA17 remain unclear, the TBP mutation affects a well-characterized transcription factor, making it an ideal model for studying polyglutamine-related neurodegeneration. Here, we review the clinical features of SCA17 and explore proposed mechanisms of its pathogenesis.
Collapse
Affiliation(s)
- Alina Davidenko
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia.
- Lomonosov Moscow State University, Moscow, 119991, Russia.
| | - Alexandra Bogomazova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, 119435, Russia
| | | | - Maria Lagarkova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia
| |
Collapse
|
2
|
Wang LL, Thompson TA, Shih RY, Ajam AA, Bulsara K, Burns J, Davis MA, Ivanidze J, Kalnins A, Kuo PH, Ledbetter LN, Pannell JS, Pollock JM, Shakkottai VG, Shih RD, Soares BP, Soderlund KA, Utukuri PS, Woolsey S, Policeni B. ACR Appropriateness Criteria® Dizziness and Ataxia: 2023 Update. J Am Coll Radiol 2024; 21:S100-S125. [PMID: 38823940 DOI: 10.1016/j.jacr.2024.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 02/28/2024] [Indexed: 06/03/2024]
Abstract
Diagnostic evaluation of a patient with dizziness or vertigo is complicated by a lack of standardized nomenclature, significant overlap in symptom descriptions, and the subjective nature of the patient's symptoms. Although dizziness is an imprecise term often used by patients to describe a feeling of being off-balance, in many cases dizziness can be subcategorized based on symptomatology as vertigo (false sense of motion or spinning), disequilibrium (imbalance with gait instability), presyncope (nearly fainting or blacking out), or lightheadedness (nonspecific). As such, current diagnostic paradigms focus on timing, triggers, and associated symptoms rather than subjective descriptions of dizziness type. Regardless, these factors complicate the selection of appropriate diagnostic imaging in patients presenting with dizziness or vertigo. This document serves to aid providers in this selection by using a framework of definable clinical variants. The American College of Radiology Appropriateness Criteria are evidence-based guidelines for specific clinical conditions that are reviewed annually by a multidisciplinary expert panel. The guideline development and revision process support the systematic analysis of the medical literature from peer reviewed journals. Established methodology principles such as Grading of Recommendations Assessment, Development, and Evaluation or GRADE are adapted to evaluate the evidence. The RAND/UCLA Appropriateness Method User Manual provides the methodology to determine the appropriateness of imaging and treatment procedures for specific clinical scenarios. In those instances where peer reviewed literature is lacking or equivocal, experts may be the primary evidentiary source available to formulate a recommendation.
Collapse
Affiliation(s)
- Lily L Wang
- University of Cincinnati Medical Center, Cincinnati, Ohio.
| | - Trevor A Thompson
- Research Author, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Robert Y Shih
- Panel Chair, Uniformed Services University, Bethesda, Maryland
| | | | - Ketan Bulsara
- UCONN Health, University of Connecticut, Farmington, Connecticut, Neurosurgery expert
| | | | - Melissa A Davis
- Yale University School of Medicine, New Haven, Connecticut; Committee on Emergency Radiology-GSER
| | | | | | - Phillip H Kuo
- University of Arizona, Tucson, Arizona; Commission on Nuclear Medicine and Molecular Imaging
| | | | | | | | - Vikram G Shakkottai
- University of Texas Southwestern Medical Center, Dallas, Texas; American Academy of Neurology
| | - Richard D Shih
- Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida; American College of Emergency Physicians
| | - Bruno P Soares
- The University of Vermont Medical Center, Burlington, Vermont
| | | | | | - Sarah Woolsey
- Association for Utah Community Health, Salt Lake City, Utah; American Academy of Family Physicians
| | - Bruno Policeni
- Specialty Chair, University of Iowa Hospitals and Clinics, Iowa City, Iowa
| |
Collapse
|
3
|
Grassini A, Cermelli A, Roveta F, Zotta M, Lesca A, Marcinnò A, Ferrandes F, Piella E, Boschi S, Lombardo C, Brusco A, Gallone S, Rubino E, Bruni A, Rainero I. Cognitive dysfunction, social behavior disorder, cerebellar ataxia, and atypical brain FDG-PET presentation in spinocerebellar ataxia 17: a case report. Neurol Sci 2024; 45:2877-2880. [PMID: 38494459 DOI: 10.1007/s10072-024-07453-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/09/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND Spinocerebellar ataxia 17 (SCA17) is a rare autosomal dominant form of inherited ataxia, caused by heterozygous trinucleotide repeat expansions encoding glutamine in the TATA box-binding protein (TBP) gene. CASE DESCRIPTION We describe the clinical history, neuropsychological, and neuroimaging findings of a 42-year-old patient who presented for medical attention showing prevalent behavioral and cognitive problems along with progressively worsening gait disturbances. The patient's family history indicated the presence of SCA17 in the maternal lineage. Genetic analysis confirmed a heterozygous 52-CAG pathological expansion repeat in TBP (normal interval, 25-40 CAG. Brain 18-fluorodeoxyglucose positron emission tomography (FDG-PET) showed bilateral hypometabolism in the sensorimotor cortex, with a slight predominance on the right, as well as in the striatal nuclei and thalamic hypermetabolism, a finding similar to what is observed in Huntington's disease. The patient also underwent neuropsychological evaluation, which revealed mild cognitive impairment and difficulties in social interaction and understanding other's emotions (Faux Pas Test and Reading the Mind in the Eyes Test). CONCLUSION Our report emphasizes the importance of considering SCA17 as a possible diagnosis in patients with a prevalent progressive cognitive and behavioral disorders, even with a pattern of FDG-PET hypometabolism not primarily indicative of this disease.
Collapse
Affiliation(s)
- Alberto Grassini
- Aging Brain and Memory Clinic, Department of Neuroscience, "Rita Levi Montalcini", Memory Clinic, University of Torino, Via Cherasco 15, 10126, Turin, Italy.
| | - Aurora Cermelli
- Aging Brain and Memory Clinic, Department of Neuroscience, "Rita Levi Montalcini", Memory Clinic, University of Torino, Via Cherasco 15, 10126, Turin, Italy
| | - Fausto Roveta
- Aging Brain and Memory Clinic, Department of Neuroscience, "Rita Levi Montalcini", Memory Clinic, University of Torino, Via Cherasco 15, 10126, Turin, Italy
| | - Michela Zotta
- Nuclear Medicine, Città Della Salute E Della Scienza University Hospital, Turin, Italy
| | - Adriana Lesca
- Nuclear Medicine, Città Della Salute E Della Scienza University Hospital, Turin, Italy
| | - Andrea Marcinnò
- Aging Brain and Memory Clinic, Department of Neuroscience, "Rita Levi Montalcini", Memory Clinic, University of Torino, Via Cherasco 15, 10126, Turin, Italy
| | - Fabio Ferrandes
- Aging Brain and Memory Clinic, Department of Neuroscience, "Rita Levi Montalcini", Memory Clinic, University of Torino, Via Cherasco 15, 10126, Turin, Italy
| | - Elisa Piella
- Aging Brain and Memory Clinic, Department of Neuroscience, "Rita Levi Montalcini", Memory Clinic, University of Torino, Via Cherasco 15, 10126, Turin, Italy
| | - Silvia Boschi
- Aging Brain and Memory Clinic, Department of Neuroscience, "Rita Levi Montalcini", Memory Clinic, University of Torino, Via Cherasco 15, 10126, Turin, Italy
| | - Chiara Lombardo
- Aging Brain and Memory Clinic, Department of Neuroscience, "Rita Levi Montalcini", Memory Clinic, University of Torino, Via Cherasco 15, 10126, Turin, Italy
| | - Alfredo Brusco
- Department of Neuroscience and Mental Health, Città Della Salute E Della Scienza University Hospital, Turin, Italy
- Medical Genetics Unit, Città Della Salute E Della Scienza University Hospital, Turin, Italy
| | - Salvatore Gallone
- Department of Neuroscience and Mental Health, Città Della Salute E Della Scienza University Hospital, Turin, Italy
| | - Elisa Rubino
- Aging Brain and Memory Clinic, Department of Neuroscience, "Rita Levi Montalcini", Memory Clinic, University of Torino, Via Cherasco 15, 10126, Turin, Italy
- Department of Neuroscience and Mental Health, Città Della Salute E Della Scienza University Hospital, Turin, Italy
| | - Amalia Bruni
- Regional Neurogenetic Centre, Department of Primary Care, ASP Catanzaro, Lamezia Terme, Italy
| | - Innocenzo Rainero
- Aging Brain and Memory Clinic, Department of Neuroscience, "Rita Levi Montalcini", Memory Clinic, University of Torino, Via Cherasco 15, 10126, Turin, Italy
- Department of Neuroscience and Mental Health, Città Della Salute E Della Scienza University Hospital, Turin, Italy
| |
Collapse
|
4
|
Timmers ER, Klamer MR, Marapin RS, Lammertsma AA, de Jong BM, Dierckx RAJO, Tijssen MAJ. [ 18F]FDG PET in conditions associated with hyperkinetic movement disorders and ataxia: a systematic review. Eur J Nucl Med Mol Imaging 2023; 50:1954-1973. [PMID: 36702928 PMCID: PMC10199862 DOI: 10.1007/s00259-023-06110-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 01/05/2023] [Indexed: 01/28/2023]
Abstract
PURPOSE To give a comprehensive literature overview of alterations in regional cerebral glucose metabolism, measured using [18F]FDG PET, in conditions associated with hyperkinetic movement disorders and ataxia. In addition, correlations between glucose metabolism and clinical variables as well as the effect of treatment on glucose metabolism are discussed. METHODS A systematic literature search was performed according to PRISMA guidelines. Studies concerning tremors, tics, dystonia, ataxia, chorea, myoclonus, functional movement disorders, or mixed movement disorders due to autoimmune or metabolic aetiologies were eligible for inclusion. A PubMed search was performed up to November 2021. RESULTS Of 1240 studies retrieved in the original search, 104 articles were included. Most articles concerned patients with chorea (n = 27), followed by ataxia (n = 25), dystonia (n = 20), tremor (n = 8), metabolic disease (n = 7), myoclonus (n = 6), tics (n = 6), and autoimmune disorders (n = 5). No papers on functional movement disorders were included. Altered glucose metabolism was detected in various brain regions in all movement disorders, with dystonia-related hypermetabolism of the lentiform nuclei and both hyper- and hypometabolism of the cerebellum; pronounced cerebellar hypometabolism in ataxia; and striatal hypometabolism in chorea (dominated by Huntington disease). Correlations between clinical characteristics and glucose metabolism were often described. [18F]FDG PET-showed normalization of metabolic alterations after treatment in tremors, ataxia, and chorea. CONCLUSION In all conditions with hyperkinetic movement disorders, hypo- or hypermetabolism was found in multiple, partly overlapping brain regions, and clinical characteristics often correlated with glucose metabolism. For some movement disorders, [18F]FDG PET metabolic changes reflected the effect of treatment.
Collapse
Affiliation(s)
- Elze R Timmers
- Department of Neurology, University Medical Center Groningen, University of Groningen, PO Box 30.001, 9700 RB, Groningen, the Netherlands
- Expertise Center Movement Disorders Groningen, University Medical Center Groningen (UMCG), PO Box 30.001, 9700 RB, Groningen, the Netherlands
| | - Marrit R Klamer
- Department of Neurology, University Medical Center Groningen, University of Groningen, PO Box 30.001, 9700 RB, Groningen, the Netherlands
- Expertise Center Movement Disorders Groningen, University Medical Center Groningen (UMCG), PO Box 30.001, 9700 RB, Groningen, the Netherlands
| | - Ramesh S Marapin
- Department of Neurology, University Medical Center Groningen, University of Groningen, PO Box 30.001, 9700 RB, Groningen, the Netherlands
- Expertise Center Movement Disorders Groningen, University Medical Center Groningen (UMCG), PO Box 30.001, 9700 RB, Groningen, the Netherlands
| | - Adriaan A Lammertsma
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen (UMCG), University of Groningen, PO Box 30.001, 9700 RB, Groningen, the Netherlands
| | - Bauke M de Jong
- Department of Neurology, University Medical Center Groningen, University of Groningen, PO Box 30.001, 9700 RB, Groningen, the Netherlands
| | - Rudi A J O Dierckx
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen (UMCG), University of Groningen, PO Box 30.001, 9700 RB, Groningen, the Netherlands
| | - Marina A J Tijssen
- Department of Neurology, University Medical Center Groningen, University of Groningen, PO Box 30.001, 9700 RB, Groningen, the Netherlands.
- Expertise Center Movement Disorders Groningen, University Medical Center Groningen (UMCG), PO Box 30.001, 9700 RB, Groningen, the Netherlands.
| |
Collapse
|
5
|
Rossi M, Hamed M, Rodríguez-Antigüedad J, Cornejo-Olivas M, Breza M, Lohmann K, Klein C, Rajalingam R, Marras C, van de Warrenburg BP. Genotype-Phenotype Correlations for ATX-TBP (SCA17): MDSGene Systematic Review. Mov Disord 2023; 38:368-377. [PMID: 36374860 DOI: 10.1002/mds.29278] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/31/2022] [Accepted: 10/31/2022] [Indexed: 11/16/2022] Open
Abstract
Spinocerebellar ataxia type 17 or ATX-TBP is a CAG/CAA repeat expansion disorder characterized by marked clinical heterogeneity. Reports of affected carriers with subthreshold repeat expansions and of patients with Parkinson's disease (PD) with expanded repeats have cast doubt on the established cutoff values of the expansions and the phenotypic spectrum of this disorder. The objective of this systematic review was to explore the genotype-phenotype relationships for repeat expansions in TBP to delineate the ATX-TBP phenotype and reevaluate the pathological range of repeat expansions. The International Parkinson and Movement Disorder Society Genetic Mutation Database (MDSGene) standardized data extraction protocol was followed. Clinically affected carriers of reported ATX-TBP expansions were included. Publications that contained repeat sizes in screened cohorts of patients with PD and/or healthy individuals were included for a separate evaluation of cutoff values. Phenotypic and genotypic data for 346 ATX-TBP patients were curated. Overall, 97.7% of the patients had ≥41 repeats, while 99.6% of patients with PD and 99.9% of healthy individuals had ≤42 repeats, with a gray zone of reduced penetrance between 41 and 45 repeats. Pure parkinsonism was more common in ATX-TBP patients with 41 to 45 repeats than in the group with ≥46 repeats, which conversely more often presented with a complex phenotype with mixed movement disorders. An updated genotype-phenotype assessment for ATX-TBP is provided, and new repeat expansion cutoff values of reduced penetrance (41-45 expanded repeats) and full penetrance (46-66 expanded repeats) are proposed. These adjusted cutoff values will have diagnostic and counseling implications and may guide future clinical trial protocol. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Malco Rossi
- Sección de Movimientos Anormales, Departamento de Neurología, Fleni, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Moath Hamed
- New York-Presbyterian Brooklyn Methodist Hospital, Brooklyn, New York, USA
| | - Jon Rodríguez-Antigüedad
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Barcelona, Spain
- Institut d'Investigacions Biomediques-Sant Pau, Barcelona, Spain
| | - Mario Cornejo-Olivas
- Neurogenetics Research Center, Instituto Nacional de Ciencias Neurológicas, Lima, Peru
- Carrera de Medicina, Universidad Científica del Sur, Lima, Peru
| | - Marianthi Breza
- 1st Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology, The National Hospital for Neurology and Neurosurgery, London, UK
| | - Katja Lohmann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Rajasumi Rajalingam
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, Toronto, Ontario, Canada
| | - Connie Marras
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, Toronto, Ontario, Canada
| | - Bart P van de Warrenburg
- Department of Neurology, Donders Institute for Brain, Cognition & Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
6
|
Putka AF, Mato JP, McLoughlin HS. Myelinating Glia: Potential Therapeutic Targets in Polyglutamine Spinocerebellar Ataxias. Cells 2023; 12:601. [PMID: 36831268 PMCID: PMC9953858 DOI: 10.3390/cells12040601] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 02/15/2023] Open
Abstract
Human studies, in combination with animal and cellular models, support glial cells as both major contributors to neurodegenerative diseases and promising therapeutic targets. Among glial cells, oligodendrocytes and Schwann cells are the myelinating glial cells of the central and peripheral nervous system, respectively. In this review, we discuss the contributions of these central and peripheral myelinating glia to the pathomechanisms of polyglutamine (polyQ) spinocerebellar ataxia (SCA) types 1, 2, 3, 6, 7, and 17. First, we highlight the function of oligodendrocytes in healthy conditions and how they are disrupted in polyQ SCA patients and diseased model systems. We then cover the role of Schwann cells in peripheral nerve function and repair as well as their possible role in peripheral neuropathy in polyQ SCAs. Finally, we discuss potential polyQ SCA therapeutic interventions in myelinating glial.
Collapse
Affiliation(s)
- Alexandra F. Putka
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Juan P. Mato
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
7
|
Kurokawa R, Kurokawa M, Mitsutake A, Nakaya M, Baba A, Nakata Y, Moritani T, Abe O. Clinical and neuroimaging review of triplet repeat diseases. Jpn J Radiol 2023; 41:115-130. [PMID: 36169768 PMCID: PMC9889482 DOI: 10.1007/s11604-022-01343-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/18/2022] [Indexed: 02/04/2023]
Abstract
Triplet repeat diseases (TRDs) refer to a group of diseases caused by three nucleotide repeats elongated beyond a pathologic threshold. TRDs are divided into the following four groups depending on the pathomechanisms, although the pathomechanisms of several diseases remain unelucidated: polyglutamine disorders, caused by a pathologic repeat expansion of CAG (coding the amino acid glutamine) located within the exon; loss-of-function repeat disorders, characterized by the common feature of a loss of function of the gene within which they occur; RNA gain-of-function disorders, involving the production of a toxic RNA species; and polyalanine disorders, caused by a pathologic repeat expansion of GCN (coding the amino acid alanine) located within the exon. Many of these TRDs manifest through neurologic symptoms; moreover, neuroimaging, especially brain magnetic resonance imaging, plays a pivotal role in the detection of abnormalities, differentiation, and management of TRDs. In this article, we reviewed the clinical and neuroimaging features of TRDs. An early diagnosis of TRDs through clinical and imaging approaches is important and may contribute to appropriate medical intervention for patients and their families.
Collapse
Affiliation(s)
- Ryo Kurokawa
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8655 Japan ,Division of Neuroradiology, Department of Radiology, University of Michigan, 1500 E Medical Center Dr, Ann Arbor, MI 48109 USA
| | - Mariko Kurokawa
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8655 Japan ,Division of Neuroradiology, Department of Radiology, University of Michigan, 1500 E Medical Center Dr, Ann Arbor, MI 48109 USA
| | - Akihiko Mitsutake
- Department of Neurology, International University of Health and Welfare, Mita Hospital, 1-4-3 Mita, Minato-ku, Tokyo, 108-8329 Japan
| | - Moto Nakaya
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8655 Japan
| | - Akira Baba
- Division of Neuroradiology, Department of Radiology, University of Michigan, 1500 E Medical Center Dr, Ann Arbor, MI 48109 USA
| | - Yasuhiro Nakata
- Department of Neuroradiology, Tokyo Metropolitan Neurological Hospital, 2-6-1 Musashidai, Fuchu, Tokyo 183-0042 Japan
| | - Toshio Moritani
- Division of Neuroradiology, Department of Radiology, University of Michigan, 1500 E Medical Center Dr, Ann Arbor, MI 48109 USA
| | - Osamu Abe
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8655 Japan
| |
Collapse
|
8
|
Quialheiro A, Bobinski F, Haefliger JDG, Del Antonio R, Lins EF, Martins DF, d'Orsi E, Xavier AJ, Peres MA. A comprehensive program of cognitive stimulation with digital inclusion, physical activity and social interaction can modify BDNF levels and improve cognition in adults over 50: a randomized controlled pilot study. Aging Ment Health 2022; 26:1979-1987. [PMID: 34405737 DOI: 10.1080/13607863.2021.1966742] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
OBJECTIVES To analyze the effect of a comprehensive program of cognitive stimulation with digital inclusion, physical activity and social interaction, called "Oficina da Lembrança" (OL), on the cognitive status and concentration of biomarkers of neuroplasticity, neurodegeneration in adults aged 50 years and over attending a Memory Clinic. METHODS In this pilot randomized controlled study, 64 patients without dementia aged 45 to 79 years, seen at a University Memory Clinic in Southern Brazil, were randomly allocated to the intervention and control groups. The intervention consisted of participation in OL for 12 weeks. Serum biomarkers (brain-derived neurotrophic factor [BDNF], S100β, and neuron-specific enolase [NSE]) and cognitive status were analyzed as primary and secondary outcomes. The Wilcoxon test and Generalized Estimating Equations (GEE) were applied. RESULTS Of the 64 patients invited to participate in the study, 33 (intervention: 17, control: 16) completed the study with all data. Improvement of cognitive status was significant in the intervention group (22.6 to 24.5) but not in the control group (20.1 to 21.1). There was a significant reduction of BDNF in OL participants, but no significant change was observed in the neurodegenerative biomarkers S100β or NSE. The concentration of BDNF decreased significantly post-OL in the intervention group (-288.1, 95%CI -362.1 to -94.1), even after adjusting for sex, age, and educational level. Cognitive status was significantly improved in OL participants. CONCLUSION The OL program improved cognitive status, reduced serum BDNF levels, and empowered digitally excluded older adults. There was no effect of this intervention on S100β or NSE. CLINICAL TRIAL REGISTRATION This study has a Universal Trial Number (UTN) U1111-1195-2642 and was registered in the Brazilian Clinical Trials Registry (ReBEC), number RBR-38X665.
Collapse
Affiliation(s)
- Anna Quialheiro
- Postgraduate Program in Public Health, Federal University of Santa Catarina (UFSC), Florianopolis, Brazil.,Physiotherapy Course, University of Southern Santa Catarina (UNISUL), Palhoca, Brazil.,Life and Health Sciences Research Institute (ICVS), Medicine School, University of Minho, Portugal
| | - Franciane Bobinski
- Experimental Neuroscience Laboratory (LaNex), Postgraduate Program in Health Sciences, University of Southern Santa Catarina (UNISUL), Palhoca, Brazil
| | | | - Renata Del Antonio
- Hospital of the Federal University of Santa Catarina (UFSC), Florianopolis, Brazil
| | - Elisa Flores Lins
- Experimental Neuroscience Laboratory (LaNex), Postgraduate Program in Health Sciences, University of Southern Santa Catarina (UNISUL), Palhoca, Brazil
| | - Daniel Fernandes Martins
- Experimental Neuroscience Laboratory (LaNex), Postgraduate Program in Health Sciences, University of Southern Santa Catarina (UNISUL), Palhoca, Brazil
| | - Eleonora d'Orsi
- Postgraduate Program in Public Health, Federal University of Santa Catarina (UFSC), Florianopolis, Brazil
| | - André Junqueira Xavier
- Postgraduate Program in Public Health, Federal University of Santa Catarina (UFSC), Florianopolis, Brazil.,Medicine Course, University of Southern Santa Catarina (UNISUL), Palhoca, Brazil
| | - Marco Aurélio Peres
- National Dental Research Institute Singapore, National Dental Centre Singapore, Oral Health ACP, Health Services and Systems Research Programme, Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
9
|
Ren Y, Zhang K, Zhang Q, Chen B, Niu S, Wang X, Zhang Z. A patient with SCA17 featuring 41 CAG repeats presents with spastic paraplegia and involuntary movement. Parkinsonism Relat Disord 2021; 89:87-89. [PMID: 34256333 DOI: 10.1016/j.parkreldis.2021.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/13/2021] [Accepted: 06/26/2021] [Indexed: 11/18/2022]
Affiliation(s)
- Yuting Ren
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, China
| | - Kang Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, China
| | - Qian Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, China
| | - Bin Chen
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, China
| | - Songtao Niu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, China
| | - Xingao Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, China
| | - Zaiqiang Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, China.
| |
Collapse
|
10
|
Xian WB, Zhang XS, Shi XC, Luo GH, Yi C, Pei Z. Corticostriatal Hypermetabolism in Moyamoya Disease-Induced Hemichorea: Two Case Reports and a Literature Review. Front Neurol 2021; 12:649014. [PMID: 34248815 PMCID: PMC8266195 DOI: 10.3389/fneur.2021.649014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 05/26/2021] [Indexed: 12/03/2022] Open
Abstract
Moyamoya disease (MMD) is a rare cause of chorea, and its pathophysiological mechanism remains unclear. We explore the use of cerebral positron emission tomography (PET) to study brain functional connectivity in 2 patients with MMD-induced hemichorea. Abnormal metabolism of brain was analyzed by 18F-fluorodeoxyglucose (18F-FDG) PET images. Dopamine transporters (DAT) PET evaluated the integrity of the cerebral dopamine system. A comprehensive systemic literature search of the PubMed database was also conducted. The 18F-FDG imaging of our patients showed no responsible hypometabolism in affected brain areas, while hypermetabolism in the affected caudate nucleus, putamen and fronto-parietal areas could be seen. DAT PET imaging was normal in patient 1 (a 23-year-old woman), while remarkably reduced DAT binding was seen in the left striatum of patient 2 (a 48-year-old woman). The literature review of 9 publications revealed that 11 patients who underwent single photon emission computed tomography (SPECT) showed cerebral hypoperfusion in the cortex and subcortical area; 18F-FDG PET was performed in 3 cases, which revealed hypermetabolism in the affected striatum in 2 cases. These findings suggest that the striatal and cortical hypermetabolism in the first patient result from underactivity in indirect pathway from basal ganglia-thalamocortical circuits, causing increased activity of excitatory glutamatergic thalamostriatal and thalamocortical projection neurons. The collateral vessels in the basal ganglia might lead to disruption of normal basal ganglia signaling. A dominant left hemisphere with corpus callosal connections to the right basal ganglia resulting into left hemichorea is the most probable explanation for the second patient. We have identified abnormal functional connectivity in basal ganglia-thalamocortical circuits in patients with MMD-induced chorea highlighting the corticostriatal pathway plays an important role in the pathogenesis of MMD-induced chorea.
Collapse
Affiliation(s)
- Wen-Biao Xian
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Xiang-Song Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xin-Chong Shi
- Department of Nuclear Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Gan-Hua Luo
- Department of Nuclear Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chang Yi
- Department of Nuclear Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhong Pei
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| |
Collapse
|
11
|
Brooker SM, Edamakanti CR, Akasha SM, Kuo SH, Opal P. Spinocerebellar ataxia clinical trials: opportunities and challenges. Ann Clin Transl Neurol 2021; 8:1543-1556. [PMID: 34019331 PMCID: PMC8283160 DOI: 10.1002/acn3.51370] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 12/14/2022] Open
Abstract
The spinocerebellar ataxias (SCAs) are a group of dominantly inherited diseases that share the defining feature of progressive cerebellar ataxia. The disease process, however, is not confined to the cerebellum; other areas of the brain, in particular, the brainstem, are also affected, resulting in a high burden of morbidity and mortality. Currently, there are no disease‐modifying treatments for the SCAs, but preclinical research has led to the development of therapeutic agents ripe for testing in patients. Unfortunately, due to the rarity of these diseases and their slow and variable progression, there are substantial hurdles to overcome in conducting clinical trials. While the epidemiological features of the SCAs are immutable, the feasibility of conducting clinical trials is being addressed through a combination of strategies. These include improvements in clinical outcome measures, the identification of imaging and fluid biomarkers, and innovations in clinical trial design. In this review, we highlight current challenges in initiating clinical trials for the SCAs and also discuss pathways for researchers and clinicians to mitigate these challenges and harness opportunities for clinical trial development.
Collapse
Affiliation(s)
- Sarah M Brooker
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | | | - Sara M Akasha
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Sheng-Han Kuo
- Department of Neurology, Columbia University, New York, New York, USA.,Initiative for Columbia Ataxia and Tremor, Columbia University, New York, New York, USA
| | - Puneet Opal
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
12
|
Chen CC, Yao NW, Lin CW, Su WS, Wu CT, Chang C, Hsieh-Li HM. Neuroimaging Spectrum at Pre-, Early, and Late Symptomatic Stages of SCA17 Mice. THE CEREBELLUM 2021; 19:487-500. [PMID: 32270465 DOI: 10.1007/s12311-020-01127-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Spinocerebellar ataxia (SCA) is a hereditary neurodegenerative disease. We have generated SCA17 transgenic mice bearing human TBP with 109 CAG repeats under the Purkinje cell-specific L7/pcp2 promoter. These mice recapitulate the patients' phenotypes and are suitable for the study of the SCA17 pathomechanism. Magnetic resonance imaging (MRI) and immunostainings were performed to identify the neuroimaging spectrum during disease progression. The results indicate that despite an overall normal appearance at birth, postnatal brain damage takes place rapidly in SCA17. Cerebellar atrophy, fourth-ventricle enlargement, and reduced cerebellar N-acetylaspartate levels were detected at the presymptomatic stage, when the mice were juvenile. The aberrations, which included reductions in body weight; cerebral size; striatal size; and the mean, radial, and axial diffusivities of the cerebellum, became more salient as the disease progressed to the old, late-symptomatic stage. Phosphorylated H2A histone family, member X (γH2AX) immunostaining revealed that the cerebellum underwent severe cell senescence in the old stage while the striatum appeared relatively unaffected by aging. Morphometric analysis indicated that the cerebellar atrophy occurred in all subregions with aging. The data establish that the SCA17 mouse brain appears normal at birth but becomes aberrant at the presymptomatic/juvenile stage. More widespread deficits add to the pathological spectrum at the old stage. The study provides information for the expression and expansion of L7/pcp2 promoter and implies the disease progression of SCA17 patients.
Collapse
Affiliation(s)
- Chiao-Chi Chen
- Institute of Biomedical Sciences, Academic Sinica, Taipei, Taiwan
| | - Nai-Wei Yao
- Institute of Biomedical Sciences, Academic Sinica, Taipei, Taiwan
| | - Chia-Wei Lin
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Wei-Shuo Su
- Department of Applied Mathematics, National ChiaoTung University, Hsinchu, Taiwan
| | - Chin-Tien Wu
- Department of Applied Mathematics, National ChiaoTung University, Hsinchu, Taiwan
| | - Chen Chang
- Institute of Biomedical Sciences, Academic Sinica, Taipei, Taiwan.
| | - Hsiu Mei Hsieh-Li
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan.
| |
Collapse
|
13
|
Chen ML, Lin CC, Rosenthal LS, Opal P, Kuo SH. Rating scales and biomarkers for CAG-repeat spinocerebellar ataxias: Implications for therapy development. J Neurol Sci 2021; 424:117417. [PMID: 33836316 DOI: 10.1016/j.jns.2021.117417] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/26/2021] [Accepted: 03/23/2021] [Indexed: 01/18/2023]
Abstract
Spinocerebellar ataxias (SCAs) are a group of dominantly-inherited cerebellar ataxias, among which CAG expansion-related SCAs are most common. These diseases have very high penetrance with defined disease progression, and emerging therapies are being developed to provide either symptomatic or disease-modifying benefits. In clinical trial design, it is crucial to incorporate biomarkers to test target engagement or track disease progression in response to therapies, especially in rare diseases such as SCAs. In this article, we review the available rating scales and recent advances of biomarkers in CAG-repeat SCAs. We divided biomarkers into neuroimaging, body fluid, and physiological studies. Understanding the utility of each biomarker will facilitate the design of robust clinical trials to advance therapies for SCAs.
Collapse
Affiliation(s)
- Meng-Ling Chen
- Department of Neurology, Columbia University, New York, NY, USA; Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY, USA
| | - Chih-Chun Lin
- Department of Neurology, Columbia University, New York, NY, USA; Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY, USA
| | - Liana S Rosenthal
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Puneet Opal
- Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Department of Cellular and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Sheng-Han Kuo
- Department of Neurology, Columbia University, New York, NY, USA; Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY, USA.
| |
Collapse
|
14
|
Phang MWL, Lew SY, Chung I, Lim WKS, Lim LW, Wong KH. Therapeutic roles of natural remedies in combating hereditary ataxia: A systematic review. Chin Med 2021; 16:15. [PMID: 33509239 PMCID: PMC7841890 DOI: 10.1186/s13020-020-00414-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/17/2020] [Accepted: 12/11/2020] [Indexed: 12/30/2022] Open
Abstract
Background Hereditary ataxia (HA) represents a group of genetically heterogeneous neurodegenerative diseases caused by dysfunction of the cerebellum or disruption of the connection between the cerebellum and other areas of the central nervous system. Phenotypic manifestation of HA includes unsteadiness of stance and gait, dysarthria, nystagmus, dysmetria and complaints of clumsiness. There are no specific treatments for HA. Management strategies provide supportive treatment to reduce symptoms. Objectives This systematic review aimed to identify, evaluate and summarise the published literature on the therapeutic roles of natural remedies in the treatment of HA to provide evidence for clinical practice. Methods A systematic literature search was conducted using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). Web of Science, PubMed and Science Direct Scopus were thoroughly searched for relevant published articles from June 2007 to July 2020. Results Ten pre-clinical and two clinical studies were eligible for inclusion in this systematic review. We identified the therapeutic roles of medicinal plants Brassica napus, Gardenia jasminoides, Gastrodia elata, Ginkgo biloba, Glycyrrhiza inflata, Paeonia lactiflora, Pueraria lobata and Rehmannia glutinosa; herbal formulations Shaoyao Gancao Tang and Zhengan Xifeng Tang; and medicinal mushroom Hericium erinaceus in the treatment of HA. In this review, we evaluated the mode of actions contributing to their therapeutic effects, including activation of the ubiquitin–proteasome system, activation of antioxidant pathways, maintenance of intracellular calcium homeostasis and regulation of chaperones. We also briefly highlighted the integral cellular signalling pathways responsible for orchestrating the mode of actions. Conclusion We reviewed the therapeutic roles of natural remedies in improving or halting the progression of HA, which warrant further study for applications into clinical practice.
Collapse
Affiliation(s)
- Michael Weng Lok Phang
- Department of Anatomy, Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Sze Yuen Lew
- Department of Anatomy, Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Ivy Chung
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - William Kiong-Seng Lim
- Faculty of Medicine and Health Sciences, Universiti Malaysia Sarawak, Kuching, Sarawak, 94300, Malaysia
| | - Lee Wei Lim
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong Special Administrative Region, China.
| | - Kah Hui Wong
- Department of Anatomy, Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603, Malaysia.
| |
Collapse
|
15
|
Parkinsonism in neurodegenerative diseases predominantly presenting with ataxia. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2019; 149:277-298. [PMID: 31779816 DOI: 10.1016/bs.irn.2019.10.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The number of molecularly defined degenerative ataxia diseases is rapidly increasing, many of them involving complex multisystemic presentations including parkinsonism. The increasing number of novel ataxia genes -with most of them being ultra-rare - often makes it difficult for clinicians and scientists to identify the molecular diagnosis underlying these ataxia-parkinsonism syndromes. Here we aim to provide an overview on the most frequent diseases and molecular causes underlying ataxia-parkinsonism, focusing both on novel aspects of well-known causes of ataxia-parkinsonism (MSA-C, PSP-C, FXTAS, repeat-expansion spinocerebellar ataxias [SCAs], conventional mutation SCAs) as well as on more recently identified rare genetic causes of ataxia-parkinsonism (AT, POLG, SPG7). We demonstrate that frequency data and phenotype characteristics help to guide diagnostics in patients with unexplained ataxia-parkinsonism, while the newly identified rare genetic causes of ataxia-parkinsonism provide novel insights into molecular key pathways underlying the shared vulnerability of cerebellar and basal ganglia neurons.
Collapse
|
16
|
De Michele G, Lieto M, Galatolo D, Salvatore E, Cocozza S, Barghigiani M, Tessa A, Baldacci J, Pappatà S, Filla A, De Michele G, Santorelli FM. Spinocerebellar ataxia 48 presenting with ataxia associated with cognitive, psychiatric, and extrapyramidal features: A report of two Italian families. Parkinsonism Relat Disord 2019; 65:91-96. [PMID: 31126790 DOI: 10.1016/j.parkreldis.2019.05.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/26/2019] [Accepted: 05/01/2019] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Spinocerebellar ataxia 48 has recently been described as an adult onset ataxia associated with a cerebellar cognitive affective syndrome, caused by a heterozygous mutation in the STUB1 gene. METHODS We characterized the clinical and neuroimaging phenotype of eight patients from two autosomal dominant ataxia multigenerational Italian families, in whom we conducted whole exome sequencing, targeted multigene sequencing, and Sanger sequencing studies. RESULTS We describe a complex syndrome characterized by ataxia and cognitive-psychiatric disorder in all cases, variably associated with chorea, parkinsonism, dystonia, urinary symptoms, and epilepsy. MRI showed a significant cerebellar atrophy, coupled to a T2-weighted hyperintensity affecting the dentate nuclei and extending to the middle cerebellar peduncles, whereas FDG-PET studies revealed glucose hypometabolism in cerebellum, striatum, and cerebral cortex. We identified two different novel STUB1 mutations segregating in the two families. One of the two mutations, p.(Gly33Ser), occurs in the TRP domain, whereas p.(Pro228Ser) is located in the ubiquitin ligase region. DISCUSSION We emphasize the similarity of the described clinical picture with that of SCAR16, an autosomal recessive ataxia caused by biallelic mutations in the same gene, and of spinocerebellar ataxia type 17, which is considered the main Huntington's disease-like syndrome. The pathogenesis of the disease and the relationship between SCA48 and SCAR16 remain to be clarified.
Collapse
Affiliation(s)
- Giovanna De Michele
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, Federico II University, Naples, Italy
| | - Maria Lieto
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, Federico II University, Naples, Italy
| | | | - Elena Salvatore
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, Federico II University, Naples, Italy
| | - Sirio Cocozza
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | | | | | | | - Sabina Pappatà
- Biostructure and Bioimaging Institute, CNR, Naples, Italy
| | - Alessandro Filla
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, Federico II University, Naples, Italy
| | - Giuseppe De Michele
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, Federico II University, Naples, Italy.
| | | |
Collapse
|
17
|
Nethisinghe S, Lim WN, Ging H, Zeitlberger A, Abeti R, Pemble S, Sweeney MG, Labrum R, Cervera C, Houlden H, Rosser E, Limousin P, Kennedy A, Lunn MP, Bhatia KP, Wood NW, Hardy J, Polke JM, Veneziano L, Brusco A, Davis MB, Giunti P. Complexity of the Genetics and Clinical Presentation of Spinocerebellar Ataxia 17. Front Cell Neurosci 2018; 12:429. [PMID: 30532692 PMCID: PMC6265347 DOI: 10.3389/fncel.2018.00429] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/30/2018] [Indexed: 12/31/2022] Open
Abstract
Spinocerebellar ataxia type 17 (SCA17) is a rare autosomal dominant neurodegenerative disease caused by a CAG repeat expansion in the TATA-box binding protein gene (TBP). The disease has a varied age at onset and clinical presentation. It is distinct from other SCAs for its association with dementia, psychiatric symptoms, and some patients presenting with chorea. For this reason, it is also called Huntington’s disease-like 4 (HDL-4). Here we examine the distribution of SCA17 allele repeat sizes in a United Kingdom-based cohort with ataxia and find that fully penetrant pathogenic alleles are very rare (5 in 1,316 chromosomes; 0.38%). Phenotype-genotype correlation was performed on 30 individuals and the repeat structure of their TBP genes was examined. We found a negative linear correlation between total CAG repeat length and age at disease onset and, unlike SCA1, there was no correlation between the longest contiguous CAG tract and age at disease onset. We were unable to identify any particular phenotypic trait that segregated with particular CAG/CAA repeat tract structures or repeat lengths. One individual within the cohort was homozygous for variable penetrance range SCA17 alleles. This patient had a similar age at onset to heterozygotes with the same repeat sizes, but also presented with a rapidly progressive dementia. A pair of monozygotic twins within the cohort presented 3 years apart with the sibling with the earlier onset having a more severe phenotype with dementia and chorea in addition to the ataxia observed in their twin. This appears to be a case of variable expressivity, possibly influenced by other environmental or epigenetic factors. Finally, there was an asymptomatic father with a severely affected child with an age at onset in their twenties. Despite this, they share the same expanded allele repeat sizes and sequences, which would suggest that there is marked difference in the penetrance of this 51-repeat allele. We therefore propose that the variable penetrance range extend from 48 repeats to incorporate this allele. This study shows that there is variability in the presentation and penetrance of the SCA17 phenotype and highlights the complexity of this disorder.
Collapse
Affiliation(s)
- Suran Nethisinghe
- Ataxia Centre, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Wei N Lim
- Ataxia Centre, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Heather Ging
- Ataxia Centre, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Anna Zeitlberger
- Ataxia Centre, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Rosella Abeti
- Ataxia Centre, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Sally Pemble
- Neurogenetics Unit, National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Mary G Sweeney
- Neurogenetics Unit, National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Robyn Labrum
- Neurogenetics Unit, National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Charisse Cervera
- Neurogenetics Unit, National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom.,MRC Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Elisabeth Rosser
- Department of Clinical Genetics, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Patricia Limousin
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Angus Kennedy
- Chelsea and Westminster Hospital, London, United Kingdom
| | - Michael P Lunn
- Department of Neuroimmunology, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Kailash P Bhatia
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Nicholas W Wood
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - John Hardy
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, United Kingdom.,The Reta Lila Weston Institute of Neurological Studies, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - James M Polke
- Neurogenetics Unit, National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Liana Veneziano
- Istituto di Farmacologia Traslazionale - National Research Council, Rome, Italy
| | - Alfredo Brusco
- Department of Medical Sciences, University of Turin, Turin, Italy.,Medical Genetics Unit, Città della Salute e della Scienza University Hospital, Turin, Italy
| | - Mary B Davis
- Ataxia Centre, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Paola Giunti
- Ataxia Centre, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom
| |
Collapse
|
18
|
Mascalchi M, Vella A. Neuroimaging Applications in Chronic Ataxias. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2018; 143:109-162. [PMID: 30473193 DOI: 10.1016/bs.irn.2018.09.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Magnetic resonance imaging (MRI), single photon emission computed tomography (SPECT) and positron emission tomography (PET) are the main instruments for neuroimaging investigation of patients with chronic ataxia. MRI has a predominant diagnostic role in the single patient, based on the visual detection of three patterns of atrophy, namely, spinal atrophy, cortical cerebellar atrophy and olivopontocerebellar atrophy, which correlate with the aetiologies of inherited or sporadic ataxia. In fact spinal atrophy is observed in Friedreich ataxia, cortical cerebellar atrophy in Ataxia Telangectasia, gluten ataxia and Sporadic Adult Onset Ataxia and olivopontocerebellar atrophy in Multiple System Atrophy cerebellar type. The 39 types of dominantly inherited spinocerebellar ataxias show either cortical cerebellar atrophy or olivopontocerebellar atrophy. T2 or T2* weighted MR images can contribute to the diagnosis by revealing abnormally increased or decreased signal with a characteristic distribution. These include symmetric T2 hyperintensity of the posterior and lateral columns of the cervical spinal cord in Friedreich ataxia, diffuse and symmetric hyperintensity of the cerebellar cortex in Infantile Neuro-Axonal Dystrophy, symmetric hyperintensity of the peridentate white matter in Cerebrotendineous Xanthomatosis, and symmetric hyperintensity of the middle cerebellar peduncles and peridentate white matter, cerebral white matter and corpus callosum in Fragile X Tremor Ataxia Syndrome. Abnormally decreased T2 or T2* signal can be observed with a multifocal distribution in Ataxia Telangectasia and with a symmetric distribution in the basal ganglia in Multiple System Atrophy. T2 signal hypointensity lining diffusely the outer surfaces of the brainstem, cerebellum and cerebrum enables diagnosis of superficial siderosis of the central nervous system. The diagnostic role of nuclear medicine techniques is smaller. SPECT and PET show decreased uptake of radiotracers investigating the nigrostriatal system in Multiple System Atrophy and in patients with Fragile X Tremor Ataxia Syndrome. Semiquantitative or quantitative MRI, SPECT and PET data describing structural, microstructural and functional changes of the cerebellum, brainstem, and spinal cord have been widely applied to investigate physiopathological changes in patients with chronic ataxias. Moreover they can track diseases progression with a greater sensitivity than clinical scales. So far, a few small-size and single center studies employed neuroimaging techniques as surrogate markers of treatment effects in chronic ataxias.
Collapse
Affiliation(s)
- Mario Mascalchi
- Meyer Children Hospital, Florence, Italy; Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy.
| | | |
Collapse
|
19
|
Fazio P, Paucar M, Svenningsson P, Varrone A. Novel Imaging Biomarkers for Huntington's Disease and Other Hereditary Choreas. Curr Neurol Neurosci Rep 2018; 18:85. [PMID: 30291526 PMCID: PMC6182636 DOI: 10.1007/s11910-018-0890-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF THE REVIEW Imaging biomarkers for neurodegenerative disorders are primarily developed with the goal to aid diagnosis, to monitor disease progression, and to assess the efficacy of disease-modifying therapies in support to clinical outcomes that may either show limited sensitivity or need extended time for their evaluation. This article will review the most recent concepts and findings in the field of neuroimaging applied to Huntington's disease and Huntington-like syndromes. Emphasis will be given to the discussion of potential pharmacodynamic biomarkers for clinical trials in Huntington's disease (HD) and of neuroimaging tools that can be used as diagnostic biomarkers in HD-like syndromes. RECENT FINDINGS Several magnetic resonance (MR) and positron emission tomography (PET) molecular imaging tools have been identified as potential pharmacodynamic biomarkers and others are in the pipeline after preclinical validation. MRI and 18F-fluorodeoxyglucose PET can be considered useful supportive diagnostic tools for the differentiation of other HD-like syndromes. New trials in HD have the primary goal to lower mutant huntingtin (mHTT) protein levels in the brain in order to reduce or alter the progression of the disease. MR and PET molecular imaging markers have been developed as tools to monitor disease progression and to evaluate treatment outcomes of disease-modifying trials in HD. These markers could be used alone or in combination for detecting structural and pharmacodynamic changes potentially associated with the lowering of mHTT.
Collapse
Affiliation(s)
- Patrik Fazio
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council, R5:02 Karolinska University Hospital, SE-171 76, Stockholm, Sweden.
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden.
| | - Martin Paucar
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Neuroscience, Centre for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Per Svenningsson
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Neuroscience, Centre for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Andrea Varrone
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council, R5:02 Karolinska University Hospital, SE-171 76, Stockholm, Sweden
| |
Collapse
|
20
|
Dilemma of multiple system atrophy and spinocerebellar ataxias. J Neurol 2018; 265:2764-2772. [DOI: 10.1007/s00415-018-8876-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/19/2018] [Accepted: 04/20/2018] [Indexed: 12/17/2022]
|
21
|
Matarazzo M, Wile D, Mackenzie M, Stoessl AJ. PET Molecular Imaging in Familial Parkinson's Disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2018; 142:177-223. [DOI: 10.1016/bs.irn.2018.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
22
|
Wu X, Liao X, Zhan Y, Cheng C, Shen W, Huang M, Zhou Z, Wang Z, Qiu Z, Xing W, Liao W, Tang B, Shen L. Microstructural Alterations in Asymptomatic and Symptomatic Patients with Spinocerebellar Ataxia Type 3: A Tract-Based Spatial Statistics Study. Front Neurol 2017; 8:714. [PMID: 29312133 PMCID: PMC5744430 DOI: 10.3389/fneur.2017.00714] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 12/11/2017] [Indexed: 12/18/2022] Open
Abstract
Objective Spinocerebellar ataxia type 3 (SCA3) is the most commonly occurring type of autosomal dominant spinocerebellar ataxia. The present study aims to investigate progressive changes in white matter (WM) fiber in asymptomatic and symptomatic patients with SCA3. Methods A total of 62 participants were included in this study. Among them, 16 were asymptomatic mutation carriers (pre-SCA3), 22 were SCA3 patients with clinical symptoms, and 24 were normal controls (NC). Group comparison of tract-based spatial statistics was performed to identify microstructural abnormalities at different SCA3 disease stages. Results Decreased fractional anisotropy (FA) and increased mean diffusivity (MD) were found in the left inferior cerebellar peduncle and superior cerebellar peduncle (SCP) in the pre-SCA3 group compared with NC. The symptomatic SCA3 group showed brain-wide WM tracts impairment in both supratentorial and infratentorial networks, and the mean FA value of the WM skeleton showed a significantly negative correlation with the International Cooperative Ataxia Rating Scale (ICARS) scores. Specifically, FA of the bilateral posterior limb of the internal capsule negatively correlated with SCA3 disease duration. We also found that FA values in the right medial lemniscus and SCP negatively correlated with ICARS scores, whereas FA in the right posterior thalamic radiation positively correlated with Montreal Cognitive Assessment scores. In addition, MD in the middle cerebellar peduncle, left anterior limb of internal capsule, external capsule, and superior corona radiate positively correlated with ICARS scores in SCA3 patients. Conclusion WM microstructural changes are present even in the asymptomatic stages of SCA3. In individuals in which the disease has progressed to the symptomatic stage, the integrity of WM fibers across the whole brain is affected. Furthermore, abnormalities in WM tracts are closely related to SCA3 disease severity, including movement disorder and cognitive dysfunction. These findings can deepen our understanding of the neural basis of SCA3 dysfunction.
Collapse
Affiliation(s)
- Xinwei Wu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xinxin Liao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yafeng Zhan
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Cheng Cheng
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Wei Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Mufang Huang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhifan Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Zheng Wang
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Zilong Qiu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Wu Xing
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Weihua Liao
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,State Key Laboratory of Medical Genetics, Changsha, China.,National Clinical Research Center for Geriatric Disease, Changsha, China.,Parkinson's Disease Center of Beijing Institute for Brain Disorders, Beijing, China.,Collaboration Innovation Center for Brain Science, Shanghai, China.,Collaboration Innovation Center for Genetics and Development, Changsha, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,State Key Laboratory of Medical Genetics, Changsha, China.,National Clinical Research Center for Geriatric Disease, Changsha, China
| |
Collapse
|
23
|
Ehrlich DJ, Walker RH. Functional neuroimaging and chorea: a systematic review. JOURNAL OF CLINICAL MOVEMENT DISORDERS 2017. [PMID: 28649394 PMCID: PMC5479019 DOI: 10.1186/s40734-017-0056-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chorea is a hyperkinetic movement disorder consisting of involuntary irregular, flowing movements of the trunk, neck or face. Although Huntington’s disease is the most common cause of chorea in adults, chorea can also result from many other neurodegenerative, metabolic, and autoimmune conditions. While the pathophysiology of these different conditions is quite variable, recent advances in functional imaging have enabled the development of new methods for analysis of brain activity and neuronal dysfunction. In this paper we review the growing body of functional imaging data that has been performed in chorea syndromes and identify particular trends, which can be used to better understand the underlying network changes within the basal ganglia. While it can be challenging to identify whether changes are primary, secondary, or compensatory, identification of these trends can ultimately be useful in diagnostic testing and treatment in many of the conditions that cause chorea.
Collapse
Affiliation(s)
- Debra J Ehrlich
- Department of Neurology, Icahn School of Medicine at Mount Sinai, 5 East 98th Street, 1st Floor, Box 1637, New York, NY 10029 USA
| | - Ruth H Walker
- Department of Neurology, Icahn School of Medicine at Mount Sinai, 5 East 98th Street, 1st Floor, Box 1637, New York, NY 10029 USA.,Department of Neurology, James J Peters Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY 10468 USA
| |
Collapse
|
24
|
Different subregional metabolism patterns in patients with cerebellar ataxia by 18F-fluorodeoxyglucose positron emission tomography. PLoS One 2017; 12:e0173275. [PMID: 28319124 PMCID: PMC5358749 DOI: 10.1371/journal.pone.0173275] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 02/17/2017] [Indexed: 11/19/2022] Open
Abstract
We evaluated cerebellar subregional metabolic alterations in patients with cerebellar ataxia, a representative disease involving the spinocerebellum. We retrospectively analyzed 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) images in 44 patients with multiple system atrophy of the cerebellar type (MSA-C), 9 patients with spinocerebellar ataxia (SCA) type 2, and 14 patients with SCA type 6 and compared with 15 patients with crossed cerebellar diaschisis (CCD) and 89 normal controls. Cerebellar subregional metabolism was assessed using 13 cerebellar subregions (bilateral anterior lobes [ANT], superior/mid/inferior posterior lobes [SUPP/MIDP/INFP], dentate nucleus [DN], anterior vermis [ANTV], and superior/inferior posterior vermis [SUPV/INFV]) to determine FDG uptake ratios. MSA-C and SCA type 2 showed severely decreased metabolic ratios in all cerebellar subregions compared to normal controls (ANT, 0.58 ± 0.08 and 0.50 ± 0.06 vs. 0.82 ± 0.07, respectively, p < 0.001). SCA type 6 showed lower metabolic ratios in almost all cerebellar subregions (ANT, 0.57 ± 0.06, p < 0.001) except INFV. Anterior-posterior lobe ratio measurements revealed that SCA type 2 (Right, 0.81 ± 0.05 vs. 0.88 ± 0.04, p < 0.001; Left, 0.83 ± 0.05 vs. 0.88 ± 0.04, p = 0.003) and SCA type 6 (Right, 0.72 ± 0.05 vs. 0.88 ± 0.04, p < 0.001; Left, 0.72 ± 0.05 vs. 0.88 ± 0.04, p < 0.001) showed preferential hypometabolism in the anterior lobe compared to normal controls, which was not observed in CCD and MSA-C. Asymmetric indices were higher in CCD and MSA-C than in normal controls (p < 0.001), whereas such differences were not found in SCA types 2 and 6. In summary, quantitative analysis of cerebellar subregional metabolism ratios revealed preferential involvement of the anterior lobe, corresponding to the spinocerebellum, in patients with cerebellar ataxia, whereas patients with CCD and MSA-C exhibited more asymmetric hypometabolism in the posterior lobe.
Collapse
|
25
|
Aguiar P, Pardo J, Arias M, Quintáns B, Fernández-Prieto M, Martínez-Regueiro R, Pumar JM, Silva-Rodríguez J, Ruibal Á, Sobrido MJ, Cortés J. PET and MRI detection of early and progressive neurodegeneration in spinocerebellar ataxia type 36. Mov Disord 2016; 32:264-273. [DOI: 10.1002/mds.26854] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 09/24/2016] [Accepted: 09/28/2016] [Indexed: 12/26/2022] Open
Affiliation(s)
- Pablo Aguiar
- Department of Nuclear Medicine and Molecular Imaging Group; University Hospital of Santiago de Compostela (CHUS), IDIS Health Research Institute; Santiago de Compostela Spain
- Department of Psychiatry, Radiology and Public Health; Universidade de Santiago de Compostela (USC); Santiago de Compostela Spain
| | - Julio Pardo
- Department of Psychiatry, Radiology and Public Health; Universidade de Santiago de Compostela (USC); Santiago de Compostela Spain
- Department of Neurology; University Hospital of Santiago de Compostela (CHUS); Santiago de Compostela Spain
- Neurogenetics research group; Instituto de Investigaciones Sanitarias de Santiago (IDIS); Santiago de Compostela Spain
| | - Manuel Arias
- Department of Psychiatry, Radiology and Public Health; Universidade de Santiago de Compostela (USC); Santiago de Compostela Spain
- Department of Neurology; University Hospital of Santiago de Compostela (CHUS); Santiago de Compostela Spain
- Neurogenetics research group; Instituto de Investigaciones Sanitarias de Santiago (IDIS); Santiago de Compostela Spain
| | - Beatriz Quintáns
- Neurogenetics research group; Instituto de Investigaciones Sanitarias de Santiago (IDIS); Santiago de Compostela Spain
- Genomic Medicine Group (U711), Centre for Biomedical Network Research on Rare Diseases (CIBERER); Institute of Health Carlos III; Madrid Spain
| | - Montse Fernández-Prieto
- Neurogenetics research group; Instituto de Investigaciones Sanitarias de Santiago (IDIS); Santiago de Compostela Spain
- Genomic Medicine Group (U711), Centre for Biomedical Network Research on Rare Diseases (CIBERER); Institute of Health Carlos III; Madrid Spain
| | - Rocío Martínez-Regueiro
- Neurogenetics research group; Instituto de Investigaciones Sanitarias de Santiago (IDIS); Santiago de Compostela Spain
- Department of Clinical Psychology and Psychobiology; Universidade de Santiago de Compostela (USC); Santiago de Compostela Spain
| | - José-Manuel Pumar
- Department of Psychiatry, Radiology and Public Health; Universidade de Santiago de Compostela (USC); Santiago de Compostela Spain
- Department of Radiology; University Hospital of Santiago de Compostela (CHUS); Santiago de Compostela Spain
| | - Jesús Silva-Rodríguez
- Department of Nuclear Medicine and Molecular Imaging Group; University Hospital of Santiago de Compostela (CHUS), IDIS Health Research Institute; Santiago de Compostela Spain
| | - Álvaro Ruibal
- Department of Nuclear Medicine and Molecular Imaging Group; University Hospital of Santiago de Compostela (CHUS), IDIS Health Research Institute; Santiago de Compostela Spain
- Department of Psychiatry, Radiology and Public Health; Universidade de Santiago de Compostela (USC); Santiago de Compostela Spain
| | - María-Jesús Sobrido
- Neurogenetics research group; Instituto de Investigaciones Sanitarias de Santiago (IDIS); Santiago de Compostela Spain
- Genomic Medicine Group (U711), Centre for Biomedical Network Research on Rare Diseases (CIBERER); Institute of Health Carlos III; Madrid Spain
| | - Julia Cortés
- Department of Nuclear Medicine and Molecular Imaging Group; University Hospital of Santiago de Compostela (CHUS), IDIS Health Research Institute; Santiago de Compostela Spain
- Department of Psychiatry, Radiology and Public Health; Universidade de Santiago de Compostela (USC); Santiago de Compostela Spain
| |
Collapse
|
26
|
Schneider SA, Bird T. Huntington's Disease, Huntington's Disease Look-Alikes, and Benign Hereditary Chorea: What's New? Mov Disord Clin Pract 2016; 3:342-354. [PMID: 30713928 DOI: 10.1002/mdc3.12312] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 11/22/2015] [Accepted: 11/23/2015] [Indexed: 12/17/2022] Open
Abstract
Background The differential diagnosis of chorea syndromes is complex. It includes inherited forms, the most common of which is autosomal dominant Huntington's disease (HD). In addition, there are disorders mimicking HD, the so-called HD-like (HDL) syndromes. Methods and Results Here we review main clinical, genetic, and pathophysiological characteristics of HD and the rare HD phenocopies in order to familiarize clinicians with them. Molecular studies have shown that HD phenocopies account for about 1% of suspected HD cases, most commonly due to mutations in C9orf72 (also the main cause of frontotemporal dementia and amyotrophic lateral sclerosis syndromes), TATA box-binding protein (spinocerebellar ataxia type 17 [SCA17]/HDL4), and JPH3 (HDL2). Systematic screening studies also revealed mutations in PRNP (prion disease), VPS13A (chorea-acanthocytosis), ATXN8OS-ATXN8 (SCA8), and FXN (late-onset Friedreich's Ataxia) in single cases. Further differential diagnoses to consider in patients presenting with a clinical diagnosis consistent with HD, but without the HD expansion, include dentatorubral-pallidoluysian atrophy and benign hereditary chorea (TITF1), as well as the recently described form of ADCY5-associated neurodegeneration. Lastly, biallelic mutations in RNF216 and FRRS1L have recently been reported as autosomal recessive phenocopies of HD. Conclusion There is a growing list of genes associated with chorea, yet a substantial percentage of patients remain undiagnosed. It is likely that more genes will be discovered in the future and that the clinical spectrum of the described disorders will broaden.
Collapse
Affiliation(s)
- Susanne A Schneider
- Department of Neurology Ludwig-Maximilians-Universität München Munich Germany.,University of Kiel Kiel Germany
| | - Thomas Bird
- Department of Neurology University of Washington Seattle Seattle Washington U.S.A.,VA Puget Sound Health Care System Geriatric Research Education and Clinical Center Seattle Washington U.S.A
| |
Collapse
|
27
|
Rapid Onset of Motor Deficits in a Mouse Model of Spinocerebellar Ataxia Type 6 Precedes Late Cerebellar Degeneration. eNeuro 2015; 2:eN-CFN-0094-15. [PMID: 26730403 PMCID: PMC4697081 DOI: 10.1523/eneuro.0094-15.2015] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 11/04/2015] [Accepted: 11/11/2015] [Indexed: 01/08/2023] Open
Abstract
Spinocerebellar ataxia type 6 (SCA6) is an autosomal-dominant cerebellar ataxia that has been associated with loss of cerebellar Purkinje cells. Disease onset is typically at midlife, although it can vary widely from late teens to old age in SCA6 patients. Our study focused on an SCA6 knock-in mouse model with a hyper-expanded (84X) CAG repeat expansion that displays midlife-onset motor deficits at ∼7 months old, reminiscent of midlife-onset symptoms in SCA6 patients, although a detailed phenotypic analysis of these mice has not yet been reported. Here, we characterize the onset of motor deficits in SCA684Q mice using a battery of behavioral assays to test for impairments in motor coordination, balance, and gait. We found that these mice performed normally on these assays up to and including at 6 months, but motor impairment was detected at 7 months with all motor coordination assays used, suggesting that motor deficits emerge rapidly during a narrow age window in SCA684Q mice. In contrast to what is seen in SCA6 patients, the decrease in motor coordination was observed without alterations in gait. No loss of cerebellar Purkinje cells or striatal neurons were observed at 7 months, the age at which motor deficits were first detected, but significant Purkinje cell loss was observed in 2-year-old SCA684Q mice, arguing that Purkinje cell death does not significantly contribute to the early stages of SCA6.
Collapse
|
28
|
Baldarçara L, Currie S, Hadjivassiliou M, Hoggard N, Jack A, Jackowski AP, Mascalchi M, Parazzini C, Reetz K, Righini A, Schulz JB, Vella A, Webb SJ, Habas C. Consensus paper: radiological biomarkers of cerebellar diseases. THE CEREBELLUM 2015; 14:175-96. [PMID: 25382714 DOI: 10.1007/s12311-014-0610-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hereditary and sporadic cerebellar ataxias represent a vast and still growing group of diseases whose diagnosis and differentiation cannot only rely on clinical evaluation. Brain imaging including magnetic resonance (MR) and nuclear medicine techniques allows for characterization of structural and functional abnormalities underlying symptomatic ataxias. These methods thus constitute a potential source of radiological biomarkers, which could be used to identify these diseases and differentiate subgroups of them, and to assess their severity and their evolution. Such biomarkers mainly comprise qualitative and quantitative data obtained from MR including proton spectroscopy, diffusion imaging, tractography, voxel-based morphometry, functional imaging during task execution or in a resting state, and from SPETC and PET with several radiotracers. In the current article, we aim to illustrate briefly some applications of these neuroimaging tools to evaluation of cerebellar disorders such as inherited cerebellar ataxia, fetal developmental malformations, and immune-mediated cerebellar diseases and of neurodegenerative or early-developing diseases, such as dementia and autism in which cerebellar involvement is an emerging feature. Although these radiological biomarkers appear promising and helpful to better understand ataxia-related anatomical and physiological impairments, to date, very few of them have turned out to be specific for a given ataxia with atrophy of the cerebellar system being the main and the most usual alteration being observed. Consequently, much remains to be done to establish sensitivity, specificity, and reproducibility of available MR and nuclear medicine features as diagnostic, progression and surrogate biomarkers in clinical routine.
Collapse
|
29
|
Schöls L, Reimold M, Seidel K, Globas C, Brockmann K, Hauser TK, Auburger G, Bürk K, den Dunnen W, Reischl G, Korf HW, Brunt ER, Rüb U. No parkinsonism in SCA2 and SCA3 despite severe neurodegeneration of the dopaminergic substantia nigra. Brain 2015; 138:3316-26. [PMID: 26362908 DOI: 10.1093/brain/awv255] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 07/08/2015] [Indexed: 11/12/2022] Open
Abstract
See Klockgether (doi:10.1093/awv253) for a scientific commentary on this article.The spinocerebellar ataxias types 2 (SCA2) and 3 (SCA3) are autosomal dominantly inherited cerebellar ataxias which are caused by CAG trinucleotide repeat expansions in the coding regions of the disease-specific genes. Although previous post-mortem studies repeatedly revealed a consistent neurodegeneration of the dopaminergic substantia nigra in patients with SCA2 and with SCA3, parkinsonian motor features evolve only rarely. As the pathophysiological mechanism how SCA2 and SCA3 patients do not exhibit parkinsonism is still enigmatic, we performed a positron emission tomography and a post-mortem study of two independent cohorts of SCA2 and SCA3 patients with and without parkinsonian features. Positron emission tomography revealed a significant reduction of dopamine transporter levels in the striatum as well as largely unaffected postsynaptic striatal D2 receptors. In spite of this remarkable pathology in the motor mesostriatal pathway, only 4 of 19 SCA2 and SCA3 patients suffered from parkinsonism. The post-mortem investigation revealed, in addition to an extensive neuronal loss in the dopaminergic substantia nigra of all patients with spinocerebellar ataxia, a consistent affection of the thalamic ventral anterior and ventral lateral nuclei, the pallidum and the cholinergic pedunculopontine nucleus. With the exception of a single patient with SCA3 who suffered from parkinsonian motor features during his lifetime, the subthalamic nucleus underwent severe neuronal loss, which was clearly more severe in its motor territory than in its limbic or associative territories. Our observation that lesions of the motor territory of the subthalamic nucleus were consistently associated with the prevention of parkinsonism in our SCA2 and SCA3 patients matches the clinical experience that selective targeting of the motor territory of the subthalamic nucleus by focal lesions or deep brain stimulation can ameliorate parkinsonian motor features and is likely to counteract the manifestation of parkinsonism in SCA2 and SCA3 despite a severe neurodegeneration of the dopaminergic substantia nigra.
Collapse
Affiliation(s)
- Ludger Schöls
- 1 Department of Neurodegeneration and Hertie-Institute for Clinical Brain Research, University of Tübingen, D-72076 Tübingen, Germany 2 Deutsches Zentrum für Neurodegenerative Erkrankungen, D-72076 Tübingen, Germany
| | - Matthias Reimold
- 3 Department of Nuclear Medicine, University of Tübingen, D-72076 Tübingen, Germany
| | - Kay Seidel
- 4 Dr Senckenbergisches Chronomedizinisches Institut, Goethe-University, D-60590 Frankfurt/Main, Germany
| | - Christoph Globas
- 1 Department of Neurodegeneration and Hertie-Institute for Clinical Brain Research, University of Tübingen, D-72076 Tübingen, Germany
| | - Kathrin Brockmann
- 1 Department of Neurodegeneration and Hertie-Institute for Clinical Brain Research, University of Tübingen, D-72076 Tübingen, Germany 2 Deutsches Zentrum für Neurodegenerative Erkrankungen, D-72076 Tübingen, Germany
| | - Till Karsten Hauser
- 5 Department of Neuroradiology, University of Tübingen, D-72076 Tübingen, Germany
| | - Georg Auburger
- 6 Molecular Neurogenetics, Department of Neurology, Goethe-University, D-60590 Frankfurt/Main, Germany
| | - Katrin Bürk
- 7 Department of Neurology, Philipps University of Marburg, D-35039 Marburg, Germany
| | - Wilfred den Dunnen
- 8 Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, NL-9700 RB Groningen, The Netherlands
| | - Gerald Reischl
- 9 Radiopharmacy, University of Tübingen, D-72076 Tübingen, Germany
| | - Horst-Werner Korf
- 4 Dr Senckenbergisches Chronomedizinisches Institut, Goethe-University, D-60590 Frankfurt/Main, Germany
| | - Ewout R Brunt
- 10 Department of Neurology, University Medical Center Groningen, University of Groningen, NL-5970 RB Groningen, The Netherlands
| | - Udo Rüb
- 4 Dr Senckenbergisches Chronomedizinisches Institut, Goethe-University, D-60590 Frankfurt/Main, Germany
| |
Collapse
|
30
|
Maas RP, van Gaalen J, Klockgether T, van de Warrenburg BP. The preclinical stage of spinocerebellar ataxias. Neurology 2015; 85:96-103. [DOI: 10.1212/wnl.0000000000001711] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 03/09/2015] [Indexed: 02/01/2023] Open
|
31
|
Cerebellum-specific 18F-FDG PET analysis for the detection of subregional glucose metabolism changes in spinocerebellar ataxia. Neuroreport 2015; 25:1198-202. [PMID: 25144395 DOI: 10.1097/wnr.0000000000000247] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The cerebellum (CB) consists of complex anatomical and functional subregions. To better investigate the complicated functional anatomy, a detailed subregional analysis and/or a precise spatial normalization of the fluorine-18 fluorodeoxyglucose (F-FDG) PET imaging data are essential. Here, the 28 MRIcron CB volumes of interests (VOIs) template merged into eight cerebellar subregional VOIs (bilateral anterior, superior, and inferior posterior lobes of the CB cortex, and the superior and inferior vermis) on mean F-FDG PET templates. We also developed a new spatial normalization method using a study-specific and CB-specific template (CBSST) to better localize the VOIs and to minimize interparticipant differences for the locations of whole and subregional CB VOIs, as well as to increase the accuracy of the subregional mean F-FDG uptake. Using VOIs of individual F-FDG PET images normalized to the F-FDG template, we analyzed subregional cerebellar glucose metabolism in patients with spinocerebellar ataxia, a representative disease involving the spinocerebellum, and compared them with age-matched and sex-matched healthy normal controls. We achieved significant improvement over the Montreal Neurological Institute template in spatial normalization accuracy using our CBSST approach for CB VOI location agreement increases (79 vs. 90%) and VOI uptake error decreases in many CB subregions. We also found significant decreases in the anterior/posterior ratio of F-FDG uptake in patients with spinocerebellar ataxia (0.45) compared with those in normal controls (0.73) only using our CBSST approach. Therefore, we established an accurate CB subregional VOI analysis framework, and this may be useful for understanding and differentiating many of the cerebellar ataxia diseases.
Collapse
|
32
|
Parkinsonism in spinocerebellar ataxia. BIOMED RESEARCH INTERNATIONAL 2015; 2015:125273. [PMID: 25866756 PMCID: PMC4383270 DOI: 10.1155/2015/125273] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 09/29/2014] [Accepted: 10/13/2014] [Indexed: 11/17/2022]
Abstract
Spinocerebellar ataxia (SCA) presents heterogeneous clinical phenotypes, and parkinsonism is reported in diverse SCA subtypes. Both levodopa responsive Parkinson disease (PD) like phenotype and atypical parkinsonism have been described especially in SCA2, SCA3, and SCA17 with geographic differences in prevalence. SCA2 is the most frequently reported subtype of SCA related to parkinsonism worldwide. Parkinsonism in SCA2 has unique genetic characteristics, such as low number of expansions and interrupted structures, which may explain the sporadic cases with low penetrance. Parkinsonism in SCA17 is more remarkable in Asian populations especially in Korea. In addition, an unclear cutoff of the pathologic range is the key issue in SCA17 related parkinsonism. SCA3 is more common in western cohorts. SCA6 and SCA8 have also been reported with a PD-like phenotype. Herein, we reviewed the epidemiologic, clinical, genetic, and pathologic features of parkinsonism in SCAs.
Collapse
|
33
|
Subramony S, Moscovich M, Ashizawa T. Genetics and Clinical Features of Inherited Ataxias. Mov Disord 2015. [DOI: 10.1016/b978-0-12-405195-9.00062-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
34
|
Rossi M, Perez-Lloret S, Cerquetti D, Merello M. Movement Disorders in Autosomal Dominant Cerebellar Ataxias: A Systematic Review. Mov Disord Clin Pract 2014; 1:154-160. [PMID: 30363920 DOI: 10.1002/mdc3.12042] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 04/23/2014] [Accepted: 04/27/2014] [Indexed: 11/06/2022] Open
Abstract
Autosomal dominant cerebellar ataxias (ADCAs) are clinically heterogeneous disorders classified according to genetic subtype and collectively known as SCAs. In a few SCAs, movement disorders can be the most frequent extracerebellar sign. The aim of this article is to perform a systematic review of movement disorders frequency and characteristics in ADCAs. This work consisted of a structured search of electronic databases up to January 2013. Publications containing descriptions of ADCA clinical features written in several languages were selected initially based on title and abstract screening, followed by full-text reading of potentially relevant publications. Clinical findings and demographic data on genetically confirmed patients were extracted. Analysis of individual patient data from subjects with movement disorders was performed using the chi-square test and logistic regression. One thousand and sixty-six publications reviewing 12,151 patients from 30 different SCAs were analyzed. Individual data were available from 755 patients with at least one type of movement disorder during overall disease course. Of 422 patients in whom onset symptom data were available, one third referred a movement disorder as the initial symptom. During overall disease course, parkinsonism was common in many SCA subtypes, frequently described in the absence of ataxia and characterized as responding to dopaminergic medications. Motor complications developed occasionally in some patients as did nigrostriatal imaging alterations. Other frequent features were dystonia, chorea, and myoclonus. Rare conditions, such as akathisia, paroxysmal nonkinesigenic dyskinesia, or stiff person-like syndrome, were also reported. ADCA descriptions included a full range of movement disorders. Aside from postural or intention tremor, dopamine-responsive parkinsonism and dystonia were the most common.
Collapse
Affiliation(s)
- Malco Rossi
- Movement Disorders Section, Neuroscience Department Raul Carrea Institute for Neurological Research (FLENI) Buenos Aires Argentina
| | - Santiago Perez-Lloret
- Clinical Pharmacology and Epidemiology Laboratory Pontifical Catholic University of Argentina Buenos Aires Argentina.,Argentine National Scientific and Technological Research Council (CONICET) Buenos Aires Argentina
| | - Daniel Cerquetti
- Movement Disorders Section, Neuroscience Department Raul Carrea Institute for Neurological Research (FLENI) Buenos Aires Argentina
| | - Marcelo Merello
- Movement Disorders Section, Neuroscience Department Raul Carrea Institute for Neurological Research (FLENI) Buenos Aires Argentina.,Argentine National Scientific and Technological Research Council (CONICET) Buenos Aires Argentina
| |
Collapse
|
35
|
Mehanna R, Itin I. From normal gait to loss of ambulation in 6 months: a novel presentation of SCA17. THE CEREBELLUM 2014; 12:568-71. [PMID: 23475385 DOI: 10.1007/s12311-013-0466-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Spinocerebellar ataxias are a group of rare and heterogeneous autosomal dominant disorders characterized by progressive ataxia and other features. Spinocerebellar ataxia 17 (SCA17) is one of the 32 subtypes described to date and is secondary to CAG/CAA repeat expansion in the gene coding for the TATA-box binding protein (TBP). SCA17 is clinically heterogeneous and typically presents with slowly evolving ataxia, dysarthria, dementia, depression, and other movement disorders such as chorea. More than 41 CAG/CAA repeats are considered diagnostic of SCA17, with more than 49 being associated with full penetrance. We report one patient presenting with isolated rapidly evolving ataxia who was found to have 44 CAG/CAA repeats in the TBP gene. This suggests that, while SCA17 typically slowly progresses over years, its repertoire of presentations should be expanded to include rapidly progressive isolated ataxia resembling paraneoplastic disorders or prion disease.
Collapse
Affiliation(s)
- R Mehanna
- Center for Neurological Restoration, Cleveland Clinic Foundation, 9500 Euclid Avenue/U20, Cleveland, OH 44195, USA.
| | | |
Collapse
|
36
|
Abstract
PURPOSE OF REVIEW The differential diagnosis of chorea syndromes may be complex and includes various genetic disorders such as Huntington's disease and mimicking disorders called Huntington's disease-like (HDL) phenotypes. To familiarize clinicians with these (in some cases very rare) conditions we will summarize the main characteristics. RECENT FINDINGS HDL disorders are rare and account for about 1% of cases presenting with a Huntington's disease phenotype. They share overlapping clinical features, so making the diagnosis purely on clinical grounds may be challenging, however presence of certain characteristics may be a clue (e.g. prominent orofacial involvement in neuroferritinopathy etc.), Information of ethnic descent will also guide genetic work-up [HDL2 in Black Africans; dentatorubral-pallidoluysian atrophy (DRPLA) in Japanese etc.], Huntington's disease, the classical HDL disorders (except HDL3) and DRPLA are repeat disorders with anticipation effect and age-dependent phenotype in some, but genetic underpinnings may be more complicated in the other chorea syndromes. SUMMARY With advances in genetics more and more rare diseases are disentangled, allowing molecular diagnoses in a growing number of choreic patients. Hopefully, with better understanding of their pathophysiology we are moving towards mechanistic therapies.
Collapse
|
37
|
Hayhow BD, Hassan I, Looi JCL, Gaillard F, Velakoulis D, Walterfang M. The neuropsychiatry of hyperkinetic movement disorders: insights from neuroimaging into the neural circuit bases of dysfunction. Tremor Other Hyperkinet Mov (N Y) 2013; 3:tre-03-175-4242-1. [PMID: 24032090 PMCID: PMC3760049 DOI: 10.7916/d8sn07pk] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 07/08/2013] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Movement disorders, particularly those associated with basal ganglia disease, have a high rate of comorbid neuropsychiatric illness. METHODS We consider the pathophysiological basis of the comorbidity between movement disorders and neuropsychiatric illness by 1) reviewing the epidemiology of neuropsychiatric illness in a range of hyperkinetic movement disorders, and 2) correlating findings to evidence from studies that have utilized modern neuroimaging techniques to investigate these disorders. In addition to diseases classically associated with basal ganglia pathology, such as Huntington disease, Wilson disease, the neuroacanthocytoses, and diseases of brain iron accumulation, we include diseases associated with pathology of subcortical white matter tracts, brain stem nuclei, and the cerebellum, such as metachromatic leukodystrophy, dentatorubropallidoluysian atrophy, and the spinocerebellar ataxias. CONCLUSIONS Neuropsychiatric symptoms are integral to a thorough phenomenological account of hyperkinetic movement disorders. Drawing on modern theories of cortico-subcortical circuits, we argue that these disorders can be conceptualized as disorders of complex subcortical networks with distinct functional architectures. Damage to any component of these complex information-processing networks can have variable and often profound consequences for the function of more remote neural structures, creating a diverse but nonetheless rational pattern of clinical symptomatology.
Collapse
Affiliation(s)
- Bradleigh D. Hayhow
- Neuropsychiatry Unit, Royal Melbourne Hospital, Parkville, Australia
- Melbourne Neuropsychiatry Centre, University of Melbourne and Melbourne Health, Parkville, Australia
| | - Islam Hassan
- Neuropsychiatry Unit, Royal Melbourne Hospital, Parkville, Australia
| | - Jeffrey C. L. Looi
- Academic Unit of Psychiatry & Addiction Medicine, Australian National University Medical School, Canberra Hospital, Canberra, Australia
| | | | - Dennis Velakoulis
- Neuropsychiatry Unit, Royal Melbourne Hospital, Parkville, Australia
- Melbourne Neuropsychiatry Centre, University of Melbourne and Melbourne Health, Parkville, Australia
| | - Mark Walterfang
- Neuropsychiatry Unit, Royal Melbourne Hospital, Parkville, Australia
- Melbourne Neuropsychiatry Centre, University of Melbourne and Melbourne Health, Parkville, Australia
| |
Collapse
|
38
|
Kelp A, Koeppen AH, Petrasch-Parwez E, Calaminus C, Bauer C, Portal E, Yu-Taeger L, Pichler B, Bauer P, Riess O, Nguyen HP. A novel transgenic rat model for spinocerebellar ataxia type 17 recapitulates neuropathological changes and supplies in vivo imaging biomarkers. J Neurosci 2013; 33:9068-81. [PMID: 23699518 PMCID: PMC6705027 DOI: 10.1523/jneurosci.5622-12.2013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 03/18/2013] [Accepted: 04/09/2013] [Indexed: 02/05/2023] Open
Abstract
Spinocerebellar ataxia 17 (SCA17) is an autosomal-dominant, late-onset neurodegenerative disorder caused by an expanded polyglutamine (polyQ) repeat in the TATA-box-binding protein (TBP). To further investigate this devastating disease, we sought to create a first transgenic rat model for SCA17 that carries a full human cDNA fragment of the TBP gene with 64 CAA/CAG repeats (TBPQ64). In line with previous observations in mouse models for SCA17, TBPQ64 rats show a severe neurological phenotype including ataxia, impairment of postural reflexes, and hyperactivity in early stages followed by reduced activity, loss of body weight, and early death. Neuropathologically, the severe phenotype of SCA17 rats was associated with neuronal loss, particularly in the cerebellum. Degeneration of Purkinje, basket, and stellate cells, changes in the morphology of the dendrites, nuclear TBP-positive immunoreactivity, and axonal torpedos were readily found by light and electron microscopy. While some of these changes are well recapitulated in existing mouse models for SCA17, we provide evidence that some crucial characteristics of SCA17 are better mirrored in TBPQ64 rats. Thus, this SCA17 model represents a valuable tool to pursue experimentation and therapeutic approaches that may be difficult or impossible to perform with SCA17 transgenic mice. We show for the first time positron emission tomography (PET) and diffusion tensor imaging (DTI) data of a SCA animal model that replicate recent PET studies in human SCA17 patients. Our results also confirm that DTI are potentially useful correlates of neuropathological changes in TBPQ64 rats and raise hope that DTI imaging could provide a biomarker for SCA17 patients.
Collapse
Affiliation(s)
- Alexandra Kelp
- Institute of Medical Genetics and Applied Genomics
- Centre for Rare Diseases Tübingen, University of Tübingen, 72076 Tübingen, Germany
| | - Arnulf H. Koeppen
- Department of Neuropathology and Neurology, Albany, New York 12208, and
| | - Elisabeth Petrasch-Parwez
- Department of Neuroanatomy and Molecular Brain Research, Ruhr-University Bochum, 44787 Bochum, Germany
| | - Carsten Calaminus
- Laboratory for Preclinical Imaging and Imaging Technology of the Werner Siemens-Foundation, and
| | - Claudia Bauer
- Institute of Medical Genetics and Applied Genomics
- Centre for Rare Diseases Tübingen, University of Tübingen, 72076 Tübingen, Germany
| | - Esteban Portal
- Institute of Medical Genetics and Applied Genomics
- Centre for Rare Diseases Tübingen, University of Tübingen, 72076 Tübingen, Germany
| | - Libo Yu-Taeger
- Institute of Medical Genetics and Applied Genomics
- Centre for Rare Diseases Tübingen, University of Tübingen, 72076 Tübingen, Germany
| | - Bernd Pichler
- Laboratory for Preclinical Imaging and Imaging Technology of the Werner Siemens-Foundation, and
| | - Peter Bauer
- Institute of Medical Genetics and Applied Genomics
- Centre for Rare Diseases Tübingen, University of Tübingen, 72076 Tübingen, Germany
| | - Olaf Riess
- Institute of Medical Genetics and Applied Genomics
- Centre for Rare Diseases Tübingen, University of Tübingen, 72076 Tübingen, Germany
| | - Huu Phuc Nguyen
- Institute of Medical Genetics and Applied Genomics
- Centre for Rare Diseases Tübingen, University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|