1
|
Bostock C, Teal CJ, Dang M, Golinski AW, Hackel BJ, Shoichet MS. Affibody-mediated controlled release of fibroblast growth factor 2. J Control Release 2022; 350:815-828. [PMID: 36087800 DOI: 10.1016/j.jconrel.2022.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 10/14/2022]
Abstract
Protein therapeutics possess high target affinity and specificity, yet short residence times, which limit their broad utility. To overcome this challenge, we used affinity interactions to modulate protein release from a hydrogel delivery vehicle thereby prolonging therapeutic availability. Specifically, we designed an affibody-modified hyaluronan (HA)-based hydrogel as a delivery platform for fibroblast growth factor 2 (FGF2), a neuroprotective and neuroregenerative factor in the central nervous system (CNS). We identified a highly specific affibody binding partner with moderate affinity for FGF2 using yeast surface display and flow cytometry-based screening. Importantly, we demonstrated controlled release of bioactive FGF2 from the hydrogel by varying the ratio of affibody to protein and showed increased thermal stability of FGF2 in the presence of affibody. This versatile delivery platform will allow the distinct, simultaneous release of multiple proteins based on specific affinity interactions.
Collapse
Affiliation(s)
- Chiara Bostock
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada; Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Carter J Teal
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada; Institute of Biomedical Engineering, 164 College Street, Toronto, Ontario M5S 3G9, Canada
| | - Mickael Dang
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada; Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Alex W Golinski
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, 421 Washington Avenue Southeast, 356 Amundson Hall, Minneapolis, MN 55455, United States
| | - Benjamin J Hackel
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, 421 Washington Avenue Southeast, 356 Amundson Hall, Minneapolis, MN 55455, United States
| | - Molly S Shoichet
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada; Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada; Institute of Biomedical Engineering, 164 College Street, Toronto, Ontario M5S 3G9, Canada.
| |
Collapse
|
2
|
Hu X, Li D, Fu Y, Zheng J, Feng Z, Cai J, Wang P. Advances in the Application of Radionuclide-Labeled HER2 Affibody for the Diagnosis and Treatment of Ovarian Cancer. Front Oncol 2022; 12:917439. [PMID: 35785201 PMCID: PMC9240272 DOI: 10.3389/fonc.2022.917439] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/20/2022] [Indexed: 12/19/2022] Open
Abstract
Human epidermal growth factor receptor 2 (HER2) is a highly expressed tumor marker in epithelial ovarian cancer, and its overexpression is considered to be a potential factor of poor prognosis. Therefore, monitoring the expression of HER2 receptor in tumor tissue provides favorable conditions for accurate localization, diagnosis, targeted therapy, and prognosis evaluation of cancer foci. Affibody has the advantages of high affinity, small molecular weight, and stable biochemical properties. The molecular probes of radionuclide-labeled HER2 affibody have recently shown broad application prospects in the diagnosis and treatment of ovarian cancer; the aim is to introduce radionuclides into the cancer foci, display systemic lesions, and kill tumor cells through the radioactivity of the radionuclides. This process seamlessly integrates the diagnosis and treatment of ovarian cancer. Current research and development of new molecular probes of radionuclide-labeled HER2 affibody should focus on overcoming the deficiencies of non-specific uptake in the kidney, bone marrow, liver, and gastrointestinal tract, and on reducing the background of the image to improve image quality. By modifying the amino acid sequence; changing the hydrophilicity, surface charge, and lipid solubility of the affibody molecule; and using different radionuclides, chelating agents, and labeling conditions to optimize the labeling method of molecular probes, the specific uptake of molecular probes at tumor sites will be improved, while reducing radioactive retention in non-target organs and obtaining the best target/non-target value. These measures will enable the clinical use of radionuclide-labeled HER2 affibody molecular probes as soon as possible, providing a new clinical path for tumor-specific diagnosis, targeted therapy, and efficacy evaluation. The purpose of this review is to describe the application of radionuclide-labeled HER2 affibody in the imaging and treatment of ovarian cancer, including its potential clinical value and dilemmas.
Collapse
Affiliation(s)
- Xianwen Hu
- Department of Nuclear Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Dandan Li
- Department of Obstetrics, Zunyi Hospital of Traditional Chinese Medicine, Zunyi, China
| | - Yujie Fu
- Research and Development Department, Jiangsu Yuanben Biotechnology Co., Ltd., Zunyi, China
| | - Jiashen Zheng
- Department of Nuclear Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zelong Feng
- Department of Nuclear Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jiong Cai
- Department of Nuclear Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- *Correspondence: Jiong Cai, ; Pan Wang,
| | - Pan Wang
- Department of Nuclear Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- *Correspondence: Jiong Cai, ; Pan Wang,
| |
Collapse
|
3
|
Common modifications of selenocysteine in selenoproteins. Essays Biochem 2020; 64:45-53. [PMID: 31867620 DOI: 10.1042/ebc20190051] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 12/09/2019] [Accepted: 12/12/2019] [Indexed: 01/03/2023]
Abstract
Selenocysteine (Sec), the sulfur-to-selenium substituted variant of cysteine (Cys), is the defining entity of selenoproteins. These are naturally expressed in many diverse organisms and constitute a unique class of proteins. As a result of the physicochemical characteristics of selenium when compared with sulfur, Sec is typically more reactive than Cys while participating in similar reactions, and there are also some qualitative differences in the reactivities between the two amino acids. This minireview discusses the types of modifications of Sec in selenoproteins that have thus far been experimentally validated. These modifications include direct covalent binding through the Se atom of Sec to other chalcogen atoms (S, O and Se) as present in redox active molecular motifs, derivatization of Sec via the direct covalent binding to non-chalcogen elements (Ni, Mb, N, Au and C), and the loss of Se from Sec resulting in formation of dehydroalanine. To understand the nature of these Sec modifications is crucial for an understanding of selenoprotein reactivities in biological, physiological and pathophysiological contexts.
Collapse
|
4
|
Focused ultrasound for opening blood-brain barrier and drug delivery monitored with positron emission tomography. J Control Release 2020; 324:303-316. [DOI: 10.1016/j.jconrel.2020.05.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 12/14/2022]
|
5
|
Tsuchimochi M, Yamaguchi H, Hayama K, Okada Y, Kawase T, Suzuki T, Tsubokawa N, Wada N, Ochiai A, Fujii S, Fujii H. Imaging of Metastatic Cancer Cells in Sentinel Lymph Nodes using Affibody Probes and Possibility of a Theranostic Approach. Int J Mol Sci 2019; 20:E427. [PMID: 30669481 PMCID: PMC6359136 DOI: 10.3390/ijms20020427] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/12/2019] [Accepted: 01/15/2019] [Indexed: 12/28/2022] Open
Abstract
The accurate detection of lymph node metastases is essential for treatment success in early-stage malignant cancer. Sentinel lymph node (SLN) biopsy is the most effective procedure for detecting small or micrometastases that are undetectable by conventional imaging modalities. To demonstrate a new approach for developing a more efficient SLN biopsy procedure, we reported a two-stage imaging method combining lymphoscintigraphy and near-infrared (NIR) fluorescence imaging to depict metastatic cancer cells in SLNs in vivo. Furthermore, the theranostic potential of the combined procedure was examined by cell culture and xenograft mouse model. Anti-HER2 and anti-epidermal growth factor receptor (EGFR) affibody probes were used for NIR fluorescence imaging. Strong NIR fluorescence signal intensity of the anti-EGFR affibody probe was observed in SAS cells (EGFR positive). Radioactivity in the SLNs was clearly observed in the in vivo studies. High anti-EGFR affibody NIR fluorescence intensity was observed in the metastatic lymph nodes in mice. The addition of the IR700-conjugated anti-EGFR affibody to the culture medium decreased the proliferation of SAS cells. Decreased proliferation was shown in Ki-67 immunohistochemistry in xenograft tumors. Our data suggest that a two-stage combined imaging method using lymphoscintigraphy and affibody probes may offer the direct visualization of metastatic lymph nodes as an easily applied technique in SLN biopsy. Although further animal studies are required to assess the effect of treating lymphatic metastasis in this approach, our study results provide a foundation for the further development of this promising imaging and treatment strategy for earlier lymph node metastasis detection and treatment.
Collapse
Affiliation(s)
- Makoto Tsuchimochi
- Emeritus Professor, The Nippon Dental University, Tokyo, Japan, formerly of the Department of Oral and Maxillofacial Radiology, The Nippon Dental University School of Life Dentistry at Niigata, 1-8 Hamaura-cho, Chuo-ku, Niigata 951-8580, Japan.
| | - Haruka Yamaguchi
- Department of Life Science Dentistry, The Nippon Dental University, 1-9-20 Fujimi, Chiyoda-ku, Tokyo 102-8159, Japan.
- Department of Oral and Maxillofacial Radiology, The Nippon Dental University School of Life Dentistry at Niigata, Niigata 951-8580, Japan.
- Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, 28 Woodville Road Woodville South, SA 5011, Australia.
| | - Kazuhide Hayama
- Department of Oral and Maxillofacial Radiology, The Nippon Dental University School of Life Dentistry at Niigata, Niigata 951-8580, Japan.
| | - Yasuo Okada
- Department of Pathology, The Nippon Dental University School of Life Dentistry at Niigata, Niigata 951-8580, Japan.
| | - Tomoyuki Kawase
- Division of Oral Bioengineering, Institute of Medicine and Dentistry, Niigata University, Division of Oral Bioengineering, Department of Tissue Regeneration and Reconstitution, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8541, Japan.
| | - Takamasa Suzuki
- Department of Electrical and Electronic Engineering, Faculty of Engineering, Niigata University, Niigata 950-2181, Japan.
| | - Norio Tsubokawa
- Faculty of Engineering, Niigata University, Niigata 950-2181, Japan.
| | - Noriaki Wada
- Department of General Surgery, Tokyo Dental College Ichikawa General Hospital, Ichikawa, Chiba 272-8513, Japan.
| | - Atsushi Ochiai
- Division of Biomarker Discovery, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Chiba 277-8577, Japan.
- Laboratory of Cancer Biology, Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba 277-8561, Japan.
| | - Satoshi Fujii
- Division of Pathology, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa, Chiba 277-8577, Japan.
| | - Hirofumi Fujii
- Division of Functional Imaging, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Chiba 277-8577, Japan.
| |
Collapse
|
6
|
Fu R, Carroll L, Yahioglu G, Aboagye EO, Miller PW. Antibody Fragment and Affibody ImmunoPET Imaging Agents: Radiolabelling Strategies and Applications. ChemMedChem 2018; 13:2466-2478. [PMID: 30246488 PMCID: PMC6587488 DOI: 10.1002/cmdc.201800624] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Indexed: 12/12/2022]
Abstract
Antibodies have long been recognised as potent vectors for carrying diagnostic medical radionuclides, contrast agents and optical probes to diseased tissue for imaging. The area of ImmunoPET combines the use of positron emission tomography (PET) imaging with antibodies to improve the diagnosis, staging and monitoring of diseases. Recent developments in antibody engineering and PET radiochemistry have led to a new wave of experimental ImmunoPET imaging agents that are based on a range of antibody fragments and affibodies. In contrast to full antibodies, engineered affibody proteins and antibody fragments such as minibodies, diabodies, single-chain variable region fragments (scFvs), and nanobodies are much smaller but retain the essential specificities and affinities of full antibodies in addition to more desirable pharmacokinetics for imaging. Herein, recent key developments in the PET radiolabelling strategies of antibody fragments and related affibody molecules are highlighted, along with the main PET imaging applications of overexpressed antigen-associated tumours and immune cells.
Collapse
Affiliation(s)
- Ruisi Fu
- Department of ChemistryImperial College LondonExhibition RoadSouth Kensington, LondonSW7 2AZUK
- Comprehensive Cancer Imaging Centre, Department of Surgery and CancerImperial College London, Hammersmith CampusDu Cane RoadLondonW12 0NNUK
| | - Laurence Carroll
- Comprehensive Cancer Imaging Centre, Department of Surgery and CancerImperial College London, Hammersmith CampusDu Cane RoadLondonW12 0NNUK
| | - Gokhan Yahioglu
- Department of ChemistryImperial College LondonExhibition RoadSouth Kensington, LondonSW7 2AZUK
- Antikor Biopharma Ltd.StevenageSG1 2FXUK
| | - Eric O. Aboagye
- Comprehensive Cancer Imaging Centre, Department of Surgery and CancerImperial College London, Hammersmith CampusDu Cane RoadLondonW12 0NNUK
| | - Philip W. Miller
- Department of ChemistryImperial College LondonExhibition RoadSouth Kensington, LondonSW7 2AZUK
| |
Collapse
|
7
|
Site-Specific Labeling of F-18 Proteins Using a Supplemented Cell-Free Protein Synthesis System and O-2-[18F]Fluoroethyl-L-Tyrosine: [18F]FET-HER2 Affibody Molecule. Mol Imaging Biol 2018; 21:529-537. [DOI: 10.1007/s11307-018-1266-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
8
|
Yang Y, Zhao X, Xing Y, Yu T, Zhang J, Wang J. Preclinical evaluation of 99mTc direct labeling Z HER2:V2 for HER2 positive tumors imaging. Oncol Lett 2018; 16:5361-5366. [PMID: 30250607 DOI: 10.3892/ol.2018.9279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 07/27/2018] [Indexed: 01/09/2023] Open
Abstract
The present study aimed to label ZHER2:V2 with technetium-99m (99mTc) using a simple method and to evaluate its clinical potential as a diagnostic probe for human epidermal growth factor receptor type 2 (HER2)-positive tumors. The ZHER2:V2 (Affibody molecule of ZHER2:2395-C, which is based on the ZHER2:342 binding sequence with C-terminal engineered cysteine) with C-terminal chelating sequence GGGC was designed and labeled with 99mTc. The 99mTc-ZHER2:V2 labeling efficiency was analyzed. The cellular uptake, retention and binding affinity, and the stability of the probe were examined in vitro. 99mTc-ZHER2:V2 biodistribution analysis and imaging were performed in BALB/c nude mice bearing SKOV3 (HER2-overexpression) xenografts. Furthermore, imaging of the probe was performed in MCF-7 (HER2 low-expression) xenografts. The 99mTc-ZHER2:V2 labeling efficiency was identified as 98.99±0.99% (n=6), and was stable in physiological saline and fresh human serum at 37°C in vitro. The cellular uptake peak of SKOV3 cells at 24 h was 6.15±0.18%, the cellular retention ratio of the probe was 48.58±4.52% at 6 h following interrupted incubation, and ~70% of 99mTc-ZHER2:V2 was membrane bound following 24 h. 99mTc-ZHER2:V2 was blocked by excess amounts of unlabeled ZHER2:V2 in SKOV3 cells. 99mTc-ZHER2:V2 exhibited high distribution (10.07% ID/g) in SKOV3 ×enografts at 6 h following injection. The single photon emission computed tomography (SPECT) imaging revealed clear localization of 99mTc-ZHER2:V2 in the SKOV3 ×enografts at 4 h. However, there was low uptake in MCF-7 tumors on the SPECT images. The SKOV3 ×enograft imaging could be blocked by excess amounts unlabelled ZHER2:V2. 99mTc-ZHER2:V2 is an easy and quick labeling method, with high labeling yields, and radiochemical purity. 99mTc-ZHER2:V2 is a promising probe for the diagnosis of HER2-overexpression tumors and the monitoring of therapy response.
Collapse
Affiliation(s)
- Yang Yang
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University and The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Xinming Zhao
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Yu Xing
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Tianying Yu
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Jingmian Zhang
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Jianfang Wang
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| |
Collapse
|
9
|
Abstract
Molecular imaging (mainly PET and MR imaging) has played important roles in gynecologic oncology. Emerging MR-based technologies, including DWI, CEST, DCE-MR imaging, MRS, and DNP, as well as FDG-PET and many novel PET radiotracers, will continuously improve practices. In combination with radiomics analysis, a new era of decision making in personalized medicine and precisely guided radiation treatment planning or real-time surgical interventions is being entered into, which will directly impact on patient survival. Prospective trials with well-defined endpoints are encouraged to evaluate the multiple facets of these emerging imaging tools in the management of gynecologic malignancies.
Collapse
Affiliation(s)
- Gigin Lin
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 5 Fu-Shin Street, Kueishan, Taoyuan 333, Taiwan
| | - Chyong-Huey Lai
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 5 Fu-Shin Street, Kueishan, Taoyuan 333, Taiwan.
| | - Tzu-Chen Yen
- Department of Nuclear Medicine, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 5 Fu-Shin Street, Kueishan, Taoyuan 333, Taiwan
| |
Collapse
|
10
|
Abstract
Expression of selenoproteins necessitates a process of decoding of a UGA codon from termination of translation to insertion of selenocysteine. The mechanisms of this process pose major challenges with regards to recombinant selenoprotein production in E. coli, which however can be overcome especially if the Sec residue is located close to the C-terminal end, as is the case for several naturally found selenoproteins. This chapter summarizes a method to achieve such a production.
Collapse
|
11
|
Ståhl S, Gräslund T, Eriksson Karlström A, Frejd FY, Nygren PÅ, Löfblom J. Affibody Molecules in Biotechnological and Medical Applications. Trends Biotechnol 2017; 35:691-712. [PMID: 28514998 DOI: 10.1016/j.tibtech.2017.04.007] [Citation(s) in RCA: 275] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/18/2017] [Accepted: 04/20/2017] [Indexed: 01/08/2023]
Abstract
Affibody molecules are small (6.5-kDa) affinity proteins based on a three-helix bundle domain framework. Since their introduction 20 years ago as an alternative to antibodies for biotechnological applications, the first therapeutic affibody molecules have now entered clinical development and more than 400 studies have been published in which affibody molecules have been developed and used in a variety of contexts. In this review, we focus primarily on efforts over the past 5 years to explore the potential of affibody molecules for medical applications in oncology, neurodegenerative, and inflammation disorders, including molecular imaging, receptor signal blocking, and delivery of toxic payloads. In addition, we describe recent examples of biotechnological applications, in which affibody molecules have been exploited as modular affinity fusion partners.
Collapse
Affiliation(s)
- Stefan Ståhl
- Division of Protein Technology, KTH Royal Institute of Technology, SE-106 91, Stockholm, Sweden.
| | - Torbjörn Gräslund
- Division of Protein Technology, KTH Royal Institute of Technology, SE-106 91, Stockholm, Sweden
| | | | - Fredrik Y Frejd
- Unit of Biomedical Radiation Sciences, Uppsala University, SE-751 85 Uppsala, Sweden; Affibody AB, Gunnar Asplunds Allé 24, SE-171 69 Solna, Sweden
| | - Per-Åke Nygren
- Division of Protein Technology, KTH Royal Institute of Technology, SE-106 91, Stockholm, Sweden
| | - John Löfblom
- Division of Protein Technology, KTH Royal Institute of Technology, SE-106 91, Stockholm, Sweden
| |
Collapse
|
12
|
Chen W, Li X, Zhu L, Liu J, Xu W, Wang P. Preclinical and clinical applications of specific molecular imaging for HER2-positive breast cancer. Cancer Biol Med 2017; 14:271-280. [PMID: 28884043 PMCID: PMC5570603 DOI: 10.20892/j.issn.2095-3941.2017.0044] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Precision medicine and personalized therapy are receiving increased attention, and molecular-subtype classification has become crucial in planning therapeutic schedules in clinical practice for patients with breast cancer. Human epidermal growth factor receptor 2 (HER2) is associated with high-grade breast tumors, high rates of lymph-node involvement, high risk of recurrence, and high resistance to general chemotherapy. Analysis of HER2 expression is highly important for doctors to identify patients who can benefit from trastuzumab therapy and monitor the response and efficacy of treatment. In recent years, significant efforts have been devoted to achieving specific and noninvasive HER2-positive breast cancer imaging in vivo. In this work, we reviewed existing literature on HER2 imaging in the past decade and summarized the studies from different points of view, such as imaging modalities and HER2-specific probes. We aimed to improve the understanding on the translational process in molecular imaging for HER2 breast cancer.
Collapse
Affiliation(s)
- Wei Chen
- Department of Molecular Imaging and Nuclear Medicine
| | - Xiaofeng Li
- Department of Molecular Imaging and Nuclear Medicine
| | - Lei Zhu
- Department of Molecular Imaging and Nuclear Medicine
| | - Jianjing Liu
- Department of Molecular Imaging and Nuclear Medicine
| | - Wengui Xu
- Department of Molecular Imaging and Nuclear Medicine
| | - Ping Wang
- Department of Molecular Imaging and Nuclear Medicine
| |
Collapse
|
13
|
Meyer JP, Adumeau P, Lewis JS, Zeglis BM. Click Chemistry and Radiochemistry: The First 10 Years. Bioconjug Chem 2016; 27:2791-2807. [PMID: 27787983 DOI: 10.1021/acs.bioconjchem.6b00561] [Citation(s) in RCA: 172] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The advent of click chemistry has had a profound influence on almost all branches of chemical science. This is particularly true of radiochemistry and the synthesis of agents for positron emission tomography (PET), single photon emission computed tomography (SPECT), and targeted radiotherapy. The selectivity, ease, rapidity, and modularity of click ligations make them nearly ideally suited for the construction of radiotracers, a process that often involves working with biomolecules in aqueous conditions with inexorably decaying radioisotopes. In the following pages, our goal is to provide a broad overview of the first 10 years of research at the intersection of click chemistry and radiochemistry. The discussion will focus on four areas that we believe underscore the critical advantages provided by click chemistry: (i) the use of prosthetic groups for radiolabeling reactions, (ii) the creation of coordination scaffolds for radiometals, (iii) the site-specific radiolabeling of proteins and peptides, and (iv) the development of strategies for in vivo pretargeting. Particular emphasis will be placed on the four most prevalent click reactions-the Cu-catalyzed azide-alkyne cycloaddition (CuAAC), the strain-promoted azide-alkyne cycloaddition (SPAAC), the inverse electron demand Diels-Alder reaction (IEDDA), and the Staudinger ligation-although less well-known click ligations will be discussed as well. Ultimately, it is our hope that this review will not only serve to educate readers but will also act as a springboard, inspiring synthetic chemists and radiochemists alike to harness click chemistry in even more innovative and ambitious ways as we embark upon the second decade of this fruitful collaboration.
Collapse
Affiliation(s)
| | - Pierre Adumeau
- Department of Chemistry, Hunter College of the City University of New York , 413 East 69th Street, New York, New York 10028, United States
| | - Jason S Lewis
- Department of Radiology, Weill Cornell Medical College , 520 East 70th Street, New York, New York 10065, United States
| | - Brian M Zeglis
- Department of Chemistry, Hunter College of the City University of New York , 413 East 69th Street, New York, New York 10028, United States.,Department of Radiology, Weill Cornell Medical College , 520 East 70th Street, New York, New York 10065, United States.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York , 365 5th Avenue, New York, New York 10016, United States
| |
Collapse
|
14
|
Cheng Q, Wållberg H, Grafström J, Lu L, Thorell JO, Hägg Olofsson M, Linder S, Johansson K, Tegnebratt T, Arnér ESJ, Stone-Elander S, Ahlzén HSM, Ståhl S. Preclinical PET imaging of EGFR levels: pairing a targeting with a non-targeting Sel-tagged Affibody-based tracer to estimate the specific uptake. EJNMMI Res 2016; 6:58. [PMID: 27388754 PMCID: PMC4936982 DOI: 10.1186/s13550-016-0213-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 06/28/2016] [Indexed: 01/09/2023] Open
Abstract
Background Though overexpression of epidermal growth factor receptor (EGFR) in several forms of cancer is considered to be an important prognostic biomarker related to poor prognosis, clear correlations between biomarker assays and patient management have been difficult to establish. Here, we utilize a targeting directly followed by a non-targeting tracer-based positron emission tomography (PET) method to examine some of the aspects of determining specific EGFR binding in tumors. Methods The EGFR-binding Affibody molecule ZEGFR:2377 and its size-matched non-binding control ZTaq:3638 were recombinantly fused with a C-terminal selenocysteine-containing Sel-tag (ZEGFR:2377-ST and ZTaq:3638-ST). The proteins were site-specifically labeled with DyLight488 for flow cytometry and ex vivo tissue analyses or with 11C for in vivo PET studies. Kinetic scans with the 11C-labeled proteins were performed in healthy mice and in mice bearing xenografts from human FaDu (squamous cell carcinoma) and A431 (epidermoid carcinoma) cell lines. Changes in tracer uptake in A431 xenografts over time were also monitored, followed by ex vivo proximity ligation assays (PLA) of EGFR expressions. Results Flow cytometry and ex vivo tissue analyses confirmed EGFR targeting by ZEGFR:2377-ST-DyLight488. [Methyl-11C]-labeled ZEGFR:2377-ST-CH3 and ZTaq:3638-ST-CH3 showed similar distributions in vivo, except for notably higher concentrations of the former in particularly the liver and the blood. [Methyl-11C]-ZEGFR:2377-ST-CH3 successfully visualized FaDu and A431 xenografts with moderate and high EGFR expression levels, respectively. However, in FaDu tumors, the non-specific uptake was large and sometimes equally large, illustrating the importance of proper controls. In the A431 group observed longitudinally, non-specific uptake remained at same level over the observation period. Specific uptake increased with tumor size, but changes varied widely over time in individual tumors. Total (membranous and cytoplasmic) EGFR in excised sections increased with tumor growth. There was no positive correlation between total EGFR and specific tracer uptake, which, since ZEGFR:2377 binds extracellularly and is slowly internalized, indicates a discordance between available membranous and total EGFR expression levels. Conclusions Same-day in vivo dual tracer imaging enabled by the Sel-tag technology and 11C-labeling provides a method to non-invasively monitor membrane-localized EGFR as well as factors affecting non-specific uptake of the PET ligand. Electronic supplementary material The online version of this article (doi:10.1186/s13550-016-0213-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qing Cheng
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Helena Wållberg
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Jonas Grafström
- Department of Clinical Neurosciences, Karolinska Institutet, Stockholm, Sweden
| | - Li Lu
- Department of Clinical Neurosciences, Karolinska Institutet, Stockholm, Sweden.,Karolinska Experimental Research and Imaging Center, Department of Comparative Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Jan-Olov Thorell
- Department of Clinical Neurosciences, Karolinska Institutet, Stockholm, Sweden.,Neuroradiology Department, R3:00, Karolinska University Hospital, SE-17176, Stockholm, Sweden
| | - Maria Hägg Olofsson
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Stig Linder
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Katarina Johansson
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Tetyana Tegnebratt
- Department of Clinical Neurosciences, Karolinska Institutet, Stockholm, Sweden.,Neuroradiology Department, R3:00, Karolinska University Hospital, SE-17176, Stockholm, Sweden
| | - Elias S J Arnér
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Sharon Stone-Elander
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden. .,Department of Clinical Neurosciences, Karolinska Institutet, Stockholm, Sweden. .,Neuroradiology Department, R3:00, Karolinska University Hospital, SE-17176, Stockholm, Sweden.
| | | | - Stefan Ståhl
- Division of Protein Technology, School of Biotechnology, Royal Institute of Technology, Stockholm, Sweden
| | | |
Collapse
|
15
|
Canese R, Mezzanzanica D, Bagnoli M, Indraccolo S, Canevari S, Podo F, Iorio E. In vivo Magnetic Resonance Metabolic and Morphofunctional Fingerprints in Experimental Models of Human Ovarian Cancer. Front Oncol 2016; 6:164. [PMID: 27446810 PMCID: PMC4923069 DOI: 10.3389/fonc.2016.00164] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 06/17/2016] [Indexed: 11/13/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is the gynecological malignancy with the highest death rate, characterized by frequent relapse and onset of drug resistance. Disease diagnosis and therapeutic follow-up could benefit from application of molecular imaging approaches, such as magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS), able to monitor metabolic and functional alterations and investigate the underlying molecular mechanisms. Here, we overview the quantitative alterations that occur during either orthotopic or subcutaneous growth of preclinical EOC models. A common feature of (1)H MR spectra is the presence of a prominent peak due to total choline-containing metabolites (tCho), together with other metabolic alterations and MRI-detected morphofunctional patterns specific for different phenotypes. The tCho signal, already present at early stages of tumor growth, and changes of diffusion-weighted MRI parameters could serve as markers of malignancy and/or tumor response to therapy. The identification by MRS and MRI of biochemical and physiopathological fingerprints of EOC disease in preclinical models can represent a basis for further developments of non-invasive MR approaches in the clinical setting.
Collapse
Affiliation(s)
- Rossella Canese
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy
| | - Delia Mezzanzanica
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Marina Bagnoli
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Stefano Indraccolo
- Immunology and Molecular Oncology Unit, IOV – Istituto Oncologico Veneto – I.R.C.C.S, Padova, Italy
| | - Silvana Canevari
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Franca Podo
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy
| | - Egidio Iorio
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
16
|
Gebhart G, Flamen P, De Vries EGE, Jhaveri K, Wimana Z. Imaging Diagnostic and Therapeutic Targets: Human Epidermal Growth Factor Receptor 2. J Nucl Med 2016; 57 Suppl 1:81S-8S. [PMID: 26834107 DOI: 10.2967/jnumed.115.157941] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Since the approval of trastuzumab, a humanized monoclonal antibody against the extracellular domain of human epidermal growth factor receptor 2 (HER2), 3 other HER2-targeting agents have gained regulatory approval: lapatinib, pertuzumab, and trastuzumab-emtansine. These agents have revolutionized the management of HER2-positive breast cancer, highlighting the concept that targeted therapies are successful when patients exhibit tumor-selective expression of a molecular target-in this case, HER2. However, response prediction and innate or acquired resistance remain serious concerns. Predictive biomarkers of a response-which could help in the selection of patients who might benefit from a selected targeted therapy-are currently lacking. Molecular imaging with anti-HER2 probes allows the noninvasive, whole-body assessment of HER2 tumor burden and has the potential to improve patient selection, optimize the dose and schedule, and rationalize assessment of the response to anti-HER2 therapies. Furthermore, unlike biopsy-based HER2 assessment, this approach can reveal inter- or intratumoral heterogeneity as well as variations in HER2 expression over time. This review summarizes the available literature and the current status of molecular imaging as a tool for the assessment of HER2 (target) expression or the prediction of an early treatment response in early and advanced HER2-positive breast cancer.
Collapse
Affiliation(s)
- Geraldine Gebhart
- Department of Nuclear Medicine, Institut Jules Bordet-Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Patrick Flamen
- Department of Nuclear Medicine, Institut Jules Bordet-Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Elisabeth G E De Vries
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; and
| | - Komal Jhaveri
- Breast Medicine Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Zena Wimana
- Department of Nuclear Medicine, Institut Jules Bordet-Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
17
|
Grafström J, Ahlzén HS, Stone-Elander S. A method for comparing intra-tumoural radioactivity uptake heterogeneity in preclinical positron emission tomography studies. EJNMMI Phys 2015; 2:19. [PMID: 26501820 PMCID: PMC4562910 DOI: 10.1186/s40658-015-0124-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 08/31/2015] [Indexed: 11/29/2022] Open
Abstract
Background Non-uniformity influences the interpretation of nuclear medicine based images and consequently their use in treatment planning and monitoring. However, no standardised method for evaluating and ranking heterogeneity exists. Here, we have developed a general algorithm that provides a ranking and a visualisation of the heterogeneity in small animal positron emission tomography (PET) images. Methods The code of the algorithm was written using the Matrix Laboratory software (MATLAB). Parameters known to influence the heterogeneity (distances between deviating peaks, gradients and size compensations) were incorporated into the algorithm. All data matrices were mathematically constructed in the same format with the aim of maintaining overview and control. Histograms visualising the spread and frequency of contributions to the heterogeneity were also generated. The construction of the algorithm was tested using mathematically generated matrices and by varying post-processing parameters. It was subsequently applied in comparisons of radiotracer uptake in preclinical images in human head and neck carcinoma and endothelial and ovarian carcinoma xenografts. Results Using the developed algorithm, entire tissue volumes could be assessed and gradients could be handled in an indirect manner. Similar-sized volumes could be compared without modifying the algorithm. Analyses of the distribution of different tracers gave results that were generally in accordance with single plane preclinical images, indicating that it could appropriately handle comparisons of targeting vs. non-targeting tracers and also for different target levels. Altering the reconstruction algorithm, pixel size, tumour ROI volumes and lower cut-off limits affected the calculated heterogeneity factors in expected directions but did not reverse conclusions about which tumour was more or less heterogeneous. Conclusions The algorithm constructed is an objective and potentially user-friendly tool for one-to-one comparisons of heterogeneity in whole similar-sized tumour volumes in PET imaging.
Collapse
Affiliation(s)
| | - Hanna-Stina Ahlzén
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17177, Stockholm, Sweden.
| | - Sharon Stone-Elander
- Department of Clinical Neuroscience, Karolinska Institutet, SE-17176, Stockholm, Sweden. .,PET Radiochemistry, Neuroradiology Department, Karolinska University Hospital, SE-17176, Stockholm, Sweden.
| |
Collapse
|
18
|
Westerlund K, Honarvar H, Tolmachev V, Eriksson Karlström A. Design, Preparation, and Characterization of PNA-Based Hybridization Probes for Affibody-Molecule-Mediated Pretargeting. Bioconjug Chem 2015; 26:1724-36. [PMID: 26086597 DOI: 10.1021/acs.bioconjchem.5b00292] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In radioimmunotherapy, the contrast between tumor and normal tissue can be improved by using a pretargeting strategy with a primary targeting agent, which is conjugated to a recognition tag, and a secondary radiolabeled molecule binding specifically to the recognition tag. The secondary molecule is injected after the targeting agent has accumulated in the tumor and is designed to have a favorable biodistribution profile, with fast clearance from blood and low uptake in normal tissues. In this study, we have designed and evaluated two complementary peptide nucleic acid (PNA)-based probes for specific and high-affinity association in vivo. An anti-HER2 Affibody-PNA chimera, Z(HER2:342)-SR-HP1, was produced by a semisynthetic approach using sortase A catalyzed ligation of a recombinantly produced Affibody molecule to a PNA-based HP1-probe assembled using solid-phase chemistry. A complementary HP2 probe carrying a DOTA chelator and a tyrosine for dual radiolabeling was prepared by solid-phase synthesis. Circular dichroism (CD) spectroscopy and UV thermal melts showed that the probes can hybridize to form a structured duplex with a very high melting temperature (T(m)), both in HP1:HP2 and in Z(HER2:342)-SR-HP1:HP2 (T(m) = 86-88 °C), and the high binding affinity between Z(HER2:342)-SR-HP1 and HP2 was confirmed in a surface plasmon resonance (SPR)-based binding study. Following a moderately fast association (1.7 × 10(5) M(-1) s(-1)), the dissociation of the probes was extremely slow and <5% dissociation was observed after 17 h. The equilibrium dissociation constant (K(D)) for Z(HER2:342)-SR-HP1:HP2 binding to HER2 was estimated by SPR to be 212 pM, suggesting that the conjugation to PNA does not impair Affibody binding to HER2. The biodistribution profiles of (111)In- and (125)I-labeled HP2 were measured in NMRI mice, showing very fast blood clearance rates and low accumulation of radioactivity in kidneys and other organs. The measured radioactivity in blood was 0.63 ± 0.15 and 0.41 ± 0.15%ID/g for (125)I- and (111)In-HP2, respectively, at 1 h p.i., and at 4 h p.i., the kidney accumulation of radioactivity was 0.17 ± 0.04%ID/g for (125)I-HP2 and 3.83 ± 0.39%ID/g for (111)In-HP2. Taken together, the results suggest that a PNA-based system has suitable biophysical and in vivo properties and is a promising approach for pretargeting of Affibody molecules.
Collapse
Affiliation(s)
- Kristina Westerlund
- †School of Biotechnology, Division of Protein Technology, KTH Royal Institute of Technology, 106 91 Stockholm, Sweden
| | - Hadis Honarvar
- ‡Department of Immunology, Genetics and Pathology, Uppsala University, 751 05 Uppsala, Sweden
| | - Vladimir Tolmachev
- ‡Department of Immunology, Genetics and Pathology, Uppsala University, 751 05 Uppsala, Sweden
| | - Amelie Eriksson Karlström
- †School of Biotechnology, Division of Protein Technology, KTH Royal Institute of Technology, 106 91 Stockholm, Sweden
| |
Collapse
|
19
|
Chen B, Liu Q, Popowich A, Shen S, Yan X, Zhang Q, Li XF, Weinfeld M, Cullen WR, Le XC. Therapeutic and analytical applications of arsenic binding to proteins. Metallomics 2015; 7:39-55. [DOI: 10.1039/c4mt00222a] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Knowledge of arsenic binding to proteins advances the development of bioanalytical techniques and therapeutic drugs.
Collapse
Affiliation(s)
- Beibei Chen
- Division of Analytical and Environmental Toxicology
- Department of Laboratory Medicine and Pathology
- University of Alberta
- Edmonton, Canada
| | - Qingqing Liu
- Division of Analytical and Environmental Toxicology
- Department of Laboratory Medicine and Pathology
- University of Alberta
- Edmonton, Canada
| | | | - Shengwen Shen
- Division of Analytical and Environmental Toxicology
- Department of Laboratory Medicine and Pathology
- University of Alberta
- Edmonton, Canada
| | - Xiaowen Yan
- Division of Analytical and Environmental Toxicology
- Department of Laboratory Medicine and Pathology
- University of Alberta
- Edmonton, Canada
| | - Qi Zhang
- Division of Analytical and Environmental Toxicology
- Department of Laboratory Medicine and Pathology
- University of Alberta
- Edmonton, Canada
| | - Xing-Fang Li
- Division of Analytical and Environmental Toxicology
- Department of Laboratory Medicine and Pathology
- University of Alberta
- Edmonton, Canada
| | | | - William R. Cullen
- Department of Chemistry
- University of British Columbia
- Vancouver, Canada
| | - X. Chris Le
- Division of Analytical and Environmental Toxicology
- Department of Laboratory Medicine and Pathology
- University of Alberta
- Edmonton, Canada
- Department of Chemistry
| |
Collapse
|
20
|
Leder L. Site-specific protein labeling in the pharmaceutical industry: experiences from novartis drug discovery. Methods Mol Biol 2015; 1266:7-27. [PMID: 25560065 DOI: 10.1007/978-1-4939-2272-7_2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Chemically modified proteins play an important role in several fields of pharmaceutical R&D, starting from various activities in drug discovery all the way down to biopharmaceuticals with improved properties such as antibody-drug conjugates. In the first part of the present chapter the significance and use of labeled proteins in biophysical methods, biochemical and cellular assays, in vivo imaging, and biopharmaceuticals is reviewed in general. In this context, the most relevant methods for site-specific modification of proteins and their application are also described. In the second part of the chapter, in-house (Novartis) results and experience with different techniques for selective protein labeling are discussed, with a focus on chemical or enzymatic (Avi-tag) biotinylation of proteins and their application in biophysical and biochemical assays. It can be concluded that while modern methods of site-specific protein labeling offer new possibilities for pharmaceutical R&D, classical methods are still the mainstay mainly due to being well established. However, site-specific protein labeling is expected to increase in importance, in particular for antibody-drug conjugates and other chemically modified biopharmaceuticals.
Collapse
Affiliation(s)
- Lukas Leder
- Center for Proteomic Chemistry, Novartis Institutes for Biomedical Research, Novartis Campus, 4056, Basel, Switzerland,
| |
Collapse
|
21
|
Wållberg H, Ståhl S. Design and evaluation of radiolabeled tracers for tumor imaging. Biotechnol Appl Biochem 2014; 60:365-83. [PMID: 24033592 DOI: 10.1002/bab.1111] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 02/20/2013] [Indexed: 12/22/2022]
Abstract
The growing understanding of tumor biology and the identification of tumor-specific genetic and molecular alterations, such as the overexpression of membrane receptors and other proteins, allows for personalization of patient management using targeted therapies. However, this puts stringent demands on the diagnostic tools used to identify patients who are likely to respond to a particular treatment. Radionuclide molecular imaging is a promising noninvasive method to visualize and characterize the expression of such targets. A number of different proteins, from full-length antibodies and their derivatives to small scaffold proteins and peptide receptor-ligands, have been applied to molecular imaging, each demonstrating strengths and weaknesses. Here, we discuss the concept of molecular targeting and, in particular, molecular imaging of cancer-associated targets. Additionally, we describe important biotechnological considerations and desired features when designing and developing tracers for radionuclide molecular imaging.
Collapse
Affiliation(s)
- Helena Wållberg
- Division of Molecular Biotechnology, School of Biotechnology, AlbaNova University Center, KTH Royal Institute of Technology, Stockholm, Sweden
| | | |
Collapse
|
22
|
Hu FJ, Uhlen M, Rockberg J. Generation of HER2 monoclonal antibodies using epitopes of a rabbit polyclonal antibody. N Biotechnol 2014; 31:35-43. [PMID: 24120493 DOI: 10.1016/j.nbt.2013.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 09/25/2013] [Accepted: 10/01/2013] [Indexed: 10/26/2022]
Abstract
One of the issues in using polyclonal antibodies is the limited amount of reagent available from an immunisation, leading to batch-to-batch variation and difficulties in obtaining the same antibody performance when the same antigen is re-immunised into several separate animals. This led to the development of hybridoma technology allowing, at least theoretically, for an unlimited production of a specific binder. Nevertheless, polyclonal antibodies are widely used in research and diagnostics and there exists a need for robust methods to convert a polyclonal antibody with good binding performance into a renewable monoclonal with identical or similar binding specificity. Here we have used precise information regarding the functional recognition sequence (epitope) of a rabbit polyclonal antibody with attractive binding characteristics as the basis for generation of a renewable mouse monoclonal antibody. First, the original protein fragment antigen was used for immunisation and generation of mouse hybridoma, without obtaining binders to the same epitope region. Instead a peptide designed using the functional epitope and structural information was synthesised and used for hybridoma production. Several of the monoclonal antibodies generated were found to have similar binding characteristics to those of the original polyclonal antibody. These monoclonal antibodies detected native HER2 on cell lines and were also able to stain HER2 in immunohistochemistry using xenografted mice, as well as human normal and cancer tissues.
Collapse
Affiliation(s)
- Francis Jingxin Hu
- School of Biotechnology, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | | | | |
Collapse
|
23
|
Rosik D, Thibblin A, Antoni G, Honarvar H, Strand J, Selvaraju RK, Altai M, Orlova A, Eriksson Karlström A, Tolmachev V. Incorporation of a Triglutamyl Spacer Improves the Biodistribution of Synthetic Affibody Molecules Radiofluorinated at the N-Terminus via Oxime Formation with 18F-4-Fluorobenzaldehyde. Bioconjug Chem 2013; 25:82-92. [DOI: 10.1021/bc400343r] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Daniel Rosik
- Division
of Protein Technology, School of Biotechnology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Alf Thibblin
- PET
Centre, Uppsala University Hospital, Uppsala, Sweden
| | - Gunnar Antoni
- PET
Centre, Uppsala University Hospital, Uppsala, Sweden
- Preclinical
PET Platform, Uppsala University, Uppsala, Sweden
| | - Hadis Honarvar
- Unit
of Biomedical Radiation Sciences, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Joanna Strand
- Unit
of Biomedical Radiation Sciences, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | | | - Mohamed Altai
- Unit
of Biomedical Radiation Sciences, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Anna Orlova
- Preclinical
PET Platform, Uppsala University, Uppsala, Sweden
| | - Amelie Eriksson Karlström
- Division
of Protein Technology, School of Biotechnology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Vladimir Tolmachev
- Unit
of Biomedical Radiation Sciences, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
24
|
Stern LA, Case BA, Hackel BJ. Alternative Non-Antibody Protein Scaffolds for Molecular Imaging of Cancer. Curr Opin Chem Eng 2013; 2. [PMID: 24358455 DOI: 10.1016/j.coche.2013.08.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The development of improved methods for early detection and characterization of cancer presents a major clinical challenge. One approach that has shown excellent potential in preclinical and clinical evaluation is molecular imaging with small-scaffold, non-antibody based, engineered proteins. These novel diagnostic agents produce high contrast images due to their fast clearance from the bloodstream and healthy tissues, can be evolved to bind a multitude of cancer biomarkers, and are easily functionalized by site-specific bioconjugation methods. Several small protein scaffolds have been verified for in vivo molecular imaging including affibodies and their two-helix variants, knottins, fibronectins, DARPins, and several natural ligands. Further, the biodistribution of these engineered ligands can be optimized through rational mutation of the conserved regions, careful selection and placement of chelator, and modification of molecular size.
Collapse
Affiliation(s)
- Lawrence A Stern
- Department of Chemical Engineering and Materials Science, University of Minnesota - Twin Cities, Minneapolis, MN 55455
| | - Brett A Case
- Department of Chemical Engineering and Materials Science, University of Minnesota - Twin Cities, Minneapolis, MN 55455
| | - Benjamin J Hackel
- Department of Chemical Engineering and Materials Science, University of Minnesota - Twin Cities, Minneapolis, MN 55455
| |
Collapse
|
25
|
Xu J, Croitoru V, Rutishauser D, Cheng Q, Arnér ESJ. Wobble decoding by the Escherichia coli selenocysteine insertion machinery. Nucleic Acids Res 2013; 41:9800-11. [PMID: 23982514 PMCID: PMC3834832 DOI: 10.1093/nar/gkt764] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Selenoprotein expression in Escherichia coli redefines specific single UGA codons from translational termination to selenocysteine (Sec) insertion. This process requires the presence of a Sec Insertion Sequence (SECIS) in the mRNA, which forms a secondary structure that binds a unique Sec-specific elongation factor that catalyzes Sec insertion at the predefined UGA instead of release factor 2-mediated termination. During overproduction of recombinant selenoproteins, this process nonetheless typically results in expression of UGA-truncated products together with the production of recombinant selenoproteins. Here, we found that premature termination can be fully avoided through a SECIS-dependent Sec-mediated suppression of UGG, thereby yielding either tryptophan or Sec insertion without detectable premature truncation. The yield of recombinant selenoprotein produced with this method approached that obtained with a classical UGA codon for Sec insertion. Sec-mediated suppression of UGG thus provides a novel method for selenoprotein production, as here demonstrated with rat thioredoxin reductase. The results also reveal that the E. coli selenoprotein synthesis machinery has the inherent capability to promote wobble decoding.
Collapse
Affiliation(s)
- Jianqiang Xu
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm SE-171 77, Sweden and Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Proteomics Karolinska (PK/KI), Karolinska Institutet, Stockholm SE-171 77, Sweden
| | | | | | | | | |
Collapse
|
26
|
Cheng Q, Lu L, Grafström J, Hägg Olofsson M, Thorell JO, Samén E, Johansson K, Ahlzén HS, Linder S, Arnér ES, Stone-Elander S. Site-specifically 11C-labeled Sel-tagged annexin A5 and a size-matched control for dynamic in vivo PET imaging of protein distribution in tissues prior to and after induced cell death. Biochim Biophys Acta Gen Subj 2013; 1830:2562-73. [DOI: 10.1016/j.bbagen.2012.12.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 12/06/2012] [Accepted: 12/10/2012] [Indexed: 11/25/2022]
|