1
|
Zaman A, Yassin MM, Mehmud I, Cao A, Lu J, Hassan H, Kang Y. Challenges, optimization strategies, and future horizons of advanced deep learning approaches for brain lesion segmentation. Methods 2025; 239:140-168. [PMID: 40306473 DOI: 10.1016/j.ymeth.2025.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 04/17/2025] [Accepted: 04/24/2025] [Indexed: 05/02/2025] Open
Abstract
Brain lesion segmentation is challenging in medical image analysis, aiming to delineate lesion regions precisely. Deep learning (DL) techniques have recently demonstrated promising results across various computer vision tasks, including semantic segmentation, object detection, and image classification. This paper offers an overview of recent DL algorithms for brain tumor and stroke segmentation, drawing on literature from 2021 to 2024. It highlights the strengths, limitations, current research challenges, and unexplored areas in imaging-based brain lesion classification based on insights from over 250 recent review papers. Techniques addressing difficulties like class imbalance and multi-modalities are presented. Optimization methods for improving performance regarding computational and structural complexity and processing speed are discussed. These include lightweight neural networks, multilayer architectures, and computationally efficient, highly accurate network designs. The paper also reviews generic and latest frameworks of different brain lesion detection techniques and highlights publicly available benchmark datasets and their issues. Furthermore, open research areas, application prospects, and future directions for DL-based brain lesion classification are discussed. Future directions include integrating neural architecture search methods with domain knowledge, predicting patient survival levels, and learning to separate brain lesions using patient statistics. To ensure patient privacy, future research is anticipated to explore privacy-preserving learning frameworks. Overall, the presented suggestions serve as a guideline for researchers and system designers involved in brain lesion detection and stroke segmentation tasks.
Collapse
Affiliation(s)
- Asim Zaman
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China; College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China; Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen 518060, China
| | - Mazen M Yassin
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China; College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China
| | - Irfan Mehmud
- Department of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen University, Shenzhen 518000, China; Institute of Urology, South China Hospital, Medicine School, Shenzhen University, Shenzhen 518000, China
| | - Anbo Cao
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China; School of Applied Technology, Shenzhen University, Shenzhen 518055, China
| | - Jiaxi Lu
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China; School of Applied Technology, Shenzhen University, Shenzhen 518055, China
| | - Haseeb Hassan
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China
| | - Yan Kang
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China; College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China; School of Applied Technology, Shenzhen University, Shenzhen 518055, China; Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen 518060, China; College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China.
| |
Collapse
|
2
|
Bajagain M, Sakamoto A, Takajo T, Makino R, Uchida H, Masuda K, Higa N, Yonezawa H, Yatsushiro K, Tanimoto A, Hanaya R. Higher Uptake of Preoperative 11C-Methionine Positron Emission Tomography Related to Preoperative Seizure in Patients With Oligodendroglioma. Cureus 2025; 17:e76991. [PMID: 39917141 PMCID: PMC11798757 DOI: 10.7759/cureus.76991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/31/2024] [Indexed: 02/09/2025] Open
Abstract
OBJECTIVE Epileptic seizures are common in patients with low-grade gliomas (LGGs). 11C-methionine (MET) is a radiolabeled amino acid tracer commonly used in positron emission tomography (PET), and MET-PET is a valuable tool for the clinical characterization of gliomas. This study aimed to evaluate the factors associated with MET uptake in patients with suspected LGG and, specifically, to characterize MET uptake in the presence or absence of epilepsy. METHODS MET uptake on preoperative MET-PET images was retrospectively reviewed in 40 patients with a presurgical diagnosis of LGG based on the absence of gadolinium enhancement on MRI. All patients underwent surgery and had their pathological diagnosis confirmed. The correlation between MET uptake and the occurrence of seizures in patients with LGGs was investigated during their clinical course. The ratio of the lesion to the contralateral normal region (L/N ratio) was calculated by dividing the maximum standardized uptake value of the tumor by the value of the contralateral region. Clinical parameters and MET uptake data were extracted from the medical records. RESULTS The mean age of the patients was 48 years (range: 21-90 years), consisting of 26 males and 14 females. Preoperative seizures and 1p/19q codeletion were correlated with higher MET uptake (p < 0.01). Grade 2 oligodendrogliomas had significantly higher MET uptake than grade 2 astrocytomas and glioblastomas (p < 0.01). In particular, grade 2 oligodendrogliomas with preoperative seizures showed approximately twofold higher MET uptake than those without preoperative seizures (L/N ratio 2.01 vs. 1.20, p = 0.042). The optimal cutoff value of the lesion-to-contralateral-normal ratio of MET uptake for predicting preoperative seizures was 2.13, as calculated using a receiver operating characteristic curve and an area under the curve. Conversely, grade 2 astrocytoma and glioblastoma with or without seizures (L/N ratio 1.44 vs. 1.09, 1.40 vs. 1.34), as well as oligodendroglioma without seizures (L/N ratio 1.33), showed similar MET uptake. CONCLUSIONS An epileptogenic formation mechanism may be involved in the increased uptake of MET in oligodendrogliomas. In patients with suspected LGGs, if there is a significant increase in MET uptake, the possibility of an oligodendroglioma should be considered and attention should be paid to the risk of epileptic seizures.
Collapse
Affiliation(s)
- Madan Bajagain
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, JPN
| | - Akihisa Sakamoto
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, JPN
| | - Tomoko Takajo
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, JPN
| | - Ryutaro Makino
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, JPN
| | - Hiroyuki Uchida
- Department of Neurosurgery, Fujimoto General Hospital, Miyakonojo, JPN
| | - Keisuke Masuda
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, JPN
| | - Nayuta Higa
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, JPN
| | - Hajime Yonezawa
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, JPN
| | | | - Akihide Tanimoto
- Department of Pathology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, JPN
| | - Ryosuke Hanaya
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, JPN
| |
Collapse
|
3
|
Teles L, Tolboom N, Plasschaert SL, Poot AJ, Braat AJ, van Noesel MM. Potential of non-FDG PET radiotracers for paediatric patients with solid tumours. EJC PAEDIATRIC ONCOLOGY 2024; 4:100203. [DOI: 10.1016/j.ejcped.2024.100203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
4
|
Korimerla N, Meghdadi B, Haq I, Wilder-Romans K, Xu J, Becker N, Zhu Z, Kalev P, Qi N, Evans C, Kachman M, Zhao Z, Lin A, Scott AJ, O'Brien A, Kothari A, Sajjakulnukit P, Zhang L, Palavalasa S, Peterson ER, Hyer ML, Marjon K, Sleger T, Morgan MA, Lyssiotis CA, Stone EM, Ferris SP, Lawrence TS, Nagrath D, Zhou W, Wahl DR. Reciprocal links between methionine metabolism, DNA repair and therapy resistance in glioblastoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.20.624542. [PMID: 39651281 PMCID: PMC11623687 DOI: 10.1101/2024.11.20.624542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Glioblastoma (GBM) is uniformly lethal due to profound treatment resistance. Altered cellular metabolism is a key mediator of GBM treatment resistance. Uptake of the essential sulfur-containing amino acid methionine is drastically elevated in GBMs compared to normal cells, however, it is not known how this methionine is utilized or whether it relates to GBM treatment resistance. Here, we find that radiation acutely increases the levels of methionine-related metabolites in a variety of treatment-resistant GBM models. Stable isotope tracing studies further revealed that radiation acutely activates methionine to S-adenosyl methionine (SAM) conversion through an active signaling event mediated by the kinases of the DNA damage response. In vivo tumor SAM synthesis increases after radiation, while normal brain SAM production remains unchanged, indicating a tumor- specific metabolic alteration to radiation. Pharmacological and dietary strategies to block methionine to SAM conversion slowed DNA damage response and increased cell death following radiation in vitro. Mechanistically, these effects are due to depletion of DNA repair proteins and are reversed by SAM supplementation. These effects are selective to GBMs lacking the methionine salvage enzyme methylthioadenosine phosphorylase. Pharmacological inhibition of SAM synthesis hindered tumor growth in flank and orthotopic in vivo GBM models when combined with radiation. By contrast, methionine depletion does not reduce tumor SAM levels and fails to radiosensitize intracranial models, indicating depleting SAM, as opposed to simply lowering methionine, is critical for hindering tumor growth in intracranial models of GBM. These results highlight a new signaling link between DNA damage and SAM synthesis and define the metabolic fates of methionine in GBM in vivo . Inhibiting radiation-induced SAM synthesis slows DNA repair and augments radiation efficacy in GBM. Using MAT2A inhibitors to deplete SAM may selectively overcome treatment resistance in GBMs with defective methionine salvage while sparing normal brain.
Collapse
|
5
|
Debreczeni-Máté Z, Freihat O, Törő I, Simon M, Kovács Á, Sipos D. Value of 11C-Methionine PET Imaging in High-Grade Gliomas: A Narrative Review. Cancers (Basel) 2024; 16:3200. [PMID: 39335171 PMCID: PMC11429583 DOI: 10.3390/cancers16183200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
11C-Methionine (MET) is a widely utilized amino acid tracer in positron emission tomography (PET) imaging of primary brain tumors. 11C-MET PET offers valuable insights for tumor classification, facilitates treatment planning, and aids in monitoring therapeutic response. Its tracer properties allow better delineation of the active tumor volume, even in regions that show no contrast enhancement on conventional magnetic resonance imaging (MRI). This review focuses on the role of MET-PET in brain glioma imaging. The introduction provides a brief clinical overview of the problems of high-grade and recurrent gliomas. It discusses glioma management, radiotherapy planning, and the difficulties of imaging after chemoradiotherapy (pseudoprogression or radionecrosis). The mechanism of MET-PET is described. Additionally, the review encompasses the application of MET-PET in the context of primary gliomas, addressing its diagnostic precision, utility in tumor classification, prognostic value, and role in guiding biopsy procedures and radiotherapy planning.
Collapse
Affiliation(s)
- Zsanett Debreczeni-Máté
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, 7621 Pécs, Hungary
| | - Omar Freihat
- Department of Public Health, College of Health Science, Abu Dhabi University, Abu Dhabi P.O. Box 59911, United Arab Emirates
| | - Imre Törő
- Department of Oncoradiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Mihály Simon
- Department of Oncoradiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Árpád Kovács
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, 7621 Pécs, Hungary
- Department of Oncoradiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Department of Medical Imaging, Faculty of Health Sciences, University of Pécs, 7621 Pécs, Hungary
| | - David Sipos
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, 7621 Pécs, Hungary
- Department of Medical Imaging, Faculty of Health Sciences, University of Pécs, 7621 Pécs, Hungary
- Dr. József Baka Diagnostic, Radiation Oncology, Research and Teaching Center, "Moritz Kaposi" Teaching Hospital, Guba Sándor Street 40, 7400 Kaposvár, Hungary
| |
Collapse
|
6
|
Takami Y, Norikane T, Kimura N, Mitamura K, Yamamoto Y, Miyake K, Miyoshi M, Nishiyama Y. Relationship between multi-pool model-based chemical exchange saturation transfer imaging, intravoxel incoherent motion MRI, and 11C-methionine uptake on PET/CT in patients with gliomas. Magn Reson Imaging 2024; 111:148-156. [PMID: 38729226 DOI: 10.1016/j.mri.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/01/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
PURPOSE Magnetization transfer ratio asymmetry (MTRasym) analysis is used for chemical exchange saturation transfer (CEST) in patients with gliomas; however, this approach has limitations. CEST imaging using a multi-pool model (MPM) may allow a more detailed assessment of gliomas; however, its mechanism remains unknown. This study aimed to assess the relationship between CEST imaging by MPM, intravoxel incoherent motion (IVIM), and 11C-methionine (11C-MET) uptake on positron emission tomography/computed tomography (PET/CT) to clarify the clinical significance of CEST imaging using MPM in gliomas. METHODS This retrospective study included 17 patients with gliomas who underwent 11C-MET PET/CT at our institution between January 2020 and January 2022. Two-dimensional axial CEST imaging was conducted using single-shot fast-spin echo acquisition at 3 T. The apparent diffusion coefficient (ADC), true diffusion coefficient (D), pseudo-diffusion coefficient (D*), f, MTRasym (3.5 ppm), parameters of MPM-based CEST imaging, and tumor-to-contralateral normal brain tissue (T/N) ratio were calculated using a region-of-interest analysis. Shapiro-Wilk test, weighted kappa coefficient, and Spearman's rank correlation coefficients were used for statistical analysis. RESULTS Significant correlations were found between APT_T1 and T/N ratio (ρ = 0.87, p < 0.001), APT_T2 and T/N ratio (ρ = 0.47, p < 0.05), MTRasym and T/N ratio (ρ = 0.55, p < 0.01), and T2/T1 and T/N ratio (ρ = -0.36, p < 0.05). Furthermore, significant correlations were observed between APT_T1 and ADC (ρ = -0.67, p < 0.001), APT_T1 and D (ρ = -0.70, p < 0.001), APT_T2 and D* (ρ = -0.45, p < 0.05), and T2/T1 and D (ρ = 0.39, p < 0.05). CONCLUSION These preliminary findings indicate that MPM-based CEST imaging parameters correlate with IVIM and 11C-MET uptake on PET/CT in patients with gliomas. In particular, the new parameter APT_T1 correlated more strongly with 11C-MET uptake compared to the traditional CEST parameter MTRasym.
Collapse
Affiliation(s)
- Yasukage Takami
- Department of Radiology, Faculty of Medicine, Kagawa University, Kagawa, Japan.
| | - Takashi Norikane
- Department of Radiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Naruhide Kimura
- Department of Radiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Katsuya Mitamura
- Department of Radiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Yuka Yamamoto
- Department of Radiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Keisuke Miyake
- Department of Neurological Surgery, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Mitsuharu Miyoshi
- Global MR Clinical Solution and Research Collaboration, GE HealthCare, Tokyo, Japan
| | - Yoshihiro Nishiyama
- Department of Radiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| |
Collapse
|
7
|
Yamamura T, Tamura K, Kobayashi D, Inaji M, Toyama Y, Wakimoto H, Kiyokawa J, Hara S, Tanaka Y, Nariai T, Shimizu K, Ishii K, Maehara T. Loss of methylthioadenosine phosphorylase immunoreactivity correlates with poor prognosis and elevated uptake of 11C-methionine in IDH-mutant astrocytoma. J Neurooncol 2024; 168:355-365. [PMID: 38557927 DOI: 10.1007/s11060-024-04661-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/25/2024] [Indexed: 04/04/2024]
Abstract
PURPOSE The proximate localization of MTAP, which encodes methylthioadenosine phosphorylase, and CDKN2A/B on Chromosome 9q21 has allowed the loss of MTAP expression as a surrogate for homozygous deletion of CDKN2A/B. This study aimed to determine whether MTAP status correlates with clinical outcomes and 11C-methionine uptake in astrocytomas with IDH mutations. METHODS We conducted immunohistochemistry for MTAP in 30 patients with astrocytoma, IDH-mutant who underwent 11C-methionine positron emission tomography scans prior to surgical resection. The tumor-to-normal (T/N) ratio of 11C-methionine uptake was calculated using the mean standardized uptake value (SUV) for tumor and normal brain tissues. Cox regression analysis was used for multivariate survival analysis. RESULTS Among IDH-mutant astrocytomas, 26.7% (8/30) exhibited the loss of cytoplasmic MTAP expression, whereas 73.3% (22/30) tumors retained MTAP expression. The median progression-free survival (PFS) was significantly shorter in patients with MTAP loss than those with MTAP retention (1.88 years vs. 6.80 years, p = 0.003). The median overall survival (OS) was also shorter in patients with MTAP loss than in MTAP-retaining counterparts (5.23 years vs. 10.69 years, p = 0.019). Multivariate analysis identified MTAP status (hazard ratio (HR), 0.081) and extent of resection (HR, 0.104) as independent prognostic factors for PFS. Astrocytomas lacking cytoplasmic MTAP expression showed a significantly higher median T/N ratio for 11C-methionine uptake than tumors retaining MTAP (2.12 vs. 1.65, p = 0.012). CONCLUSION Our study revealed that the loss of MTAP expression correlates with poor prognosis and an elevated T/N ratio of 11C-methionine uptake in astrocytoma, IDH-mutant.
Collapse
Affiliation(s)
- Toshihiro Yamamura
- Department of Neurosurgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
| | - Kaoru Tamura
- Department of Neurosurgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan.
| | - Daisuke Kobayashi
- Department of Human Pathology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
| | - Motoki Inaji
- Department of Neurosurgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
- Research Team for Neuroimaging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakaecho, Itabashi-Ku, Tokyo, 173-0015, Japan
| | - Yuka Toyama
- Department of Human Pathology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
| | - Hiroaki Wakimoto
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, 185 Cambridge St, Boston, MA, 02114, USA
| | - Juri Kiyokawa
- Department of Neurosurgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
| | - Shoko Hara
- Department of Neurosurgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
- Research Team for Neuroimaging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakaecho, Itabashi-Ku, Tokyo, 173-0015, Japan
| | - Yoji Tanaka
- Department of Neurosurgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
| | - Tadashi Nariai
- Department of Neurosurgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
- Research Team for Neuroimaging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakaecho, Itabashi-Ku, Tokyo, 173-0015, Japan
| | - Kazuhide Shimizu
- Department of Neurosurgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
| | - Kenji Ishii
- Research Team for Neuroimaging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakaecho, Itabashi-Ku, Tokyo, 173-0015, Japan
| | - Taketoshi Maehara
- Department of Neurosurgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
| |
Collapse
|
8
|
Kim D, Lee SH, Hwang HS, Kim SJ, Yun M. Recent Update on PET/CT Radiotracers for Imaging Cerebral Glioma. Nucl Med Mol Imaging 2024; 58:237-245. [PMID: 38932755 PMCID: PMC11196511 DOI: 10.1007/s13139-024-00847-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/16/2024] [Accepted: 01/29/2024] [Indexed: 06/28/2024] Open
Abstract
Positron emission tomography/computed tomography (PET/CT) has dramatically altered the landscape of noninvasive glioma evaluation, offering complementary insights to those gained through magnetic resonance imaging (MRI). PET/CT scans enable a multifaceted analysis of glioma biology, supporting clinical applications from grading and differential diagnosis to mapping the full extent of tumors and planning subsequent treatments and evaluations. With a broad array of specialized radiotracers, researchers and clinicians can now probe various biological characteristics of gliomas, such as glucose utilization, cellular proliferation, oxygen deficiency, amino acid trafficking, and reactive astrogliosis. This review aims to provide a recent update on the application of versatile PET/CT radiotracers in glioma research and clinical practice.
Collapse
Affiliation(s)
- Dongwoo Kim
- Department of Nuclear Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722 Republic of Korea
| | - Suk-Hyun Lee
- Department of Radiology, Hallym University Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, 07441 Republic of Korea
| | - Hee Sung Hwang
- Department of Nuclear Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, 14068 Republic of Korea
| | - Sun Jung Kim
- Department of Nuclear Medicine, National Health Insurance Service Ilsan Hospital, Goyang, 10444 Republic of Korea
| | - Mijin Yun
- Department of Nuclear Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722 Republic of Korea
| |
Collapse
|
9
|
Bhattacharya K, Rastogi S, Mahajan A. Post-treatment imaging of gliomas: challenging the existing dogmas. Clin Radiol 2024; 79:e376-e392. [PMID: 38123395 DOI: 10.1016/j.crad.2023.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 10/23/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023]
Abstract
Gliomas are the commonest malignant central nervous system tumours in adults and imaging is the cornerstone of diagnosis, treatment, and post-treatment follow-up of these patients. With the ever-evolving treatment strategies post-treatment imaging and interpretation in glioma remains challenging, more so with the advent of anti-angiogenic drugs and immunotherapy, which can significantly alter the appearance in this setting, thus making interpretation of routine imaging findings such as contrast enhancement, oedema, and mass effect difficult to interpret. This review details the various methods of management of glioma including the upcoming novel therapies and their impact on imaging findings, with a comprehensive description of the imaging findings in conventional and advanced imaging techniques. A systematic appraisal for the existing and emerging techniques of imaging in these settings and their clinical application including various response assessment guidelines and artificial intelligence based response assessment will also be discussed.
Collapse
Affiliation(s)
- K Bhattacharya
- Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - S Rastogi
- Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - A Mahajan
- Department of imaging, The Clatterbridge Cancer Centre, NHS Foundation Trust, Pembroke Place, Liverpool L7 8YA, UK; University of Liverpool, Liverpool L69 3BX, UK.
| |
Collapse
|
10
|
Kim EY, Vavere AL, Snyder SE, Chiang J, Li Y, Patni T, Qaddoumi I, Merchant TE, Robinson GW, Holtrop JL, Shulkin BL, Bag AK. [11C]-methionine positron emission tomography in the evaluation of pediatric low-grade gliomas. Neurooncol Adv 2024; 6:vdae056. [PMID: 38680989 PMCID: PMC11055465 DOI: 10.1093/noajnl/vdae056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024] Open
Abstract
Background [11C]-Methionine positron emission tomography (PET; [11C]-MET-PET) is principally used for the evaluation of brain tumors in adults. Although amino acid PET tracers are more commonly used in the evaluation of pediatric brain tumors, data on [11C]-MET-PET imaging of pediatric low-grade gliomas (pLGG) is scarce. This study aimed to investigate the roles of [11C]-MET-PET in the evaluation of pLGGs. Methods Eighteen patients with newly diagnosed pLGG and 26 previously treated pLGG patients underwent [11C]-MET-PET met the inclusion and exclusion criteria. Tumor-to-brain uptake ratio (TBR) and metabolic tumor volumes were assessed for diagnostic performances (newly diagnosed, 15; previously treated 26), change with therapy (newly diagnosed, 9; previously treated 7), and variability among different histology (n = 12) and molecular markers (n = 7) of pLGGs. Results The sensitivity of [11C]-MET-PET for diagnosing pLGG, newly diagnosed, and previously treated combined was 93% for both TBRmax and TBRpeak, 76% for TBRmean, and 95% for qualitative evaluation. TBRmax showed a statistically significant reduction after treatment, while other PET parameters showed a tendency to decrease. Median TBRmax, TBRpeak, and TBRmean values were slightly higher in the BRAFV600E mutated tumors compared to the BRAF fused tumors. Median TBRmax, and TBRpeak in diffuse astrocytomas were higher compared to pilocytic astrocytomas, but median TBRmean, was slightly higher in pilocytic astrocytomas. However, formal statistical analysis was not done due to the small sample size. Conclusions Our study shows that [11C]-MET-PET reliably characterizes new and previously treated pLGGs. Our study also shows that quantitative parameters tend to decrease with treatment, and differences may exist between various pLGG types.
Collapse
Affiliation(s)
- Emily Y Kim
- Department of Diagnostic Imaging, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Amy L Vavere
- Department of Diagnostic Imaging, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Scott E Snyder
- Department of Diagnostic Imaging, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Jason Chiang
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Yimei Li
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Tushar Patni
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Ibrahim Qaddoumi
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Thomas E Merchant
- Department of Radiation Oncology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Giles W Robinson
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Joseph L Holtrop
- Department of Diagnostic Imaging, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Barry L Shulkin
- Department of Diagnostic Imaging, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Asim K Bag
- Department of Diagnostic Imaging, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
11
|
Lu W, Luo Y. Methionine restriction sensitizes cancer cells to immunotherapy. Cancer Commun (Lond) 2023; 43:1267-1270. [PMID: 37803877 PMCID: PMC10631477 DOI: 10.1002/cac2.12492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/13/2023] [Accepted: 09/26/2023] [Indexed: 10/08/2023] Open
Affiliation(s)
- Weiqin Lu
- Department of Pharmaceutical SciencesSchool of Pharmacy, University of Texas at El PasoEl PasoUSA
| | - Yongde Luo
- School of Pharmacological Sciences & The First Affiliated HospitalWenzhou Medical UniversityWenzhouZhejiangP. R. China
| |
Collapse
|
12
|
Pokrovsky VS, Qoura LA, Demidova EA, Han Q, Hoffman RM. Targeting Methionine Addiction of Cancer Cells with Methioninase. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:944-952. [PMID: 37751865 DOI: 10.1134/s0006297923070076] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 09/28/2023]
Abstract
All types of cancer cells are addicted to methionine, which is known as the Hoffman effect. Restricting methionine inhibits the growth and proliferation of all tested types of cancer cells, leaving normal cells unaffected. Targeting methionine addiction with methioninase (METase), either alone or in combination with common cancer chemotherapy drugs, has been shown as an effective and safe therapy in various types of cancer cells and animal cancer models. About six years ago, recombinant METase (rMETase) was found to be able to be taken orally as a supplement, resulting in anecdotal positive results in patients with advanced cancer. Currently, there are 8 published clinical studies on METase, including two from the 1990s and six more recent ones. This review focuses on the results of clinical studies on METase-mediated methionine restriction, in particular, on the dosage of oral rMETase taken alone as a supplement or in combination with common chemotherapeutic agents in patients with advanced cancer.
Collapse
Affiliation(s)
- Vadim S Pokrovsky
- Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, 115478, Russia.
- Research Institute of Molecular and Cellular Medicine, People's Friendship University of Russia (RUDN University), Moscow, 117198, Russia
- Department of Biotechnology, Sirius University of Science and Technology, Sochi, 354340, Russia
| | - Louay Abo Qoura
- Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, 115478, Russia.
- Research Institute of Molecular and Cellular Medicine, People's Friendship University of Russia (RUDN University), Moscow, 117198, Russia
| | - Elena A Demidova
- Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, 115478, Russia
| | | | - Robert M Hoffman
- AntiCancer Inc., San Diego, CA 92111, USA.
- Department of Surgery, University of California, San Diego, La Jolla, CA 92037-7400, USA
| |
Collapse
|
13
|
Picca A, Bruno F, Nichelli L, Sanson M, Rudà R. Advances in molecular and imaging biomarkers in lower-grade gliomas. Expert Rev Neurother 2023; 23:1217-1231. [PMID: 37982735 DOI: 10.1080/14737175.2023.2285472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/15/2023] [Indexed: 11/21/2023]
Abstract
INTRODUCTION Lower-grade (grade 2-3) gliomas (LGGs) constitutes a group of primary brain tumors with variable clinical behaviors and treatment responses. Recent advancements in molecular biology have redefined their classification, and novel imaging modalities emerged for the noninvasive diagnosis and follow-up. AREAS COVERED This review comprehensively analyses the current knowledge on molecular and imaging biomarkers in LGGs. Key molecular alterations, such as IDH mutations and 1p/19q codeletion, are discussed for their prognostic and predictive implications in guiding treatment decisions. Moreover, the authors explore theranostic biomarkers for the potential of tailored therapies. Additionally, they also describe the utility of advanced imaging modalities, including widely available techniques, as dynamic susceptibility contrast perfusion-weighted imaging and less validated, emerging approaches, for the noninvasive LGGs characterization and follow-up. EXPERT OPINION The integration of molecular markers enhanced the stratification of LGGs, leading to the new concept of integrated histomolecular classification. While the IDH mutation is an established key prognostic and predictive marker, recent results from IDH inhibitors trials showed its potential value as a theranostic marker. In this setting, advanced MRI techniques such as 2-D-hydroxyglutarate spectroscopy are very promising for the noninvasive diagnosis and monitoring of LGGs. This progress offers exciting prospects for personalized medicine and improved treatment outcomes in LGGs.
Collapse
Affiliation(s)
- Alberto Picca
- Service de Neurologie 2 Mazarin, Hôpital Universitaire Pitié-Salpêtrière, AP-HP, Paris, France
- Sorbonne Université, Inserm, CNRS, UMRS1127, Institut du Cerveau-Paris Brain Institute-ICM, AP-HP, Paris, France
| | - Francesco Bruno
- Division of Neuro-Oncology, Department of Neuroscience "Rita Levi Montalcini", University and City of Health and Science University Hospital, Turin, Italy
| | - Lucia Nichelli
- Service de Neuroradiologie, Hôpital Universitaire Pitié-Salpêtrière, AP-HP, Paris, France
| | - Marc Sanson
- Service de Neurologie 2 Mazarin, Hôpital Universitaire Pitié-Salpêtrière, AP-HP, Paris, France
- Sorbonne Université, Inserm, CNRS, UMRS1127, Institut du Cerveau-Paris Brain Institute-ICM, AP-HP, Paris, France
| | - Roberta Rudà
- Division of Neuro-Oncology, Department of Neuroscience "Rita Levi Montalcini", University and City of Health and Science University Hospital, Turin, Italy
| |
Collapse
|
14
|
Bonakdarpour B, Takarabe C. Brain Networks, Clinical Manifestations, and Neuroimaging of Cognitive Disorders: The Role of Computed Tomography (CT), Magnetic Resonance Imaging (MRI), Positron Emission Tomography (PET), and Other Advanced Neuroimaging Tests. Clin Geriatr Med 2023; 39:45-65. [PMID: 36404032 DOI: 10.1016/j.cger.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In this article, we briefly discuss imaging modalities used in clinical settings for neuroanatomical characterization and for diagnosis of the underlying disease. We then discuss how each neuroimaging tool can be used in the context of clinical syndromes. The major underlying causes relevant to our discussion include Alzheimer disease, Lewy body disease, cerebrovascular disease, frontotemporal degeneration, autoimmune diseases, and systemic or metabolic derangements.
Collapse
Affiliation(s)
- Borna Bonakdarpour
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine.
| | - Clara Takarabe
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine
| |
Collapse
|
15
|
Yang PW, Jiao JY, Chen Z, Zhu XY, Cheng CS. Keep a watchful eye on methionine adenosyltransferases, novel therapeutic opportunities for hepatobiliary and pancreatic tumours. Biochim Biophys Acta Rev Cancer 2022; 1877:188793. [PMID: 36089205 DOI: 10.1016/j.bbcan.2022.188793] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/31/2022] [Accepted: 08/30/2022] [Indexed: 11/18/2022]
Abstract
Methionine adenosyltransferases (MATs) synthesize S-adenosylmethionine (SAM) from methionine, which provides methyl groups for DNA, RNA, protein, and lipid methylation. MATs play a critical role in cellular processes, including growth, proliferation, and differentiation, and have been implicated in tumour development and progression. The expression of MATs is altered in hepatobiliary and pancreatic (HBP) cancers, which serves as a rare biomarker for early diagnosis and prognosis prediction of HBP cancers. Independent of SAM depletion in cells, MATs are often dysregulated at the transcriptional, post-transcriptional, and post-translational levels. Dysregulation of MATs is involved in carcinogenesis, chemotherapy resistance, T cell exhaustion, activation of tumour-associated macrophages, cancer stemness, and activation of tumourigenic pathways. Targeting MATs both directly and indirectly is a potential therapeutic strategy. This review summarizes the dysregulations of MATs, their proposed mechanism, diagnostic and prognostic roles, and potential therapeutic effects in context of HBP cancers.
Collapse
Affiliation(s)
- Pei-Wen Yang
- Department of Integrative Oncology, Shanghai Cancer Center, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Ju-Ying Jiao
- Department of Integrative Oncology, Shanghai Cancer Center, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhen Chen
- Department of Integrative Oncology, Shanghai Cancer Center, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xiao-Yan Zhu
- Department of Integrative Oncology, Shanghai Cancer Center, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Chien-Shan Cheng
- Department of Integrative Oncology, Shanghai Cancer Center, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
16
|
Piccardo A, Albert NL, Borgwardt L, Fahey FH, Hargrave D, Galldiks N, Jehanno N, Kurch L, Law I, Lim R, Lopci E, Marner L, Morana G, Young Poussaint T, Seghers VJ, Shulkin BL, Warren KE, Traub-Weidinger T, Zucchetta P. Joint EANM/SIOPE/RAPNO practice guidelines/SNMMI procedure standards for imaging of paediatric gliomas using PET with radiolabelled amino acids and [ 18F]FDG: version 1.0. Eur J Nucl Med Mol Imaging 2022; 49:3852-3869. [PMID: 35536420 PMCID: PMC9399211 DOI: 10.1007/s00259-022-05817-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/23/2022] [Indexed: 01/18/2023]
Abstract
Positron emission tomography (PET) has been widely used in paediatric oncology. 2-Deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) is the most commonly used radiopharmaceutical for PET imaging. For oncological brain imaging, different amino acid PET radiopharmaceuticals have been introduced in the last years. The purpose of this document is to provide imaging specialists and clinicians guidelines for indication, acquisition, and interpretation of [18F]FDG and radiolabelled amino acid PET in paediatric patients affected by brain gliomas. There is no high level of evidence for all recommendations suggested in this paper. These recommendations represent instead the consensus opinion of experienced leaders in the field. Further studies are needed to reach evidence-based recommendations for the applications of [18F]FDG and radiolabelled amino acid PET in paediatric neuro-oncology. These recommendations are not intended to be a substitute for national and international legal or regulatory provisions and should be considered in the context of good practice in nuclear medicine. The present guidelines/standards were developed collaboratively by the EANM and SNMMI with the European Society for Paediatric Oncology (SIOPE) Brain Tumour Group and the Response Assessment in Paediatric Neuro-Oncology (RAPNO) working group. They summarize also the views of the Neuroimaging and Oncology and Theranostics Committees of the EANM and reflect recommendations for which the EANM and other societies cannot be held responsible.
Collapse
Affiliation(s)
- Arnoldo Piccardo
- Department of Nuclear Medicine, E.O. "Ospedali Galliera", Genoa, Italy
| | - Nathalie L Albert
- Department of Nuclear Medicine, University Hospital of LMU Munich, Munich, Germany
| | - Lise Borgwardt
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Frederic H Fahey
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Darren Hargrave
- Department of Paediatric Oncology, Great Ormond Street Hospital NHS Trust, London, UK
| | - Norbert Galldiks
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Institute of Neuroscience and Medicine (INM-3), Research Center Juelich, Juelich, Germany
| | - Nina Jehanno
- Department of Nuclear Medicine, Institut Curie Paris, Paris, France
| | - Lars Kurch
- Department of Nuclear Medicine, University Hospital Leipzig, Leipzig, Germany.
| | - Ian Law
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Ruth Lim
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Egesta Lopci
- Nuclear Medicine Unit, IRCCS-Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, Milano, Italy
| | - Lisbeth Marner
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
| | - Giovanni Morana
- Department of Neurosciences, University of Turin, Turin, Italy
| | - Tina Young Poussaint
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Victor J Seghers
- Singleton Department of Pediatric Radiology, Texas Children's Hospital, Houston, TX, USA
- Department of Radiology, Baylor College of Medicine, Houston, TX, USA
| | - Barry L Shulkin
- Nuclear Medicine Department of Diagnostic Imaging St. Jude Children's Research Hospital, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Katherine E Warren
- Department of Pediatric Oncology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Tatjana Traub-Weidinger
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Pietro Zucchetta
- Nuclear Medicine Unit, Department of Medicine - DIMED, University Hospital of Padova, Padua, Italy
| |
Collapse
|
17
|
Ideguchi M, Nishizaki T, Ikeda N, Fujii N, Ohno M, Shimabukuro T, Kimura T, Ikeda E, Suga K. Investigation of histological heterogeneity based on the discrepancy between the hyperintense area on T2-weighted images and the accumulation area on 11C-methionine PET in minimally enhancing glioma. INTERDISCIPLINARY NEUROSURGERY 2022. [DOI: 10.1016/j.inat.2021.101364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
18
|
Ninatti G, Sollini M, Bono B, Gozzi N, Fedorov D, Antunovic L, Gelardi F, Navarria P, Politi LS, Pessina F, Chiti A. Preoperative [11C]methionine PET to personalize treatment decisions in patients with lower-grade gliomas. Neuro Oncol 2022; 24:1546-1556. [PMID: 35171292 PMCID: PMC9435504 DOI: 10.1093/neuonc/noac040] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND PET with radiolabelled amino acids is used in the preoperative evaluation of patients with glial neoplasms. This study aimed to assess the role of [ 11C]methionine (MET) PET in assessing molecular features, tumour extent, and prognosis in newly-diagnosed lower-grade gliomas (LGGs) surgically treated. METHODS 153 patients with a new diagnosis of grade 2/3 glioma who underwent surgery at our Institution and were imaged preoperatively using [ 11C]MET PET/CT were retrospectively included. [ 11C]MET PET images were qualitatively and semiquantitatively analyzed using tumour-to-background ratio (TBR). Progression-free survival (PFS) rates were estimated using the Kaplan-Meier method and Cox proportional-hazards regression was used to test the association of clinicopathological and imaging data to PFS. RESULTS Overall, 111 lesions (73%) were positive, while thirty-two (21%) and ten (6%) were isometabolic and hypometabolic at [ 11C]MET PET, respectively. [ 11C]MET uptake was more common in oligodendrogliomas than IDH-mutant astrocytomas (87% vs 50% of cases, respectively). Among [ 11C]MET-positive gliomas, grade 3 oligodendrogliomas had the highest median TBRmax (3.22). In 25% of patients, PET helped to better delineate tumour margins compared to MRI only. In IDH-mutant astrocytomas, higher TBRmax values at [ 11C]MET PET were independent predictors of shorter PFS. CONCLUSIONS This work highlights the role of preoperative [ 11C]MET PET in estimating the type, assessing tumour extent, and predicting biological behaviour and prognosis of LGGs. Our findings support the implementation of [ 11C]MET PET in routine clinical practice to better manage these neoplasms.
Collapse
Affiliation(s)
- Gaia Ninatti
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini, Pieve Emanuele - Milan, Italy
| | - Martina Sollini
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini, Pieve Emanuele - Milan, Italy.,Diagnostic Imaging Department, IRCCS Humanitas Research Hospital, Via Manzoni, Rozzano - Milan, Italy
| | - Beatrice Bono
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini, Pieve Emanuele - Milan, Italy.,Neurosurgery Department, IRCCS Humanitas Research Hospital, Via Manzoni, Rozzano - Milan, Italy
| | - Noemi Gozzi
- Diagnostic Imaging Department, IRCCS Humanitas Research Hospital, Via Manzoni, Rozzano - Milan, Italy
| | - Daniil Fedorov
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini, Pieve Emanuele - Milan, Italy
| | - Lidija Antunovic
- Diagnostic Imaging Department, IRCCS Humanitas Research Hospital, Via Manzoni, Rozzano - Milan, Italy
| | - Fabrizia Gelardi
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini, Pieve Emanuele - Milan, Italy.,Diagnostic Imaging Department, IRCCS Humanitas Research Hospital, Via Manzoni, Rozzano - Milan, Italy
| | - Pierina Navarria
- Radiotherapy and Radiosurgery Department, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Letterio S Politi
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini, Pieve Emanuele - Milan, Italy.,Diagnostic Imaging Department, IRCCS Humanitas Research Hospital, Via Manzoni, Rozzano - Milan, Italy
| | - Federico Pessina
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini, Pieve Emanuele - Milan, Italy.,Neurosurgery Department, IRCCS Humanitas Research Hospital, Via Manzoni, Rozzano - Milan, Italy
| | - Arturo Chiti
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini, Pieve Emanuele - Milan, Italy.,Diagnostic Imaging Department, IRCCS Humanitas Research Hospital, Via Manzoni, Rozzano - Milan, Italy
| |
Collapse
|
19
|
The role of 11C-methionine PET in patients with negative diffusion-weighted magnetic resonance imaging: correlation with histology and molecular biomarkers in operated gliomas. Nucl Med Commun 2021; 41:696-705. [PMID: 32371671 DOI: 10.1097/mnm.0000000000001202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To compare 11C-methionine (11C-METH) PET with diffusion-weighted MRI (DWI-MRI) diagnostic accuracy and prognostic value in patients with glioma candidate to neurosurgery. METHODS We collected and analyzed data from 124 consecutive patients (n = 124) investigated during preoperative work-up. Both visual and semiquantitative parameters were utilized for image analysis. The reference standard was based on histopathology. The median follow-up was 14.3 months. RESULTS Overall, 47 high-grade gliomas (HGG) and 77 low-grade gliomas (LGG) were diagnosed. On visual assessment, sensitivity and specificity for differentiating HGG from LGG were 80.8 and 59.7% for DWI-MRI, versus 95.7 and 41.5% for 11C-METH PET, respectively. On semiquantitative analysis, the sensitivity, specificity, and area under the curve were 78.7, 71.4, and 80.4% for SUVmax, 78.7, 70.1, and 81.1% for SUVratio, and 74.5, 61, and 76.7% for MTB (metabolic tumor burden), respectively. In patients with negative DWI-MRI and IDH-wild type, SUVmax and SUVratio were higher compared to IDH-mutated (P = 0.025 and P = 0.01, respectively). In LGG, patients with 1p/19q codeletion showed higher SUVmax (P = 0.044). In all patients with negative DWI-MRI, median PFS was longer for SUVmax <3.9 (median not reached vs 34.2 months, P = 0.004), SUVratio <2.3 (median not reached vs 21.5 months, P < 0.001), and MTB <3.1 (median not reached vs 45.7 months, P = 0.05). In LGG patients with negative DWI-MRI, only SUVratio <2.3 and MTB <3.1 were associated with longer PFS (P = 0.016 and P = 0.024, respectively). CONCLUSION C-METH PET was found highly sensitive for glioma differentiation and molecular characterization. In DWI-negative patients, PET parameters correlated with molecular profile were associated with clinical outcome.
Collapse
|
20
|
Preoperative Texture Analysis Using 11C-Methionine Positron Emission Tomography Predicts Survival after Surgery for Glioma. Diagnostics (Basel) 2021; 11:diagnostics11020189. [PMID: 33525709 PMCID: PMC7911154 DOI: 10.3390/diagnostics11020189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/26/2021] [Accepted: 01/26/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Positron emission tomography with 11C-methionine (MET) is well established in the diagnostic work-up of malignant brain tumors. Texture analysis is a novel technique for extracting information regarding relationships among surrounding voxels, in order to quantify their inhomogeneity. This study evaluated whether the texture analysis of MET uptake has prognostic value for patients with glioma. METHODS We retrospectively analyzed adults with glioma who had undergone preoperative metabolic imaging at a single center. Tumors were delineated using a threshold of 1.3-fold of the mean standardized uptake value for the contralateral cortex, and then processed to calculate the texture features in glioma. RESULTS The study included 42 patients (median age: 56 years). The World Health Organization classifications were grade II (7 patients), grade III (17 patients), and grade IV (18 patients). Sixteen (16.1%) all-cause deaths were recorded during the median follow-up of 18.8 months. The univariate analyses revealed that overall survival (OS) was associated with age (hazard ratio (HR) 1.04, 95% confidence interval (CI) 1.01-1.08, p = 0.0093), tumor grade (HR 3.64, 95% CI 1.63-9.63, p = 0.0010), genetic status (p < 0.0001), low gray-level run emphasis (LGRE, calculated from the gray-level run-length matrix) (HR 2.30 × 1011, 95% CI 737.11-4.23 × 1019, p = 0.0096), and correlation (calculated from the gray-level co-occurrence matrix) (HR 5.17, 95% CI 1.07-20.93, p = 0.041). The multivariate analyses revealed OS was independently associated with LGRE and correlation. The survival curves were also significantly different (both log-rank p < 0.05). CONCLUSION Textural features obtained using preoperative MET positron emission tomography may compliment the semi-quantitative assessment for prognostication in glioma cases.
Collapse
|
21
|
Nakajo K, Uda T, Kawashima T, Terakawa Y, Ishibashi K, Tsuyuguchi N, Tanoue Y, Nagahama A, Uda H, Koh S, Sasaki T, Ohata K, Kanemura Y, Goto T. Diagnostic Performance of [ 11C]Methionine Positron Emission Tomography in Newly Diagnosed and Untreated Glioma Based on the Revised World Health Organization 2016 Classification. World Neurosurg 2021; 148:e471-e481. [PMID: 33444827 DOI: 10.1016/j.wneu.2021.01.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/02/2021] [Accepted: 01/04/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND The relationship between uptake of amino acid tracer with positron emission tomography (PET) and glioma subtypes/gene status is still unclear. OBJECTIVE To assess the relationship between uptake of [11C]methionine using PET and pathology, IDH (isocitrate dehydrogenase) mutation, 1p/19q codeletion, and TERT (telomerase reverse transcriptase) promoter status in gliomas. METHODS The participants were 68 patients with newly diagnosed and untreated glioma who underwent surgical excision and preoperative [11C]methionine PET examination at Osaka City University Hospital between July 2011 and March 2018. Clinical and imaging studies were reviewed retrospectively based on the medical records at our institution. RESULTS The mean lesion/contralateral normal brain tissue (L/N) ratio of diffuse astrocytomas was significantly lower than that of anaplastic astrocytomas (P = 0.00155), glioblastoma (P < 0.001), and oligodendrogliomas (P = 0.0157). The mean L/N ratio of IDH mutant gliomas was significantly lower than that of IDH wild-type gliomas (median 1.75 vs. 2.61; P = 0.00162). A mean L/N ratio of 2.05 provided the best sensitivity and specificity for distinguishing between IDH mutant and IDH wild-type gliomas (69.2% and 76.2%, respectively). The mean L/N ratio of TERT promoter mutant gliomas was significantly higher than that of TERT promoter wild-type gliomas (P = 0.0147). Multiple regression analysis showed that pathologic diagnosis was the only influential factor on L/N ratio. CONCLUSIONS Distinguishing glioma subtypes based on the revised 2016 World Health Organization classification of the central nervous system tumors on the basis of [11C]methionine PET alone seems to be difficult. However, [11C]methionine PET might be useful for predicting the IDH mutation status in newly diagnosed and untreated gliomas noninvasively before tumor resection.
Collapse
Affiliation(s)
- Kosuke Nakajo
- Department of Neurosurgery, Osaka City University Graduate School of Medicine, Osaka, Japan.
| | - Takehiro Uda
- Department of Neurosurgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Toshiyuki Kawashima
- Department of Neurosurgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Yuzo Terakawa
- Department of Neurosurgery, Osaka City University Graduate School of Medicine, Osaka, Japan; Department of Neurosurgery, Hokkaido Ono Memorial Hospital, Hokkaido, Japan
| | - Kenichi Ishibashi
- Department of Neurosurgery, Osaka City University Graduate School of Medicine, Osaka, Japan; Department of Neurosurgery, Osaka City General Hospital, Osaka, Japan
| | - Naohiro Tsuyuguchi
- Department of Neurosurgery, Osaka City University Graduate School of Medicine, Osaka, Japan; Department of Neurosurgery, Kinki University Graduate School of Medicine, Osaka, Japan
| | - Yuta Tanoue
- Department of Neurosurgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Atsufumi Nagahama
- Department of Neurosurgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Hiroshi Uda
- Department of Neurosurgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Saya Koh
- Department of Neurosurgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Tsuyoshi Sasaki
- Department of Neurosurgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Kenji Ohata
- Department of Neurosurgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Yonehiro Kanemura
- Department of Biomedical Research and Innovation, Institute for Clinical Research, Osaka, Japan; Department of Neurosurgery, National Hospital Organization Osaka National Hospital, Osaka, Japan
| | - Takeo Goto
- Department of Neurosurgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
22
|
Takei H, Shinoda J, Ikuta S, Maruyama T, Muragaki Y, Kawasaki T, Ikegame Y, Okada M, Ito T, Asano Y, Yokoyama K, Nakayama N, Yano H, Iwama T. Usefulness of positron emission tomography for differentiating gliomas according to the 2016 World Health Organization classification of tumors of the central nervous system. J Neurosurg 2020; 133:1010-1019. [PMID: 31419796 DOI: 10.3171/2019.5.jns19780] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 05/17/2019] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Positron emission tomography (PET) is important in the noninvasive diagnostic imaging of gliomas. There are many PET studies on glioma diagnosis based on the 2007 WHO classification; however, there are no studies on glioma diagnosis using the new classification (the 2016 WHO classification). Here, the authors investigated the relationship between uptake of 11C-methionine (MET), 11C-choline (CHO), and 18F-fluorodeoxyglucose (FDG) on PET imaging and isocitrate dehydrogenase (IDH) status (wild-type [IDH-wt] or mutant [IDH-mut]) in astrocytic and oligodendroglial tumors according to the 2016 WHO classification. METHODS In total, 105 patients with newly diagnosed cerebral gliomas (6 diffuse astrocytomas [DAs] with IDH-wt, 6 DAs with IDH-mut, 7 anaplastic astrocytomas [AAs] with IDH-wt, 24 AAs with IDH-mut, 26 glioblastomas [GBMs] with IDH-wt, 5 GBMs with IDH-mut, 19 oligodendrogliomas [ODs], and 12 anaplastic oligodendrogliomas [AOs]) were included. All OD and AO patients had both IDH-mut and 1p/19q codeletion. The maximum standardized uptake value (SUV) of the tumor/mean SUV of normal cortex (T/N) ratios for MET, CHO, and FDG were calculated, and the mean T/N ratios of DA, AA, and GBM with IDH-wt and IDH-mut were compared. The diagnostic accuracy for distinguishing gliomas with IDH-wt from those with IDH-mut was assessed using receiver operating characteristic (ROC) curve analysis of the mean T/N ratios for the 3 PET tracers. RESULTS There were significant differences in the mean T/N ratios for all 3 PET tracers between the IDH-wt and IDH-mut groups of all histological classifications (p < 0.001). Among the 27 gliomas with mean T/N ratios higher than the cutoff values for all 3 PET tracers, 23 (85.2%) were classified into the IDH-wt group using ROC analysis. In DA, there were no significant differences in the T/N ratios for MET, CHO, and FDG between the IDH-wt and IDH-mut groups. In AA, the mean T/N ratios of all 3 PET tracers in the IDH-wt group were significantly higher than those in the IDH-mut group (p < 0.01). In GBM, the mean T/N ratio in the IDH-wt group was significantly higher than that in the IDH-mut group for both MET (p = 0.034) and CHO (p = 0.01). However, there was no significant difference in the ratio for FDG. CONCLUSIONS PET imaging using MET, CHO, and FDG was suggested to be informative for preoperatively differentiating gliomas according to the 2016 WHO classification, particularly for differentiating IDH-wt and IDH-mut tumors.
Collapse
Affiliation(s)
- Hiroaki Takei
- 1Department of Neurosurgery and Chubu Medical Center for Prolonged Traumatic Brain Dysfunction, Kizawa Memorial Hospital, Minokamo, Gifu
- 4Neurosurgery, Gifu University Graduate School of Medicine, Gifu; and
| | - Jun Shinoda
- 1Department of Neurosurgery and Chubu Medical Center for Prolonged Traumatic Brain Dysfunction, Kizawa Memorial Hospital, Minokamo, Gifu
- 2Departments of Clinical Brain Sciences and
| | - Soko Ikuta
- 3Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Takashi Maruyama
- 3Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Yoshihiro Muragaki
- 3Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Tomohiro Kawasaki
- 1Department of Neurosurgery and Chubu Medical Center for Prolonged Traumatic Brain Dysfunction, Kizawa Memorial Hospital, Minokamo, Gifu
- 4Neurosurgery, Gifu University Graduate School of Medicine, Gifu; and
| | - Yuka Ikegame
- 1Department of Neurosurgery and Chubu Medical Center for Prolonged Traumatic Brain Dysfunction, Kizawa Memorial Hospital, Minokamo, Gifu
- 2Departments of Clinical Brain Sciences and
| | - Makoto Okada
- 1Department of Neurosurgery and Chubu Medical Center for Prolonged Traumatic Brain Dysfunction, Kizawa Memorial Hospital, Minokamo, Gifu
| | - Takeshi Ito
- 1Department of Neurosurgery and Chubu Medical Center for Prolonged Traumatic Brain Dysfunction, Kizawa Memorial Hospital, Minokamo, Gifu
| | - Yoshitaka Asano
- 1Department of Neurosurgery and Chubu Medical Center for Prolonged Traumatic Brain Dysfunction, Kizawa Memorial Hospital, Minokamo, Gifu
- 2Departments of Clinical Brain Sciences and
| | - Kazutoshi Yokoyama
- 1Department of Neurosurgery and Chubu Medical Center for Prolonged Traumatic Brain Dysfunction, Kizawa Memorial Hospital, Minokamo, Gifu
| | - Noriyuki Nakayama
- 4Neurosurgery, Gifu University Graduate School of Medicine, Gifu; and
| | - Hirohito Yano
- 4Neurosurgery, Gifu University Graduate School of Medicine, Gifu; and
| | - Toru Iwama
- 4Neurosurgery, Gifu University Graduate School of Medicine, Gifu; and
| |
Collapse
|
23
|
Pronin IN, Khokhlova EV, Konakova TA, Maryashev SA, Pitskhelauri DI, Batalov AI, Postnov AA. [Positron emission tomography with 11C-methionine in primary brain tumor diagnosis]. Zh Nevrol Psikhiatr Im S S Korsakova 2020; 120:51-56. [PMID: 32929924 DOI: 10.17116/jnevro202012008151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To investigate the variations in 11C-methionine uptake in the intact brain tissue and in glial brain tumors of different types. MATERIAL AND METHODS Forty patients (21 men, 19 women) with gliomas, Grade I-IV, underwent 11C-methionine PET-CT and contrast-enhanced MRI. Standardized uptake value (SUV), tumor-to-normal (T/N) ratios and tumor volume were analyzed. RESULTS The high inter-subject variability was detected in the intact brain tissue (SUV in the frontal lobe (FL) varies from 0.47 to 1.73). Amino acid metabolism was more active in women than in men (FL SUV 1.32±0.22 and 1.05±0.24, respectively). T/N ratio better differentiates gliomas by the degree of anaplasia compared to SUV. Gliomas of Grade III (T/N=2.64±0.98) were significantly different (p<0.05) from those of Grade IV (T/N=3.83±0.75). The lowest level of methionine uptake was detected in diffuse astrocytomas (T/N=1.52±0.57), which was lower than with anaplastic astrocytomas (T/N=2.34±0.77, p<0.05). CONCLUSIONS 11C-methionine PET-CT was informative in the high/low degree of malignancy differentiation (T/N 1.66±0.71 for Grade I-II and 3.18±1.06 for Grade III-IV, p<0.05). The method was also useful in separating astrocytomas of Grade II and III. The considerable variation of SUV in the intact brain tissue as well as the difference in uptake between selected areas of the brain were revealed.
Collapse
Affiliation(s)
- I N Pronin
- Burdenko National Medical Scientific Center for Neurosurgery, Moscow, Russia
| | - E V Khokhlova
- Burdenko National Medical Scientific Center for Neurosurgery, Moscow, Russia
| | - T A Konakova
- Burdenko National Medical Scientific Center for Neurosurgery, Moscow, Russia
| | - S A Maryashev
- Burdenko National Medical Scientific Center for Neurosurgery, Moscow, Russia
| | - D I Pitskhelauri
- Burdenko National Medical Scientific Center for Neurosurgery, Moscow, Russia
| | - A I Batalov
- Burdenko National Medical Scientific Center for Neurosurgery, Moscow, Russia
| | - A A Postnov
- Burdenko National Medical Scientific Center for Neurosurgery, Moscow, Russia.,National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow, Russia.,Lebedev Physical Institute of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
24
|
Rani N, Singh B, Kumar N, Singh P, Hazari PP, Jaswal A, Gupta SK, Chhabra R, Radotra BD, Mishra AK. The diagnostic performance of 99mTc-methionine single-photon emission tomography in grading glioma preoperatively: a comparison with histopathology and Ki-67 indices. Nucl Med Commun 2020; 41:848-857. [PMID: 32796472 DOI: 10.1097/mnm.0000000000001230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To characterize glioma preoperatively using quantitative 99mTc-methionine SPECT and comparison with MR-perfusion/spectroscopy and histopatholgical/Ki-67 scoring. METHODS Twenty-nine patients (21M: 8F; mean age 42.3 ± 10.5 years) with clinical and radiological suspicion of glioma assessed by 99mTc-MDM/SPECT and ceMRI. Additionally, 12/29 patients underwent dynamic susceptibility contrast-enhanced (DSCE) MRI and magnetic resonance spectroscopy (MRS) examination. Three patients with benign pathologies were recruited as controls. Histopathological tumor analysis was done in all (n = 29) the patients, and the Ki-67 index was evaluated in 20/29 patients. The target-to-nontarget (T/NT) methionine tumor uptake ratios, normalized cerebral blood volume (nCBV) and metabolites [choline/N-acetyl aspartate (Cho/NAA), Cho/creatine (Cr), Cr/NAA and Cr/Cho) ratios were measured in tumor areas. RESULTS On histopathological analysis, 26/29 patients had glioma (G IV-13; G III-04; G II-09). The mean T/NT ratio in G-II was significantly lower (2.46 ± 2.3) than in G-III (7.13 ± 2.2) and G-IV (5.16 ± 1.2). However, the mean ratio was highest (15.9 ± 6.8) in meningioma (n=3). The T/NT cutoff ratio of 3.08 provided 100% sensitivity, 87.5% specificity for discriminating high-grade glioma (HGG) from low-grade glioma (LGG) disease. Likewise, the nCBV cutoff of 2.43 offered 100% sensitivity and 80% specificity. Only the Cho/NAA cutoff value of greater than 3.34 provided reasonable sensitivity and specificity of 85.7% and 80.0% respectively for this differentiation. T/NT ratio correlated significantly with nCBV and Cho/NAA, Cho/Cr ratios but not with Ki-67. CONCLUSION Quantitative 99mTc-MDM -SPECT provided high sensitivity and specificity to differentiate HGG versus LGG preoperatively and demonstrated a potential role for the differential diagnosis of glial versus nonglial tumors.
Collapse
Affiliation(s)
| | | | | | | | - Puja P Hazari
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Science, DRDO, New Delhi
| | - Ambika Jaswal
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Science, DRDO, New Delhi
| | | | | | | | - Anil K Mishra
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Science, DRDO, New Delhi
| |
Collapse
|
25
|
Tumor grade-related language and control network reorganization in patients with left cerebral glioma. Cortex 2020; 129:141-157. [PMID: 32473401 DOI: 10.1016/j.cortex.2020.04.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 01/17/2020] [Accepted: 04/21/2020] [Indexed: 12/25/2022]
Abstract
Language processing relies on both a functionally specialized language network and a domain-general cognitive control network. Yet, how the two networks reorganize after damage resulting from diffuse and progressive glioma remains largely unknown. To address this issue, 130 patients with left cerebral gliomas, including 77 patients with low-grade glioma (LGG, WHO grade Ⅰ/II), 53 patients with high-grade glioma (HGG, WHO grade III/IV) and 38 healthy controls (HC) were adopted. The changes in resting-state functional connectivity (rsFC) of the language network and the cingulo-opercular/fronto-parietal (CO-FP) network were examined using network-based statistics. We found that tumor grade negatively correlated with language scores and language network integrity. Compared with HCs, patients with LGGs exhibited slight language deficits, both decreased and increased changes in rsFC of language network, and nearly normal CO-FP network. Patients with HGGs had significantly lower language scores than those with LGG and exhibited more severe language and CO-FP network disruptions than HCs or patients with LGGs. Moreover, we found that in patients with HGGs, the decreased rsFCs of language network were positively correlated with language scores. Together, our findings suggest tumor grade-related network reorganization of both language and control networks underlie the different levels of language impairments observed in patients with gliomas.
Collapse
|
26
|
Miyakita Y, Ohno M, Takahashi M, Kurihara H, Katai H, Narita Y. Usefulness of carbon-11-labeled methionine positron-emission tomography for assessing the treatment response of primary central nervous system lymphoma. Jpn J Clin Oncol 2020; 50:512-518. [PMID: 32129443 DOI: 10.1093/jjco/hyaa010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 01/16/2020] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Primary central nervous system lymphoma (PCNSL) responds relatively quickly to chemotherapy or radiotherapy. However, determination of a complete response after treatment is often difficult because of extremely light residual contrast enhancement on magnetic resonance images due to the effects of microhemorrhages and scar tissue formation. These small enhancing lesions define an unconfirmed complete response. The aim of this study was to investigate the usefulness of carbon-11-labeled methionine (11C-Met) positron-emission tomography (PET) for determining the treatment response of PCNSL. METHODS Data for 36 patients who were treated for PCNSL between 2011 and 2015 and underwent magnetic resonance imaging and 11C-Met PET were reviewed. Magnetic resonance imaging findings were classified as complete response, unconfirmed complete response, and tumor mass (a composite of partial response, stable disease and progressive disease). PET images were evaluated, standardized uptake values were quantified, and the tumor-to-normal tissue count ratio (TNR) was calculated. Receiver operating characteristic curves were generated to determine the optimal cutoff TNRs. RESULTS The optimal TNRs for differentiating complete response and unconfirmed complete response from tumor mass were 1.83 (area under the curve, 0.951) and 1.80 (area under the curve, 0.932), respectively. The corresponding sensitivity and specificity values for the diagnosis of tumor mass were 82.4 and 100%, respectively, in the complete response group and 85.3 and 85%, respectively, in the unconfirmed complete response group. CONCLUSIONS A TNR of ≥1.80 can aid in the detection of active PCNSL using 11C-Met PET. Thus, 11C-Met-PET may be a useful tool for accurate evaluation of the treatment efficacy in PCNSL.
Collapse
Affiliation(s)
- Yasuji Miyakita
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Chuo-ku, Japan.,Course of Advanced Clinical Research of Cancer, Juntendo University Graduate School of Medicine, Bunkyo-ku, Japan
| | - Makoto Ohno
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Chuo-ku, Japan
| | - Masamichi Takahashi
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Chuo-ku, Japan
| | - Hiroaki Kurihara
- Department of Diagnostic Radiology, National Cancer Center Hospital, Chuo-ku, Japan
| | - Hitoshi Katai
- Course of Advanced Clinical Research of Cancer, Juntendo University Graduate School of Medicine, Bunkyo-ku, Japan
| | - Yoshitaka Narita
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Chuo-ku, Japan
| |
Collapse
|
27
|
Oughourlian TC, Yao J, Schlossman J, Raymond C, Ji M, Tatekawa H, Salamon N, Pope WB, Czernin J, Nghiemphu PL, Lai A, Cloughesy TF, Ellingson BM. Rate of change in maximum 18F-FDOPA PET uptake and non-enhancing tumor volume predict malignant transformation and overall survival in low-grade gliomas. J Neurooncol 2020; 147:135-145. [PMID: 31981013 DOI: 10.1007/s11060-020-03407-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 01/18/2020] [Indexed: 10/25/2022]
Abstract
PURPOSE To examine whether the rate of change in maximum 18F-FDOPA PET uptake and the rate of change in non-enhancing tumor volume could predict malignant transformation and residual overall survival (OS) in low grade glioma (LGG) patients who received serial 18F-FDOPA PET and MRI scans. METHODS 27 LGG patients with ≥ 2 18F-FDOPA PET and MRI scans between 2003 and 2016 were included. The rate of change in FLAIR volume (uL/day) and maximum normalized 18F-FDOPA specific uptake value (nSUVmax/month), were compared between histological and molecular subtypes. General linear models (GLMs) were used to integrate clinical information with MR-PET measurements to predict malignant transformation. Cox univariate and multivariable regression analyses were performed to identify imaging and clinical risk factors related to OS. RESULTS A GLM using patient age, treatment, the rate of change in FLAIR and 18F-FDOPA nSUVmax could predict malignant transformation with > 67% sensitivity and specificity (AUC = 0.7556, P = 0.0248). A significant association was observed between OS and continuous rates of change in PET uptake (HR = 1.0212, P = 0.0034). Cox multivariable analysis confirmed that continuous measures of the rate of change in PET uptake was an independent predictor of OS (HR = 1.0242, P = 0.0033); however, stratification of patients based on increasing or decreasing rate of change in FLAIR (HR = 2.220, P = 0.025), PET uptake (HR = 2.148, P = 0.0311), or both FLAIR and PET (HR = 2.354, P = 0.0135) predicted OS. CONCLUSIONS The change in maximum normalized 18F-FDOPA PET uptake, with or without clinical information and rate of change in tumor volume, may be useful for predicting the risk of malignant transformation and estimating residual survival in patients with LGG.
Collapse
Affiliation(s)
- Talia C Oughourlian
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.,Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.,Neuroscience Interdepartmental Program, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Jingwen Yao
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.,Department of Bioengineering, Henry Samueli School of Engineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Jacob Schlossman
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.,Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.,Neuroscience Interdepartmental Program, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Catalina Raymond
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.,Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Matthew Ji
- UCLA Neuro-Oncology Program, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.,Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Hiroyuki Tatekawa
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.,Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Noriko Salamon
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Whitney B Pope
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Johannes Czernin
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Phioanh L Nghiemphu
- UCLA Neuro-Oncology Program, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.,Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Albert Lai
- UCLA Neuro-Oncology Program, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.,Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Timothy F Cloughesy
- UCLA Neuro-Oncology Program, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.,Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Benjamin M Ellingson
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA. .,Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA. .,Neuroscience Interdepartmental Program, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA. .,Department of Bioengineering, Henry Samueli School of Engineering, University of California Los Angeles, Los Angeles, CA, USA. .,UCLA Brain Tumor Imaging Laboratory, Departments of Radiological Sciences and Psychiatry, David Geffen School of Medicine, University of California Los Angeles, 924 Westwood Blvd., Suite 615, Los Angeles, CA, 90024, USA.
| |
Collapse
|
28
|
Non-invasive tumor decoding and phenotyping of cerebral gliomas utilizing multiparametric 18F-FET PET-MRI and MR Fingerprinting. Eur J Nucl Med Mol Imaging 2019; 47:1435-1445. [PMID: 31811342 DOI: 10.1007/s00259-019-04602-2] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/05/2019] [Indexed: 12/15/2022]
Abstract
OBJECTIVES The introduction of the 2016 WHO classification of CNS tumors has made the combined molecular and histopathological characterization of tumors a pivotal part of glioma patient management. Recent publications on radiogenomics-based prediction of the mutational status have demonstrated the predictive potential of imaging-based, non-invasive tissue characterization algorithms. Hence, the aim of this study was to assess the potential of multiparametric 18F-FET PET-MRI including MR fingerprinting accelerated with machine learning and radiomic algorithms to predict tumor grading and mutational status of patients with cerebral gliomas. MATERIALS AND METHODS 42 patients with suspected primary brain tumor without prior surgical or systemic treatment or biopsy underwent an 18F-FET PET-MRI examination. To differentiate the mutational status and the WHO grade of the cerebral tumors, support vector machine and random forest were trained with the radiomics signature of the multiparametric PET-MRI data including MR fingerprinting. Surgical sampling served as a gold standard for histopathological reference and assessment of mutational status. RESULTS The 5-fold cross-validated area under the curve in predicting the ATRX mutation was 85.1%, MGMT mutation was 75.7%, IDH1 was 88.7%, and 1p19q was 97.8%. The area under the curve of differentiating low-grade glioma vs. high-grade glioma was 85.2%. CONCLUSION 18F-FET PET-MRI and MR fingerprinting enable high-quality imaging-based tumor decoding and phenotyping for differentiation of low-grade vs. high-grade gliomas and for prediction of the mutational status of ATRX, IDH1, and 1p19q. These initial results underline the potential of 18F-FET PET-MRI to serve as an alternative to invasive tissue characterization.
Collapse
|
29
|
Hotta M, Minamimoto R, Miwa K. 11C-methionine-PET for differentiating recurrent brain tumor from radiation necrosis: radiomics approach with random forest classifier. Sci Rep 2019; 9:15666. [PMID: 31666650 PMCID: PMC6821731 DOI: 10.1038/s41598-019-52279-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 10/15/2019] [Indexed: 12/22/2022] Open
Abstract
Differentiating recurrent brain tumor from radiation necrosis is often difficult. This study aims to investigate the efficacy of 11C-methionine (MET)-PET radiomics for distinguishing recurrent brain tumor from radiation necrosis, as compared with conventional tumor-to-normal cortex (T/N) ratio evaluation. We enrolled 41 patients with metastatic brain tumor or glioma treated using radiation therapy who underwent MET-PET. The area with a standardized uptake value > 1.3 times that of the normal brain cortex was contoured. Forty-two PET features were extracted and used in a random forest classifier and the diagnostic performance was evaluated using a 10-fold cross-validation scheme. Gini index was measured to identify relevant PET parameters for classification. The reference standard was surgical histopathological analysis or more than 6 months of follow-up with MRI. Forty-four lesions were used for the analysis. Thirty-three and 11 lesions were confirmed as recurrent brain tumor and radiation necrosis, respectively. Radiomics and T/N ratio evaluation showed sensitivities of 90.1% and 60.6%, and specificities of 93.9% and 72.7% with areas under the curve of 0.98 and 0.73, respectively. Gray level co-occurrence matrix dissimilarity was the most pertinent feature for diagnosis. MET-PET radiomics yielded excellent outcome for differentiating recurrent brain tumor from radiation necrosis, which outperformed T/N ratio evaluation.
Collapse
Affiliation(s)
- Masatoshi Hotta
- Department of Radiology, National Center for Global Health and Medicine, 1-21-1, Toyama, Shinjuku-ku, Tokyo, 162-8655, Japan.
| | - Ryogo Minamimoto
- Department of Radiology, National Center for Global Health and Medicine, 1-21-1, Toyama, Shinjuku-ku, Tokyo, 162-8655, Japan
| | - Kenta Miwa
- Department of Radiological Sciences, School of Health Science, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara city, Tochigi, 324-850, Japan
| |
Collapse
|
30
|
Comparison of L-Methyl-11C-Methionine PET With Magnetic Resonance Spectroscopy in Detecting Newly Diagnosed Glioma. Clin Nucl Med 2019; 44:e375-e381. [PMID: 30985412 DOI: 10.1097/rlu.0000000000002577] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
AIMS Amino acid PET and magnetic resonance spectroscopy (MRS) are at the forefront of noninvasive imaging techniques used for detection and subtyping of glioma-suspicious lesions. In this pilot study, we compare L-methyl-C-methionine PET and MRS for their ability to predict glioma subtypes. METHODS Nineteen patients with histologically, confirmed newly diagnosed glioma underwent preoperative L-methyl-C-methionine PET and MRS in 1 diagnostic session. According to the molecular portfolio and histopathologic diagnosis, patients were subdivided in isocitrate dehydrogenase (IDH) wild-type glioblastoma, IDH wild-type grade II/III glioma, IDH-mutant grade II/III glioma without 1p/19q codeletion, and with 1p/19q codeletion subgroups. Maximum tumor-to-brain ratio (TBRmax), creatine, choline, and N-acetyl aspartate peaks were correlated with postoperative histopathologic tumor diagnoses. RESULTS Maximum tumor-to-brain ratio was highest in glioblastoma patients (4.18) followed by patients with IDH wild-type grade II and III glioma (3.41). The latter TBRmax values were higher compared with those in patients with IDH-mutant grade II/III glioma without 1p/19q codeletion (1.95) and in patients with IDH-mutant 1p/19q codeleted grade II and III glioma (2.79). Magnetic resonance spectroscopy marker distribution showed no clear trend. Receiver operating characteristic analysis revealed TBRmax to be the best performing parameter in identifying IDH status (area under the curve, 0.67) and all spectroscopy markers combined in identifying glioma subgroups (area under the curve, 0.68), respectively. CONCLUSIONS L-Methyl-C-methionine PET and MRS bear limited potential in glioma subgrouping. L-Methyl-C-methionine PET appears to be superior in differentiating IDH status, whereas MRS is more helpful in glioma subgrouping.
Collapse
|
31
|
Yang Y, He MZ, Li T, Yang X. MRI combined with PET-CT of different tracers to improve the accuracy of glioma diagnosis: a systematic review and meta-analysis. Neurosurg Rev 2019; 42:185-195. [PMID: 28918564 PMCID: PMC6503074 DOI: 10.1007/s10143-017-0906-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 09/01/2017] [Accepted: 09/06/2017] [Indexed: 12/18/2022]
Abstract
Based on studies focusing on positron emission tomography (PET)-computed tomography (CT) combined with magnetic resonance imaging (MRI) in the diagnosis of glioma, we conducted a systematic review and meta-analysis evaluating the pros and cons and the accuracy of different examinations. PubMed and Cochrane Library were searched. The search was conducted until April 2017. Two reviewers independently conducted the literature search according to the criteria set initially. Based on the exclusion criteria, 15 articles are included in this study. Of all studies that used MRI examination, there are five involving 18F-fluorodeoxyglucose-PET, five involving 11C-methionine-PET, five involving 18F-fluoro-ethyl-tyrosine-PET, and three involving 18F-fluorothymidine-PET. Due to the limitations such as lack of data, small sample size, and unrepresentative studies, we use a non-quantitative methodology. MRI examination can provide the anatomy information of glioma more clearly. PET-CT examinations based on tumor metabolism using different tracers have more advantages in determining the degree of glioma malignancy and boundaries. However, information provided by PET-CT of different tracers is not the same. With respect to the novel hybrid MRI/PET examination equipment proposed in recent years, the combination of MRI and PET-CT can definitively improve the diagnostic accuracy of glioma.
Collapse
Affiliation(s)
- Yihan Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Mike Z He
- Columbia University Mailman School of Public Health, New York, NY, USA
| | - Tao Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Xuejun Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China.
| |
Collapse
|
32
|
Hoffman RM. Is the Hoffman Effect for Methionine Overuse Analogous to the Warburg Effect for Glucose Overuse in Cancer? Methods Mol Biol 2019; 1866:273-278. [PMID: 30725423 DOI: 10.1007/978-1-4939-8796-2_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
The general cancer-specific metabolic defect of methionine (MET) dependence is due to MET overuse for aberrant transmethylation reactions. The excess use of MET for aberrant transmethylation reactions apparently diverts methyl groups from DNA. The resulting global DNA hypomethylation is also a general phenomenon in cancer and leads to unstable genomes and aneuploid karyotypes. The excessive and aberrant use of MET in cancer is readily observed in [11C]-MET-PET imaging, where high uptake of [11C]-MET results in a very strong and selective tumor signal compared to normal tissue background for brain cancer and possibly other cancers. [11C]-MET is superior to [18C]-fluorodeoxyglucose (FDG) for PET imaging, suggesting that MET overuse in cancer ("Hoffman effect") is greater than glucose overuse in cancer ("Warburg effect").
Collapse
Affiliation(s)
- Robert M Hoffman
- AntiCancer, Inc., San Diego, CA, USA.
- Department of Surgery, University of California, San Diego, CA, USA.
| |
Collapse
|
33
|
Kim D, Chun JH, Kim SH, Moon JH, Kang SG, Chang JH, Yun M. Re-evaluation of the diagnostic performance of 11C-methionine PET/CT according to the 2016 WHO classification of cerebral gliomas. Eur J Nucl Med Mol Imaging 2019; 46:1678-1684. [PMID: 31102001 DOI: 10.1007/s00259-019-04337-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 04/15/2019] [Indexed: 12/15/2022]
Abstract
PURPOSE We evaluated the usefulness of 11C-methionine (MET) positron emission tomography/computed tomography (PET/CT) for grading cerebral gliomas according to the 2016 WHO classification with special emphasis on the presence of the isocitrate dehydrogenase 1 (IDH1) gene mutation and 1p/19q codeletion. METHODS In total, 144 patients underwent MET PET/CT before surgery. The ratios of the maximum standardized uptake value (SUV) of the gliomas to the mean SUV of the contralateral cortex on MET PET/CT (MET TNR) were calculated. RESULTS The median MET TNRs in IDH1-mutant and IDH1-wildtype tumours were 1.95 and 3.35, respectively. From among 74 IDH1-mutant tumours, the oligodendrogliomas showed a higher median MET TNR than the astrocytic tumours (2.90 vs. 1.40, P < 0.001). In grade II, III and IV IDH1-mutant astrocytic tumours, the median MET TNRs were 1.20, 2.05 and 2.20, respectively (grade II vs. grade III, P < 0.0001; grade II vs. grade IV, P = 0.023). In oligodendrogliomas, the MET TNR was lower fin grade II tumours than in grade III tumours (2.30 vs. 3.30 P = 0.008). In differentiating low-grade (grade II) from high-grade (grade III and IV) gliomas, receiver operating characteristic analysis showed a higher area under the curve for wildtype tumours (0.976) than for all tumours (0.852; P < 0.001) and IDH1-mutant tumours (0.817; P = 0.004). CONCLUSION IDH1-mutant tumours showed lower MET uptake than IDH1-wildtype tumours. Regardless of IDH1 mutation status, oligodendrogliomas with 1p/19q codeletion showed MET uptake as high as that in high-grade IDH1-wildtype tumours. Therefore, MET uptake for glioma grading was more consistent for IDH1-wildtype tumours than for IDH1-mutant tumours.
Collapse
Affiliation(s)
- Dongwoo Kim
- Department of Nuclear Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 120-752, South Korea
| | - Joong-Hyun Chun
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Se Hoon Kim
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Ju Hyung Moon
- Department of Neurosurgery, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Seok-Gu Kang
- Department of Neurosurgery, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Jong Hee Chang
- Department of Neurosurgery, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Mijin Yun
- Department of Nuclear Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 120-752, South Korea.
| |
Collapse
|
34
|
|
35
|
Hashimoto S, Inaji M, Nariai T, Kobayashi D, Sanjo N, Yokota T, Ishii K, Taketoshi M. Usefulness of [ 11C] Methionine PET in the Differentiation of Tumefactive Multiple Sclerosis from High Grade Astrocytoma. Neurol Med Chir (Tokyo) 2019; 59:176-183. [PMID: 30996153 PMCID: PMC6527963 DOI: 10.2176/nmc.oa.2018-0287] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tumefactive multiple sclerosis (tumefactive MS) is an atypical variant of MS characterized by a large isolated demyelinating lesion. Because tumefactive MS mimics high grade astrocytoma clinically and radiologically, it is difficult to distinguish between the two using only traditional diagnostic modalities, such as routine magnetic resonance imaging. [11C] methionine positron emission tomography (MET PET) has been known as a useful diagnostic tool for glioma. However, it has not been established as a diagnostic tool for tumefactive MS yet. Therefore, the objective of this study was to evaluate the performance of MET PET in differentiating tumefactive MS from high grade astrocytoma. We studied patients with tumefactive MS [six patients (three men, three women), 7 lesions] and 77 patients with astrocytoma (World Health Organization grade II: 13 patients, grade III: 28 patients, and grade IV: 36 patients), and we compared MET uptake of tumefactive demyelinating lesions and astrocytoma. For MET PET analysis, Lesion/Normal region ratios (L/N ratios) were calculated and compared between tumefactive demyelinating lesions and astrocytoma. On MET PET, the L mean/N ratio of tumefactive MS was 1.18 ± 0.50, which was significantly lower than that of high-grade glioma (astrocytoma grade III: 1.95 ± 0.62, P = 0.006; grade IV: 2.35 ± 0.54, P <0.0001). The L maximum (L max)/N ratio of tumefactive demyelinating lesion was also significantly lower than that of high grade astrocytoma (tumefactive MS: 1.89 ± 0.55; astrocytoma grade III: 3.37 ± 1.36, P = 0.0232; astrocytoma grade IV: 4.35 ± 1.30, P <0.0001). In conclusion, MET PET can help differentiate tumefactive MS from high grade astrocytoma.
Collapse
Affiliation(s)
| | - Motoki Inaji
- Department of Neurosurgery, Tokyo Medical and Dental University.,Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology
| | - Tadashi Nariai
- Department of Neurosurgery, Tokyo Medical and Dental University.,Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology
| | | | - Nobuo Sanjo
- Department of Neurology and Neurological Science, Tokyo Medical and Dental University
| | - Takanori Yokota
- Department of Neurology and Neurological Science, Tokyo Medical and Dental University
| | - Kenji Ishii
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology
| | | |
Collapse
|
36
|
He Q, Zhang L, Zhang B, Shi X, Yi C, Zhang X. Diagnostic accuracy of 13N-ammonia PET, 11C-methionine PET and 18F-fluorodeoxyglucose PET: a comparative study in patients with suspected cerebral glioma. BMC Cancer 2019; 19:332. [PMID: 30961564 PMCID: PMC6454631 DOI: 10.1186/s12885-019-5560-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 03/31/2019] [Indexed: 11/10/2022] Open
Abstract
Background The treatment of patients with glioma depended on the nature of the lesion and on histological grade of the tumor. Positron emission tomography (PET) using 13N-ammonia (NH3), 11C-methionine (MET) and 18F-fluorodeoxyglucose (FDG) have been used to assess brain tumors. Our aim was to compare their diagnostic accuracies in patients with suspected cerebral glioma. Methods Ninety patients with suspicion of glioma based on previous CT/MRI, who underwent NH3 PET, MET PET and FDG PET, were prospectively enrolled in the study. The reference standard was established by histology or clinical and radiological follow-up. Images were interpreted by visual evaluation and semi-quantitative analysis using the lesion-to-normal white matter uptake ratio (L/WM ratio). Results Finally, 30 high-grade gliomas (HGG), 27 low-grade gliomas (LGG), 10 non-glioma tumors and 23 non-neoplastic lesions (NNL) were diagnosed. On visual evaluation, sensitivity and specificity for differentiating tumors from NNL were 62.7% (42/67) and 95.7% (22/23) for NH3 PET, 94.0% (63/67) and 56.5% (13/23) for MET PET, and 35.8% (24/67) and 65.2% (15/23) for FDG PET. On semi-quantitative analysis, brain tumors showed significantly higher L/WM ratios than NNL both in NH3 and MET PET (both P < 0.001). The sensitivity, specificity and the area under the curve (AUC) by receiver operating characteristic (ROC) analysis, respectively, were 64.2, 100% and 0.819 for NH3; and 89.6, 69.6% and 0.840 for MET. Besides, the L/WM ratios of NH3, MET and FDG PET in HGG all significantly higher than that in LGG (all P < 0.001). The predicted (by ROC) accuracy of the tracers (AUC shown in parentheses) were 86.0% (0.896) for NH3, 87.7% (0.928) for MET and 93.0% (0.964) for FDG. While no significant differences in the AUC were seen between them. Conclusion NH3 PET has remarkably high specificity for the differentiation of brain tumors from NNL, but low sensitivity for the detection of LGG. MET PET was found to be highly useful for detection of brain tumors. However, like FDG, high MET uptake is frequently observed in some NNL. NH3, MET and FDG PET all appears to be valuable for evaluating the histological grade of gliomas.
Collapse
Affiliation(s)
- Qiao He
- Department of Nuclear Medicine, the First Affiliated Hospital of Sun Yat-sen University, 58# Zhongshan Er Road, Guangzhou, Guangdong Province, 510080, People's Republic of China
| | - Linqi Zhang
- Department of Nuclear Medicine, Affiliated Cancer Hospital&Institute of Guangzhou Medical University, Guangzhou, 510095, People's Republic of China
| | - Bing Zhang
- Department of Nuclear Medicine, the First Affiliated Hospital of Sun Yat-sen University, 58# Zhongshan Er Road, Guangzhou, Guangdong Province, 510080, People's Republic of China
| | - Xinchong Shi
- Department of Nuclear Medicine, the First Affiliated Hospital of Sun Yat-sen University, 58# Zhongshan Er Road, Guangzhou, Guangdong Province, 510080, People's Republic of China
| | - Chang Yi
- Department of Nuclear Medicine, the First Affiliated Hospital of Sun Yat-sen University, 58# Zhongshan Er Road, Guangzhou, Guangdong Province, 510080, People's Republic of China
| | - Xiangsong Zhang
- Department of Nuclear Medicine, the First Affiliated Hospital of Sun Yat-sen University, 58# Zhongshan Er Road, Guangzhou, Guangdong Province, 510080, People's Republic of China.
| |
Collapse
|
37
|
Riva M, Lopci E, Castellano A, Olivari L, Gallucci M, Pessina F, Fernandes B, Simonelli M, Navarria P, Grimaldi M, Rudà R, Castello A, Rossi M, Alfiero T, Soffietti R, Chiti A, Bello L. Lower Grade Gliomas: Relationships Between Metabolic and Structural Imaging with Grading and Molecular Factors. World Neurosurg 2019; 126:e270-e280. [PMID: 30797926 DOI: 10.1016/j.wneu.2019.02.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 02/01/2019] [Accepted: 02/02/2019] [Indexed: 02/01/2023]
Abstract
BACKGROUND Positron emission tomography (PET) is a valuable tool for the characterization of brain tumors in vivo. However, few studies have investigated the correlation between carbon-11-methionine (11C-METH) PET metrics and the clinical, radiological, histological, and molecular features of patients affected by lower grade gliomas (LGGs). The present observational study evaluated the relationships between 11C-METH PET metrics and structural magnetic resonance imaging (MRI) findings with the histomolecular biomarkers in patients with LGGs who were candidates for surgery. METHODS We enrolled 96 patients with pathologically proven LGG (51 men, 45 women; age 44.1 ± 13.7 years; 45 with grade II, 51 with grade III), who had been referred from March 2012 to January 2015 for tumor resection and had undergone preoperative 11C-METH PET. The semiquantitative metrics for 11C-METH PET included maximum standardized uptake value (SUVmax), SUV ratio to normal brain, and metabolic tumor burden (MTB). The PET semiquantitative metrics were analyzed and compared with the MRI features, histological diagnosis, isocitrate dehydrogenase-1/2 status, and 1p/19q codeletion. RESULTS Histological grade was associated with SUVmax (P = 0.002), SUV ratio (P = 0.011), and MTB (P = 0.001), with grade III lesions showing higher values. Among the nonenhancing lesions on MRI, SUVmax (P = 0.001), SUV ratio (P = 0.003) and MTB (P < 0.001) were significantly different statistically for grade II versus grade III. The MRI lesion volume correlated poorly with MTB (r2 = 0.13). The SUVmax and SUV ratio were greater (P < 0.05) in isocitrate dehydrogenase-1/2 wild-type lesions, and the SUV ratio was associated with the presence of the 1p19q codeletion. CONCLUSIONS The 11C-METH PET metrics correlated significantly with histological grade and the molecular profile. Semiquantitative PET metrics can improve the preoperative evaluation of LGGs and thus support clinical decision-making.
Collapse
Affiliation(s)
- Marco Riva
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy; Unit of Oncological Neurosurgery, Humanitas Clinical and Research Center - IRCCS, Rozzano, Milan, Italy.
| | - Egesta Lopci
- Unit of Nuclear Medicine, Humanitas Clinical and Research Center - IRCCS, Rozzano, Milan, Italy
| | - Antonella Castellano
- Neuroradiology Unit and CERMAC, Vita-Salute San Raffaele University and IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Laura Olivari
- Unit of Nuclear Medicine, Humanitas Clinical and Research Center - IRCCS, Rozzano, Milan, Italy
| | | | - Federico Pessina
- Unit of Oncological Neurosurgery, Humanitas Clinical and Research Center - IRCCS, Rozzano, Milan, Italy
| | - Bethania Fernandes
- Unit of Pathology, Humanitas Clinical and Research Center - IRCCS, Rozzano, Milan, Italy
| | - Matteo Simonelli
- Humanitas Cancer Center, Humanitas Clinical and Research Center - IRCCS, Rozzano, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Rozzano, Italy
| | - Pierina Navarria
- Unit of Radiotherapy and Radiosurgery, Humanitas Clinical and Research Center - IRCCS, Rozzano, Milan, Italy
| | - Marco Grimaldi
- Unit of Neuroradiology, Humanitas Clinical and Research Center - IRCCS, Rozzano, Milan, Italy
| | - Roberta Rudà
- Department of Neuro-Oncology, University and City of Health and Science Hospital, Turin, Italy
| | - Angelo Castello
- Unit of Nuclear Medicine, Humanitas Clinical and Research Center - IRCCS, Rozzano, Milan, Italy
| | - Marco Rossi
- Unit of Oncological Neurosurgery, Humanitas Clinical and Research Center - IRCCS, Rozzano, Milan, Italy
| | - Tommaso Alfiero
- Unit of Oncological Neurosurgery, Humanitas Clinical and Research Center - IRCCS, Rozzano, Milan, Italy
| | - Riccardo Soffietti
- Department of Neuro-Oncology, University and City of Health and Science Hospital, Turin, Italy
| | - Arturo Chiti
- Unit of Nuclear Medicine, Humanitas Clinical and Research Center - IRCCS, Rozzano, Milan, Italy; Unit of Nuclear Medicine, Humanitas Clinical and Research Center -IRCCS, Rozzano, Milan, Italy
| | - Lorenzo Bello
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy; Unit of Oncological Neurosurgery, Humanitas Clinical and Research Center - IRCCS, Rozzano, Milan, Italy
| |
Collapse
|
38
|
Abstract
Methionine (MET) dependence is a cancer-specific metabolic abnormality that is due to MET overuse for aberrant transmethylation reactions. [11C]-MET is very useful for positron-emission tomography (PET) due to MET overuse in malignant tumors. Many benefits of MET-PET have been demonstrated. MET-PET can differentiate recurrent glioma and necrosis. [11C]-MET-PET can also predict prognosis in gliomas better than [18F]-FDG PET. [11C]-MET-PET is better than MRI for predicting survival in low-grade glioma (LGG). MET-PET has greater specificity for detecting residual tumor after surgery than MRI.
Collapse
Affiliation(s)
- Robert M Hoffman
- AntiCancer, Inc., San Diego, CA, USA. .,Department of Surgery, University of California, San Diego, CA, USA.
| |
Collapse
|
39
|
Ikeguchi R, Shimizu Y, Abe K, Shimizu S, Maruyama T, Nitta M, Abe K, Kawamata T, Kitagawa K. Proton magnetic resonance spectroscopy differentiates tumefactive demyelinating lesions from gliomas. Mult Scler Relat Disord 2018; 26:77-84. [DOI: 10.1016/j.msard.2018.08.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 08/17/2018] [Accepted: 08/23/2018] [Indexed: 11/27/2022]
|
40
|
Modified fractal analysis of methionine positron emission tomography images for predicting prognosis in newly diagnosed patients with glioma. Nucl Med Commun 2018; 39:1165-1173. [PMID: 30247386 DOI: 10.1097/mnm.0000000000000917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To assess intratumoural metabolic heterogeneity using modified fractal analysis and to determine its prognostic significance in patients with glioma. PATIENTS AND METHODS A total of 57 patients with newly diagnosed glioma who underwent methionine PET-computed tomography between August 2012 and January 2017 were enrolled. The requirement for informed consent was waived for this retrospective study. Tumour-to-normal tissue ratio, metabolic tumour volume, total lesion methionine uptake and modified fractal dimension (m-FD) were calculated for each tumour using methionine PET-computed tomography. Associations between these indices and tumour grade and overall survival were analysed. RESULTS Overall, eight patients had grade II, 20 had grade III and 29 had grade IV tumours. The tumour-to-normal tissue ratios of grade III and grade IV tumours were significantly greater than that of grade II tumours. The metabolic tumour volume and total lesion methionine uptake of grade III tumours were significantly greater than those of grade II and grade IV tumours. The m-FD of grade IV tumours was significantly greater than those of grade II and grade III tumours. A total of 47 patients were followed up, and their prognoses were evaluated. Only the m-FD was significantly associated with a poor prognosis (P<0.05). Multivariate analyses identified age (>58 years) (hazard ratio: 5.73; 95.0% confidence interval: 1.4-29.9; P=0.015) and the m-FD (>0.87) (hazard ratio: 4.80; 95.0% confidence interval: 1.12-32.9; P=0.033) as independent prognostic factors for overall survival. CONCLUSION Intratumoural metabolic heterogeneity is a useful imaging biomarker in patients with glioma.
Collapse
|
41
|
Patel CB, Fazzari E, Chakhoyan A, Yao J, Raymond C, Nguyen H, Manoukian J, Nguyen N, Pope W, Cloughesy TF, Nghiemphu PL, Czernin J, Lai A, Ellingson BM. 18F-FDOPA PET and MRI characteristics correlate with degree of malignancy and predict survival in treatment-naïve gliomas: a cross-sectional study. J Neurooncol 2018; 139:399-409. [PMID: 29679199 PMCID: PMC6092195 DOI: 10.1007/s11060-018-2877-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 04/16/2018] [Indexed: 10/17/2022]
Abstract
INTRODUCTION To report the potential value of pre-operative 18F-FDOPA PET and anatomic MRI in diagnosis and prognosis of glioma patients. METHODS Forty-five patients with a pathological diagnosis of glioma with pre-operative 18F-FDOPA PET and anatomic MRI were retrospectively examined. The volume of contrast enhancement and T2 hyperintensity on MRI images along with the ratio of maximum 18F-FDOPA SUV in tumor to normal tissue (T/N SUVmax) were measured and used to predict tumor grade, molecular status, and overall survival (OS). RESULTS A significant correlation was observed between WHO grade and: the volume of contrast enhancement (r = 0.67), volume of T2 hyperintensity (r = 0.42), and 18F-FDOPA uptake (r = 0.60) (P < 0.01 for each correlation). The volume of contrast enhancement and 18F-FDOPA T/N SUVmax were significantly higher in glioblastoma (WHO IV) compared with lower grade gliomas (WHO I-III), as well as for high-grade gliomas (WHO III-IV) compared with low-grade gliomas (WHO I-II). Receiver-operator characteristic (ROC) analyses confirmed the volume of contrast enhancement and 18F-FDOPA T/N SUVmax could each differentiate patient groups. No significant differences in 18F-FDOPA uptake were observed by IDH or MGMT status. Multivariable Cox regression suggested age (HR 1.16, P = 0.0001) and continuous measures of 18F-FDOPA PET T/N SUVmax (HR 4.43, P = 0.016) were significant prognostic factors for OS in WHO I-IV gliomas. CONCLUSIONS Current findings suggest a potential role for the use of pre-operative 18F-FDOPA PET in suspected glioma. Increased 18F-FDOPA uptake may not only predict higher glioma grade, but also worse OS.
Collapse
Affiliation(s)
- Chirag B Patel
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- UCLA Neuro-Oncology Program, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Elisa Fazzari
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- UCLA Neuro-Oncology Program, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Ararat Chakhoyan
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Jingwen Yao
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Catalina Raymond
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Huytram Nguyen
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- UCLA Neuro-Oncology Program, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Jasmine Manoukian
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- UCLA Neuro-Oncology Program, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Nhung Nguyen
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- UCLA Neuro-Oncology Program, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Whitney Pope
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Timothy F Cloughesy
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- UCLA Neuro-Oncology Program, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Phioanh L Nghiemphu
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- UCLA Neuro-Oncology Program, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Johannes Czernin
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Albert Lai
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- UCLA Neuro-Oncology Program, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Benjamin M Ellingson
- UCLA Neuro-Oncology Program, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
- Departments of Radiological Sciences and Psychiatry, David Geffen School of Medicine, University of California, Los Angeles, 924 Westwood Blvd., Suite 615, Los Angeles, CA, 90024, USA.
| |
Collapse
|
42
|
Kawaguchi K, Miyake K, Han Q, Li S, Tan Y, Igarashi K, Kiyuna T, Miyake M, Higuchi T, Oshiro H, Zhang Z, Razmjooei S, Wangsiricharoen S, Bouvet M, Singh SR, Unno M, Hoffman RM. Oral recombinant methioninase (o-rMETase) is superior to injectable rMETase and overcomes acquired gemcitabine resistance in pancreatic cancer. Cancer Lett 2018; 432:251-259. [DOI: 10.1016/j.canlet.2018.06.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/05/2018] [Accepted: 06/12/2018] [Indexed: 01/06/2023]
|
43
|
Kim YI, Kim Y, Lee JY, Jang SJ. Prognostic Value of the Metabolic and Volumetric Parameters of 11C-Methionine Positron-Emission Tomography for Gliomas: A Systematic Review and Meta-Analysis. AJNR Am J Neuroradiol 2018; 39:1629-1634. [PMID: 29954817 DOI: 10.3174/ajnr.a5707] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 03/29/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND Several studies have demonstrated that 11C-methionine positron-emission tomography provides information on prognosis. PURPOSE We performed a systematic review and meta-analysis of the prognostic value of the metabolic and volumetric parameters of 11C-methionine-PET for gliomas. DATA SOURCES A systematic search was performed using the following combination of keywords: "methionine," "PET," "glioma," and "prognosis." STUDY SELECTION The inclusion criteria were the use of 11C-methionine-PET as an imaging tool, studies limited to gliomas, studies including metabolic parameters (tumor-to-normal ratio) and/or volumetric parameters (metabolic tumor volume), and studies reporting survival data. The electronic search first identified 181 records, and 14 studies were selected. DATA ANALYSIS Event-free survival and overall survival were the outcome measures of interest. The effect of the tumor-to-normal ratio and metabolic tumor volume on survival was determined by the effect size of the hazard ratio. Hazard ratios were extracted directly from each study when provided or determined by analyzing the Kaplan-Meier curves. DATA SYNTHESIS The combined hazard ratios of the tumor-to-normal ratio for event-free survival was 1.74 with no significance and that of the tumor-to-normal ratio for overall survival was 2.02 with significance. The combined hazard ratio of the metabolic tumor volume for event-free survival was 2.72 with significance and that of the metabolic tumor volume for overall survival was 3.50 with significance. LIMITATIONS The studies selected were all retrospective, and there were only 4 studies involving the metabolic tumor volume. CONCLUSIONS The present meta-analysis of 11C-methionine-PET suggests that the tumor-to-normal ratio for overall survival and the metabolic tumor volume for event-free survival and overall survival are significant prognostic factors for patients with gliomas.
Collapse
Affiliation(s)
- Y-I Kim
- From the Department of Nuclear Medicine (Y.-i.K.), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Department of Nuclear Medicine (Y.-i.K., J.Y.L., S.J.J.), CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Y Kim
- Veterans Health Service Medical Center (Y.K.), Seoul, Republic of Korea
| | - J Y Lee
- Department of Nuclear Medicine (Y.-i.K., J.Y.L., S.J.J.), CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - S J Jang
- Department of Nuclear Medicine (Y.-i.K., J.Y.L., S.J.J.), CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| |
Collapse
|
44
|
Huang YC, Farn SS, Chou YC, Yeh CN, Chang CW, Chung YH, Chen TW, Huang WS, Yu CS. Synthesis of para
-[ 18
F]Fluorofenbufen Octylamide for PET Imaging of Brain Tumors. J CHIN CHEM SOC-TAIP 2018. [DOI: 10.1002/jccs.201700300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Ying-Cheng Huang
- Department of Neurosurgery, Chang-Gung Memorial Hospital at Linkou; Chang Gung University; Taiwan
| | - Shiou-Shiow Farn
- Department of Biomedical Engineering and Environmental Sciences; National Tsinghua University; Hsinchu 300 Taiwan
- Isotope Application Division; Institute of Nuclear Energy Research; Taoyuan 32546 Taiwan
| | - Yo-Cheng Chou
- Department of Biomedical Engineering and Environmental Sciences; National Tsinghua University; Hsinchu 300 Taiwan
| | - Chun-Nan Yeh
- Department of Surgery, Chang-Gung Memorial Hospital at Linkou; Chang Gung University; Taiwan
| | - Chi-Wei Chang
- Department of Nuclear Medicine; Veterans General Hospital at Taipei; Taiwan
| | - Yi-Hsiu Chung
- Center for Advanced Molecular Imaging and Translation; Chang Gung Memorial Hospital; Taiwan
| | - Tsong-Wen Chen
- Department of Surgery, Chang-Gung Memorial Hospital at Linkou; Chang Gung University; Taiwan
| | - Wen-Sheng Huang
- Department of Nuclear Medicine; Veterans General Hospital at Taipei; Taiwan
| | - Chung-Shan Yu
- Department of Biomedical Engineering and Environmental Sciences; National Tsinghua University; Hsinchu 300 Taiwan
- Institute of Nuclear Engineering and Science; National Tsing-Hua University; Hsinchu 300 Taiwan
| |
Collapse
|
45
|
Verger A, Arbizu J, Law I. Role of amino-acid PET in high-grade gliomas: limitations and perspectives. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF RADIOPHARMACEUTICAL CHEMISTRY AND BIOLOGY 2018; 62:254-266. [PMID: 29696948 DOI: 10.23736/s1824-4785.18.03092-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Positron emission tomography (PET) using radiolabeled amino-acids was recently recommended by the Response Assessment in Neuro-Oncology (RANO) working group as an additional tool in the diagnostic assessment of brain tumors. The aim of this review is to summarize available literature data on the role of amino-acid PET imaging in high-grade gliomas (HGGs), with regard to diagnosis, treatment planning and follow-up of these tumors. Indeed, amino-acid PET applications are multiple throughout the evolution of HGGs. However, certain limitations such as lack of specificity, uncertain value for grading and prognostication or the limited data for treatment monitoring should to be taken into account, the latter of which are further developed in this review. Notwithstanding these limitations, amino-acid PET is becoming increasingly accessible in many nuclear medicine centers. Larger prospective cohort prospective studies are thus needed in order to increase the clinical value of this modality and enable its extended use to the largest number of patients.
Collapse
Affiliation(s)
- Antoine Verger
- Department of Nuclear Medicine and Nancyclotep Imaging Platform, CHRU Nancy, Lorraine University, Nancy, France - .,IADI, INSERM, Lorraine University, Nancy, France -
| | - Javier Arbizu
- Department of Nuclear Medicine, Clinica Universidad de Navarra, University of Navarra, Pamplona, Spain
| | - Ian Law
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
46
|
Igarashi K, Kawaguchi K, Li S, Han Q, Tan Y, Gainor E, Kiyuna T, Miyake K, Miyake M, Higuchi T, Oshiro H, Singh AS, Eckardt MA, Nelson SD, Russell TA, Dry SM, Li Y, Yamamoto N, Hayashi K, Kimura H, Miwa S, Tsuchiya H, Eilber FC, Hoffman RM. Recombinant methioninase combined with doxorubicin (DOX) regresses a DOX-resistant synovial sarcoma in a patient-derived orthotopic xenograft (PDOX) mouse model. Oncotarget 2018; 9:19263-19272. [PMID: 29721200 PMCID: PMC5922394 DOI: 10.18632/oncotarget.24996] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 03/15/2018] [Indexed: 01/09/2023] Open
Abstract
Synovial sarcoma (SS) is a recalcitrant subgroup of soft tissue sarcoma (STS). A tumor from a patient with high grade SS from a lower extremity was grown orthotopically in the right biceps femoris muscle of nude mice to establish a patient-derived orthotopic xenograft (PDOX) mouse model. The PDOX mice were randomized into the following groups when tumor volume reached approximately 100 mm3: G1, control without treatment; G2, doxorubicin (DOX) (3 mg/kg, intraperitoneal [i.p.] injection, weekly, for 2 weeks; G3, rMETase (100 unit/mouse, i.p., daily, for 2 weeks); G4 DOX (3mg/kg), i.p. weekly, for 2 weeks) combined with rMETase (100 unit/mouse, i.p., daily, for 2 weeks). On day 14 after treatment initiation, all therapies significantly inhibited tumor growth compared to untreated control, except DOX: (DOX: p = 0.48; rMETase: p < 0.005; DOX combined with rMETase < 0.0001). DOX combined with rMETase was significantly more effective than both DOX alone (p < 0.001) and rMETase alone (p < 0.05). The relative body weight on day 14 compared with day 0 did not significantly differ between any treatment group or untreated control. The results indicate that r-METase can overcome DOX-resistance in this recalcitrant disease.
Collapse
Affiliation(s)
- Kentaro Igarashi
- AntiCancer, Inc., San Diego, California, USA.,Department of Surgery, University of California, San Diego, California, USA.,Department of Orthopaedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Kei Kawaguchi
- AntiCancer, Inc., San Diego, California, USA.,Department of Surgery, University of California, San Diego, California, USA
| | - Shukuan Li
- AntiCancer, Inc., San Diego, California, USA
| | | | - Yuying Tan
- AntiCancer, Inc., San Diego, California, USA
| | | | - Tasuku Kiyuna
- AntiCancer, Inc., San Diego, California, USA.,Department of Surgery, University of California, San Diego, California, USA
| | - Kentaro Miyake
- AntiCancer, Inc., San Diego, California, USA.,Department of Surgery, University of California, San Diego, California, USA
| | - Masuyo Miyake
- AntiCancer, Inc., San Diego, California, USA.,Department of Surgery, University of California, San Diego, California, USA
| | - Takashi Higuchi
- AntiCancer, Inc., San Diego, California, USA.,Department of Surgery, University of California, San Diego, California, USA
| | - Hiromichi Oshiro
- AntiCancer, Inc., San Diego, California, USA.,Department of Surgery, University of California, San Diego, California, USA
| | - Arun S Singh
- Division of Hematology-Oncology, University of California, Los Angeles, CA, USA
| | - Mark A Eckardt
- Department of Surgery, Yale School of Medicine, New Haven, Connecticut, USA
| | - Scott D Nelson
- Department of Pathology, University of California, Los Angeles, CA, USA
| | - Tara A Russell
- Division of Surgical Oncology, University of California, Los Angeles, CA, USA
| | - Sarah M Dry
- Department of Pathology, University of California, Los Angeles, CA, USA
| | - Yunfeng Li
- Department of Pathology, University of California, Los Angeles, CA, USA
| | - Norio Yamamoto
- Department of Orthopaedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Katsuhiro Hayashi
- Department of Orthopaedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Hiroaki Kimura
- Department of Orthopaedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Shinji Miwa
- Department of Orthopaedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Hiroyuki Tsuchiya
- Department of Orthopaedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Fritz C Eilber
- Division of Surgical Oncology, University of California, Los Angeles, CA, USA
| | - Robert M Hoffman
- AntiCancer, Inc., San Diego, California, USA.,Department of Surgery, University of California, San Diego, California, USA
| |
Collapse
|
47
|
Takano K, Kinoshita M, Arita H, Okita Y, Chiba Y, Kagawa N, Watanabe Y, Shimosegawa E, Hatazawa J, Hashimoto N, Fujimoto Y, Kishima H. Influence of region-of-interest designs on quantitative measurement of multimodal imaging of MR non-enhancing gliomas. Oncol Lett 2018; 15:7934-7940. [PMID: 29725480 PMCID: PMC5920197 DOI: 10.3892/ol.2018.8319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 03/16/2018] [Indexed: 11/06/2022] Open
Abstract
A number of studies have revealed the usefulness of multimodal imaging in gliomas. Although the results have been heavily affected by the method used for region of interest (ROI) design, the most discriminatory method for setting the ROI remains unclear. The aim of the present study was to determine the most suitable ROI design for 18F-fluorodeoxyglucose (FDG) and 11C-methionine (MET) positron emission tomography (PET), apparent diffusion coefficient (ADC), and fractional anisotropy (FA) obtained by diffusion tensor imaging (DTI) from the viewpoint of grades of non-enhancing gliomas. A total of 31 consecutive patients with newly diagnosed, histologically confirmed magnetic resonance (MR) non-enhancing gliomas who underwent FDG-PET, MET-PET and DTI were retrospectively investigated. Quantitative measurements were performed using four different ROIs; hotspot/tumor center and whole tumor, constructed in either two-dimensional (2D) or three-dimensional (3D). Histopathological grading of the tumor was considered as empirical truth and the quantitative measurements obtained from each ROI was correlated with the grade of the tumor. The most discriminating ROI for non-enhancing glioma grading was different according to the different imaging modalities. 2D-hotspot/center ROI was most discriminating for FDG-PET (P=0.087), ADC map (P=0.0083), and FA map (P=0.25), whereas 3D-whole tumor ROI was best for MET-PET (P=0.0050). In the majority of scenarios, 2D-ROIs performed better than 3D-ROIs. Results from the image analysis using FDG-PET, MET-PET, ADC and FA may be affected by ROI design and the most discriminating ROI for non-enhancing glioma grading was different according to the imaging modality.
Collapse
Affiliation(s)
- Koji Takano
- Department of Neurosurgery, Osaka International Cancer Institute, Osaka 541-8567, Japan.,Department of Neurosurgery, Toyonaka Municipal Hospital, Toyonaka, Osaka 560-8565, Japan
| | - Manabu Kinoshita
- Department of Neurosurgery, Osaka International Cancer Institute, Osaka 541-8567, Japan.,Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Hideyuki Arita
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Yoshiko Okita
- Department of Neurosurgery, Osaka National Hospital, National Hospital Organization, Osaka 540-0006, Japan
| | - Yasuyoshi Chiba
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan.,Department of Neurosurgery, Osaka Women's and Children's Hospital, Izumi, Osaka 594-1101, Japan
| | - Naoki Kagawa
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Yoshiyuki Watanabe
- Department of Radiology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Eku Shimosegawa
- Department of Nuclear Medicine and Tracer Kinetics, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Jun Hatazawa
- Department of Nuclear Medicine and Tracer Kinetics, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Naoya Hashimoto
- Department of Neurosurgery, Kyoto Prefectural University Graduate School of Medical Science, Kyoto 602-8566, Japan
| | - Yasunori Fujimoto
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Haruhiko Kishima
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| |
Collapse
|
48
|
Ideguchi M, Nishizaki T, Ikeda N, Okamura T, Tanaka Y, Fujii N, Ohno M, Shimabukuro T, Kimura T, Ikeda E, Suga K. A surgical strategy using a fusion image constructed from 11C-methionine PET, 18F-FDG-PET and MRI for glioma with no or minimum contrast enhancement. J Neurooncol 2018. [PMID: 29516344 DOI: 10.1007/s11060-018-2821-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The objective of this study was to investigate the distribution of 11C-methionine (MET) and F-18 fluorodeoxyglucose (FDG) uptake in positron emission tomography (PET) imaging and the hyperintense area in T2 weighted imaging (T2WI) in glioma with no or poor gadolinium enhancement in magnetic resonance imaging (GdMRI). Cases were also analyzed pathologically. We prospectively investigated 16 patients with non- or minimally enhancing (< 10% volume) glioma. All patients underwent MET-PET and FDG-PET scans preoperatively. After delineating the tumor based on MET uptake, integrated 3D images from FDG-PET and MRI (GdMRI, T2WI or FLAIR) were generated and the final resection plane was planned. This resection plane was determined intraoperatively using the navigation-guided fencepost method. The delineation obtained by MET-PET imaging was larger than that with GdMRI in all cases with an enhanced effect. In contrast, the T2WI-abnormal signal area (T2WI+) tended to be larger than the MET uptake area (MET+). Tumor resection was > 95% in the non-eloquent area in 4/5 cases (80%), whereas 10 of 11 cases (90.9%) had partial resection in the eloquent area. In a case including the language area, 92% resection was achieved based on the MET-uptake area, in contrast to T2WI-based partial resection (65%), because the T2WI+/MET- area defined the language area. Pathological findings showed that the T2WI+/MET+ area is glioma, whereas 6 of 9 T2WI+/MET- lesions included normal tissues. Tissue from T2W1+/MET+/FDG+/GdMRI+ lesions gave an accurate diagnosis of grade in six cases. Non- or minimally enhancing gliomas were classified as having a MET uptake area that totally or partially overlapped with the T2WI hyperintense area. Resection planning with or without a metabolically active area in non- or minimally enhancing gliomas may be useful for accurate diagnosis, malignancy grading, and particularly for eloquent area although further study is needed to analyze the T2WI+/MET- area.
Collapse
Affiliation(s)
- Makoto Ideguchi
- Department of Neurosurgery, Ube-kohsan Central Hospital Corporation, 750 Nishikiwa, Ube, Yamaguchi, 755-0151, Japan.
| | - Takafumi Nishizaki
- Department of Neurosurgery, Ube-kohsan Central Hospital Corporation, 750 Nishikiwa, Ube, Yamaguchi, 755-0151, Japan
| | - Norio Ikeda
- Department of Neurosurgery, Ube-kohsan Central Hospital Corporation, 750 Nishikiwa, Ube, Yamaguchi, 755-0151, Japan
| | - Tomomi Okamura
- Department of Neurosurgery, Ube-kohsan Central Hospital Corporation, 750 Nishikiwa, Ube, Yamaguchi, 755-0151, Japan
| | - Yasue Tanaka
- Department of Neurosurgery, Ube-kohsan Central Hospital Corporation, 750 Nishikiwa, Ube, Yamaguchi, 755-0151, Japan
| | - Natsumi Fujii
- Department of Neurosurgery, Ube-kohsan Central Hospital Corporation, 750 Nishikiwa, Ube, Yamaguchi, 755-0151, Japan
| | - Machiko Ohno
- Department of Neurosurgery, Ube-kohsan Central Hospital Corporation, 750 Nishikiwa, Ube, Yamaguchi, 755-0151, Japan
| | - Taichi Shimabukuro
- Department of Neurosurgery, Ube-kohsan Central Hospital Corporation, 750 Nishikiwa, Ube, Yamaguchi, 755-0151, Japan
| | - Tokuhiro Kimura
- Department of Pathology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Eiji Ikeda
- Department of Pathology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Kazuyoshi Suga
- The Department of Radiology, St. Hill Hospital, Ube, Japan
| |
Collapse
|
49
|
The roles of 11C-acetate PET/CT in predicting tumor differentiation and survival in patients with cerebral glioma. Eur J Nucl Med Mol Imaging 2018; 45:1012-1020. [PMID: 29511838 DOI: 10.1007/s00259-018-3948-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/11/2018] [Indexed: 12/15/2022]
Abstract
PURPOSE This prospective study aimed to evaluate the clinical values of 11C-acetate positron emission tomography/computed tomography (PET/CT) in predicting histologic grades and survival in patients with cerebral glioma. METHODS Seventy-three patients with surgically confirmed cerebral gliomas (19 grade II, 21 grade III, and 33 grade IV) who underwent 11C-acetate PET/CT before surgery were included. Tumor-to-choroid plexus ratio (TCR), which was defined as the maximum standardized uptake value (SUV) of tumors to the mean SUV of choroid plexus, was compared between three World Health Organization (WHO) grade groups. Moreover, metabolic tumor volumes (MTV) were calculated. Progression-free survival (PFS) and overall survival (OS) curves were plotted using the Kaplan-Meier method, and differences in survival between groups were assessed using the log-rank test. RESULTS Median TCR was 1.20 (interquartile range [IQR], 1.14 to 1.4) in grade II, 1.65 (IQR, 1.26 to 1.79) in grade III, and 2.53 (IQR, 1.93 to 3.30) in grade IV gliomas. Significant differences in TCR were seen among the three WHO grade groups (P < 0.001). In Cox regression analysis including TCR, MTV, molecular markers, and other clinical factors, TCR was prognostic for PFS (P = 0.016) and TCR and MTV were prognostic for OS (P = 0.024 [TCR], P = 0.030 [MTV]). PFS and OS were significantly shorter in patients with a TCR ≥ 1.6 than in those with a TCR < 1.6. OS were significantly shorter in patients with a MTV ≥ 1 than in those with a TCR < 1. CONCLUSIONS TCR on 11C-acetate PET/CT significantly differed between low- and high-grade cerebral gliomas, and it showed the capability to further differentiate grade III from grade IV tumors. TCR and MTV were independent prognostic factors and predicted survival better than did the WHO grade.
Collapse
|
50
|
Poetsch N, Woehrer A, Gesperger J, Furtner J, Haug AR, Wilhelm D, Widhalm G, Karanikas G, Weber M, Rausch I, Mitterhauser M, Wadsak W, Hacker M, Preusser M, Traub-Weidinger T. Visual and semiquantitative 11C-methionine PET: an independent prognostic factor for survival of newly diagnosed and treatment-naïve gliomas. Neuro Oncol 2018; 20:411-419. [PMID: 29016947 PMCID: PMC5817953 DOI: 10.1093/neuonc/nox177] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Background Few data exist regarding the prognostic value of L-[S-methyl-11C]methionine (MET) PET for treatment-naïve gliomas. Methods A total of 160 glioma patients (89 men, 71 women; mean age: 45, range 18-84 y) underwent a MET PET prior to any therapy. The PET scans were evaluated visually and semiquantitatively by tumor-to-background (T/N) ratio thresholds chosen by analysis of receiver operating characteristics. Additionally, isocitrate dehydrogenase 1-R132H (IDH1-R132H) immunohistochemistry was performed. Survival analysis was done using Kaplan-Meier estimates and the Cox proportional hazards model. Results Significantly shorter mean survival times (7.2 vs 8.6 y; P = 0.024) were seen in patients with amino acid avid gliomas (n = 137) compared with visually negative tumors (n = 33) in MET PET. T/N ratio thresholds of 2.1 and 3.5 were significantly associated with survival (10.3 vs 7 vs 4.3 y; P < 0.001). Mean survival differed significantly using the median T/N ratio of 2.4 as cutoff, independent of histopathology (P < 0.01; mean survival: 10.2 ± 0.8 y vs 5.5 ± 0.6 y). In the subgroup of 142 glioma patients characterized by IDH1-R132H status, METT/N ratio demonstrated a significant prognostic impact in IDH1-R132H wildtype astrocytomas and glioblastoma (P = 0.001). Additionally, multivariate testing revealed semiquantitative MET PET as an independent prognostic parameter for treatment-naïve glioma patients without (P = 0.031) and with IDH1-R132H characterization of gliomas (P = 0.024; odds ratio 1.57). Conclusion This retrospective analysis demonstrates the value of MET PET as a prognostic parameter on survival in treatment-naïve glioma patients.
Collapse
Affiliation(s)
- Nina Poetsch
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Adelheid Woehrer
- Institute of Neurology, Medical University of Vienna, Vienna, Austria
| | - Johanna Gesperger
- Institute of Neurology, Medical University of Vienna, Vienna, Austria
| | - Julia Furtner
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Alexander R Haug
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Dorothee Wilhelm
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Georg Widhalm
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Georgios Karanikas
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Michael Weber
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Ivo Rausch
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Markus Mitterhauser
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute of Applied Diagnostics, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Wadsak
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Marcus Hacker
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Matthias Preusser
- Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Tatjana Traub-Weidinger
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| |
Collapse
|