1
|
Zirakchian Zadeh M. PET/CT in assessment of colorectal liver metastases: a comprehensive review with emphasis on 18F-FDG. Clin Exp Metastasis 2023; 40:465-491. [PMID: 37682423 DOI: 10.1007/s10585-023-10231-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/21/2023] [Indexed: 09/09/2023]
Abstract
Approximately 25% of those who are diagnosed with colorectal cancer will develop colorectal liver metastases (CRLM) as their illness advances. Despite major improvements in both diagnostic and treatment methods, the prognosis for patients with CRLM is still poor, with low survival rates. Accurate employment of imaging methods is critical in identifying the most effective treatment approach for CRLM. Different imaging modalities are used to evaluate CRLM, including positron emission tomography (PET)/computed tomography (CT). Among the PET radiotracers, fluoro-18-deoxyglucose (18F-FDG), a glucose analog, is commonly used as the primary radiotracer in assessment of CRLM. As the importance of 18F-FDG-PET/CT continues to grow in assessment of CRLM, developing a comprehensive understanding of this subject becomes imperative for healthcare professionals from diverse disciplines. The primary aim of this article is to offer a simplified and comprehensive explanation of PET/CT in the evaluation of CRLM, with a deliberate effort to minimize the use of technical nuclear medicine terminology. This approach intends to provide various healthcare professionals and researchers with a thorough understanding of the subject matter.
Collapse
Affiliation(s)
- Mahdi Zirakchian Zadeh
- Molecular Imaging and Therapy and Interventional Radiology Services, Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
2
|
Huang S, Ren L, Beck JA, Phelps TE, Olkowski C, Ton A, Roy J, White ME, Adler S, Wong K, Cherukuri A, Zhang X, Basuli F, Choyke PL, Jagoda EM, LeBlanc AK. Exploration of Imaging Biomarkers for Metabolically-Targeted Osteosarcoma Therapy in a Murine Xenograft Model. Cancer Biother Radiopharm 2023; 38:475-485. [PMID: 37253167 PMCID: PMC10623067 DOI: 10.1089/cbr.2022.0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023] Open
Abstract
Background: Osteosarcoma (OS) is an aggressive pediatric cancer with unmet therapeutic needs. Glutaminase 1 (GLS1) inhibition, alone and in combination with metformin, disrupts the bioenergetic demands of tumor progression and metastasis, showing promise for clinical translation. Materials and Methods: Three positron emission tomography (PET) clinical imaging agents, [18F]fluoro-2-deoxy-2-D-glucose ([18F]FDG), 3'-[18F]fluoro-3'-deoxythymidine ([18F]FLT), and (2S, 4R)-4-[18F]fluoroglutamine ([18F]GLN), were evaluated in the MG63.3 human OS xenograft mouse model, as companion imaging biomarkers after treatment for 7 d with a selective GLS1 inhibitor (CB-839, telaglenastat) and metformin, alone and in combination. Imaging and biodistribution data were collected from tumors and reference tissues before and after treatment. Results: Drug treatment altered tumor uptake of all three PET agents. Relative [18F]FDG uptake decreased significantly after telaglenastat treatment, but not within control and metformin-only groups. [18F]FLT tumor uptake appears to be negatively affected by tumor size. Evidence of a flare effect was seen with [18F]FLT imaging after treatment. Telaglenastat had a broad influence on [18F]GLN uptake in tumor and normal tissues. Conclusions: Image-based tumor volume quantification is recommended for this paratibial tumor model. The performance of [18F]FLT and [18F]GLN was affected by tumor size. [18F]FDG may be useful in detecting telaglenastat's impact on glycolysis. Exploration of kinetic tracer uptake protocols is needed to define clinically relevant patterns of [18F]GLN uptake in patients receiving telaglenastat.
Collapse
Affiliation(s)
- Shan Huang
- Comparative Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Ling Ren
- Comparative Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jessica A. Beck
- Comparative Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Tim E. Phelps
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Colleen Olkowski
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Anita Ton
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jyoti Roy
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Margaret E. White
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Stephen Adler
- Clinical Research Directorate, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Bethesda, Maryland, USA
| | - Karen Wong
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Aswini Cherukuri
- Comparative Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Xiang Zhang
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Falguni Basuli
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Peter L. Choyke
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Elaine M. Jagoda
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Amy K. LeBlanc
- Comparative Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
3
|
The Value of 18F-FDG-PET-CT Imaging in Treatment Evaluation of Colorectal Liver Metastases: A Systematic Review. Diagnostics (Basel) 2022; 12:diagnostics12030715. [PMID: 35328267 PMCID: PMC8947194 DOI: 10.3390/diagnostics12030715] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/04/2022] [Accepted: 03/05/2022] [Indexed: 02/01/2023] Open
Abstract
(1) Background: Up to 50% of patients with colorectal cancer either have synchronous colorectal liver metastases (CRLM) or develop CRLM over the course of their disease. Surgery and thermal ablation are the most common local treatment options of choice. Despite development and improvement in local treatment options, (local) recurrence remains a significant clinical problem. Many different imaging modalities can be used in the follow-up after treatment of CRLM, lacking evidence-based international consensus on the modality of choice. In this systematic review, we evaluated 18F-FDG-PET-CT performance after surgical resection, thermal ablation, radioembolization, and neoadjuvant and palliative chemotherapy based on current published literature. (2) Methods: A systematic literature search was performed on the PubMed database. (3) Results: A total of 31 original articles were included in the analysis. Only one suitable study was found describing the role of 18F-FDG-PET-CT after surgery, which makes it hard to draw a firm conclusion. 18F-FDG-PET-CT showed to be of additional value in the follow-up after thermal ablation, palliative chemotherapy, and radioembolization. 18F-FDG-PET-CT was found to be a poor to moderate predictor of pathologic response after neoadjuvant chemotherapy. (4) Conclusions: 18F-FDG-PET-CT is superior to conventional morphological imaging modalities in the early detection of residual disease after thermal ablation and in the treatment evaluation and prediction of prognosis during palliative chemotherapy and after radioembolization, and 18F-FDG-PET-CT could be considered in selected cases after neoadjuvant chemotherapy and surgical resection.
Collapse
|
4
|
Kim JE, Chae SY, Kim JH, Kim HJ, Kim TW, Kim KP, Kim SY, Lee JL, Oh SJ, Kim JS, Ryu JS, Moon DH, Hong YS. 3′-Deoxy-3’-18F-Fluorothymidine and 18F-Fluorodeoxyglucose positron emission tomography for the early prediction of response to Regorafenib in patients with metastatic colorectal cancer refractory to all standard therapies. Eur J Nucl Med Mol Imaging 2019; 46:1713-1722. [DOI: 10.1007/s00259-019-04330-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 04/02/2019] [Indexed: 01/07/2023]
|
5
|
Jang HY, Kim DH, Lee HJ, Kim WD, Kim SY, Hwang JJ, Lee SJ, Moon DH. Schedule-dependent synergistic effects of 5-fluorouracil and selumetinib in KRAS or BRAF mutant colon cancer models. Biochem Pharmacol 2019; 160:110-120. [DOI: 10.1016/j.bcp.2018.12.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 12/19/2018] [Indexed: 01/08/2023]
|
6
|
Gock M, Mullins CS, Bergner C, Prall F, Ramer R, Göder A, Krämer OH, Lange F, Krause BJ, Klar E, Linnebacher M. Establishment, functional and genetic characterization of three novel patient-derived rectal cancer cell lines. World J Gastroenterol 2018; 24:4880-4892. [PMID: 30487698 PMCID: PMC6250916 DOI: 10.3748/wjg.v24.i43.4880] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/22/2018] [Accepted: 11/02/2018] [Indexed: 02/06/2023] Open
Abstract
AIM To establish patient-individual tumor models of rectal cancer for analyses of novel biomarkers, individual response prediction and individual therapy regimens. METHODS Establishment of cell lines was conducted by direct in vitro culturing and in vivo xenografting with subsequent in vitro culturing. Cell lines were in-depth characterized concerning morphological features, invasive and migratory behavior, phenotype, molecular profile including mutational analysis, protein expression, and confirmation of origin by DNA fingerprint. Assessment of chemosensitivity towards an extensive range of current chemotherapeutic drugs and of radiosensitivity was performed including analysis of a combined radio- and chemotherapeutic treatment. In addition, glucose metabolism was assessed with 18F-fluorodeoxyglucose (FDG) and proliferation with 18F-fluorothymidine. RESULTS We describe the establishment of ultra-low passage rectal cancer cell lines of three patients suffering from rectal cancer. Two cell lines (HROC126, HROC284Met) were established directly from tumor specimens while HROC239 T0 M1 was established subsequent to xenografting of the tumor. Molecular analysis classified all three cell lines as CIMP-0/ non-MSI-H (sporadic standard) type. Mutational analysis revealed following mutational profiles: HROC126: APCwt , TP53wt , KRASwt , BRAFwt , PTENwt ; HROC239 T0 M1: APCmut , P53wt , KRASmut , BRAFwt , PTENmut and HROC284Met: APCwt , P53mut , KRASmut , BRAFwt , PTENmut . All cell lines could be characterized as epithelial (EpCAM+) tumor cells with equivalent morphologic features and comparable growth kinetics. The cell lines displayed a heterogeneous response toward chemotherapy, radiotherapy and their combined application. HROC126 showed a highly radio-resistant phenotype and HROC284Met was more susceptible to a combined radiochemotherapy than HROC126 and HROC239 T0 M1. Analysis of 18F-FDG uptake displayed a markedly reduced FDG uptake of all three cell lines after combined radiochemotherapy. CONCLUSION These newly established and in-depth characterized ultra-low passage rectal cancer cell lines provide a useful instrument for analysis of biological characteristics of rectal cancer.
Collapse
Affiliation(s)
- Michael Gock
- Department of General Surgery, University Medical Center, Rostock 18055, Germany
| | - Christina S Mullins
- Section of Molecular Oncology and Immunotherapy, University Medical Center, Rostock 18055, Germany
| | - Carina Bergner
- Department of Nuclear Medicine, University Medical Center, Rostock 18055, Germany
| | - Friedrich Prall
- Institute of Pathology, University Medical Center, Rostock 18055, Germany
| | - Robert Ramer
- Institute of Pharmacology, University Medical Center, Rostock 18055, Germany
| | - Anja Göder
- Institute of Toxicology, University Medical Center Mainz, Mainz 55131, Germany
| | - Oliver H Krämer
- Institute of Toxicology, University Medical Center Mainz, Mainz 55131, Germany
| | - Falko Lange
- Oscar-Langendorff-Institute of Physiology, University Medical Center, Rostock 18055, Germany
| | - Bernd J Krause
- Department of Nuclear Medicine, University Medical Center, Rostock 18055, Germany
| | - Ernst Klar
- Department of General Surgery, University Medical Center, Rostock 18055, Germany
| | - Michael Linnebacher
- Section of Molecular Oncology and Immunotherapy, University Medical Center, Rostock 18055, Germany
| |
Collapse
|
7
|
Dexamethasone pretreatment impairs the thymidylate synthase inhibition mediated flare in thymidine salvage pathway activity in non-small cell lung cancer. PLoS One 2018; 13:e0202384. [PMID: 30142195 PMCID: PMC6108460 DOI: 10.1371/journal.pone.0202384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 08/02/2018] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Successful inhibition of thymidylate synthase (TS) by pemetrexed, a TS inhibitor, results in a reproducible transient burst or "flare" in thymidine salvage pathway activity at 2 hrs. of therapy which can be measurable with FLT-PET ([18F]fluorothymidine-positron emission tomography) in non-small cell lung cancer (NSCLC). Routine administration of dexamethasone with pemetrexed-based therapy could potentially confound this imaging approach since dexamethasone is known to inhibit expression of thymidine kinase 1, a key enzyme in the thymidine salvage pathway. Here we examine the potential impact of dexamethasone on the TS inhibition-mediated thymidine salvage pathway "flare" in NSCLC. MATERIALS AND METHODS In order to determine NSCLC cell line sensitivity to dexamethasone and pemetrexed, IC50 studies were performed on NSCLC cell lines H23, H1975, H460, H1299. TS inhibition-mediated "flare" in thymidine salvage pathway activity was then measured at 2hrs. of exposure to pemetrexed and cisplatin in NSCLC cells lines following using 3H-thymidine incorporation assays under the following conditions: control (no chemotherapy or dexamethasone), or treated with pemetrexed and cisplatin without dexamethasone, with 24 hrs. pre-treatment of dexamethasone or with dexamethasone administered together with chemotherapy. These conditions were chosen to model the delivery of pemetrexed-based therapy in the clinic. RESULTS The IC50 of H23, H1975, H460, H1299 for dexamethasone and pemetrexed were 40, 5.9, 718, 362 μM and 0.22, 0.73, 0.14 and 0.66 μM respectively. Significant blunting of the thymidine salvage pathway "flare" is observed at 2hrs. of pemetrexed-based therapy when dexamethasone sensitive cell lines H23 and H1975 were pretreated with dexamethasone but not when dexamethasone was given together with pemetrexed therapy or in the setting of dexamethasone resistance (H460 and H1299). CONCLUSION 24 hr. pretreatment with dexamethasone, but not same day co-administration of dexamethasone with therapy, impairs the TS inhibition-mediated "flare" in thymidine salvage pathway activity in NSCLC.
Collapse
|
8
|
Schelhaas S, Wachsmuth L, Hermann S, Rieder N, Heller A, Heinzmann K, Honess DJ, Smith DM, Fricke IB, Just N, Doblas S, Sinkus R, Döring C, Schäfers KP, Griffiths JR, Faber C, Schneider R, Aboagye EO, Jacobs AH. Thymidine Metabolism as a Confounding Factor for 3'-Deoxy-3'- 18F-Fluorothymidine Uptake After Therapy in a Colorectal Cancer Model. J Nucl Med 2018; 59:1063-1069. [PMID: 29476002 DOI: 10.2967/jnumed.117.206250] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 01/22/2018] [Indexed: 12/12/2022] Open
Abstract
Noninvasive monitoring of tumor therapy response helps in developing personalized treatment strategies. Here, we performed sequential PET and diffusion-weighted MRI to evaluate changes induced by a FOLFOX-like combination chemotherapy in colorectal cancer xenografts, to identify the cellular and molecular determinants of these imaging biomarkers. Methods: Tumor-bearing CD1 nude mice, engrafted with FOLFOX-sensitive Colo205 colorectal cancer xenografts, were treated with FOLFOX (5-fluorouracil, leucovorin, and oxaliplatin) weekly. On days 1, 2, 6, 9, and 13 of therapy, tumors were assessed by in vivo imaging and ex vivo analyses. In addition, HCT116 xenografts, which did not respond to the FOLFOX treatment, were imaged on day 1 of therapy. Results: In Colo205 xenografts, FOLFOX induced a profound increase in uptake of the proliferation PET tracer 3'-deoxy-3'-18F-fluorothymidine (18F-FLT) accompanied by increases in markers for proliferation (Ki-67, thymidine kinase 1) and for activated DNA damage response (γH2AX), whereas the effect on cell death was minimal. Because tracer uptake was unaltered in the HCT116 model, these changes appear to be specific for tumor response. Conclusion: We demonstrated that 18F-FLT PET can noninvasively monitor cancer treatment-induced molecular alterations, including thymidine metabolism and DNA damage response. The cellular or imaging changes may not, however, be directly related to therapy response as assessed by volumetric measurements.
Collapse
Affiliation(s)
- Sonja Schelhaas
- European Institute for Molecular Imaging, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Lydia Wachsmuth
- Department of Clinical Radiology, University Hospital of Münster, Münster, Germany
| | - Sven Hermann
- European Institute for Molecular Imaging, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Natascha Rieder
- Pathology and Tissue Analytics, Roche Pharma Research and Early Development, Roche Innovation Center, Munich, Germany
| | - Astrid Heller
- Pathology and Tissue Analytics, Roche Pharma Research and Early Development, Roche Innovation Center, Munich, Germany
| | - Kathrin Heinzmann
- Comprehensive Cancer Imaging Centre, Imperial College London, London, United Kingdom
| | - Davina J Honess
- Cancer Research U.K. Cambridge Institute, Cambridge, United Kingdom
| | | | - Inga B Fricke
- European Institute for Molecular Imaging, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Nathalie Just
- Department of Clinical Radiology, University Hospital of Münster, Münster, Germany
| | - Sabrina Doblas
- Laboratory of Imaging Biomarkers, UMR 1149-CRI, INSERM, Paris Diderot University, Paris, France
| | - Ralph Sinkus
- Imaging Sciences and Biomedical Engineering Division, Kings College, London, United Kingdom
| | - Christian Döring
- European Institute for Molecular Imaging, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Klaus P Schäfers
- European Institute for Molecular Imaging, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - John R Griffiths
- Cancer Research U.K. Cambridge Institute, Cambridge, United Kingdom
| | - Cornelius Faber
- Department of Clinical Radiology, University Hospital of Münster, Münster, Germany
| | | | - Eric O Aboagye
- Comprehensive Cancer Imaging Centre, Imperial College London, London, United Kingdom
| | - Andreas H Jacobs
- European Institute for Molecular Imaging, Westfälische Wilhelms-Universität Münster, Münster, Germany
- Department of Geriatric Medicine, Johanniter Hospital, Bonn, Germany
| |
Collapse
|
9
|
Mushtaq S, Nam YR, Kang JA, Choi DS, Park SH. Efficient and Site-Specific 125I-Radioiodination of Bioactive Molecules Using Oxidative Condensation Reaction. ACS OMEGA 2018; 3:6903-6911. [PMID: 30023965 PMCID: PMC6044831 DOI: 10.1021/acsomega.8b00416] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 04/26/2018] [Indexed: 06/08/2023]
Abstract
In this report, the novel and site-specific radioiodination of biomolecules by using aryl diamine and alkyl aldehyde condensation reaction in the presence of a Cu2+ catalyst under ambient conditions was reported. 125I-labeled alkyl aldehyde was synthesized using a tin precursor with a high radiochemical yield (72 ± 6%, n = 5) and radiochemical purity (>99%). The utility of the radioiodinated precursor was demonstrated through aryl diamine-installed c[RGDfK(C)] peptide and human serum albumin (HSA). Radioiodinated c[RGDfK(C)] peptide and HSA protein were synthesized with high radiochemical yields and purity. 125I-HSA protein showed excellent in vivo stability and negligible thyroid uptake as compared with directly radioiodinated HSA by using the tyrosine group. Excellent reaction kinetics and the in vitro and in vivo stabilities of 125I-labeled alkyl aldehyde have suggested the usefulness of the strategy for the radioiodination of bioactive molecules.
Collapse
Affiliation(s)
- Sajid Mushtaq
- Advanced
Radiation Technology Institute, Korea Atomic
Energy Research Institute, Jeongeup, Jeonbuk 56212, Republic of Korea
- Department
of Radiation Biotechnology and Applied Radioisotope Science, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - You Ree Nam
- Advanced
Radiation Technology Institute, Korea Atomic
Energy Research Institute, Jeongeup, Jeonbuk 56212, Republic of Korea
| | - Jung Ae Kang
- Advanced
Radiation Technology Institute, Korea Atomic
Energy Research Institute, Jeongeup, Jeonbuk 56212, Republic of Korea
| | - Dae Seong Choi
- Advanced
Radiation Technology Institute, Korea Atomic
Energy Research Institute, Jeongeup, Jeonbuk 56212, Republic of Korea
| | - Sang Hyun Park
- Advanced
Radiation Technology Institute, Korea Atomic
Energy Research Institute, Jeongeup, Jeonbuk 56212, Republic of Korea
- Department
of Radiation Biotechnology and Applied Radioisotope Science, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| |
Collapse
|
10
|
Mankoff DA, Katz SI. PET imaging for assessing tumor response to therapy. J Surg Oncol 2018; 118:362-373. [PMID: 29938396 DOI: 10.1002/jso.25114] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 04/28/2018] [Indexed: 12/19/2022]
Abstract
Positron emission tomography (PET) is a radioisotope imaging technique capable of quantifying the regional distribution of molecular imaging probes targeted to biochemical pathways and processes allowing direct measurement of biochemical changes induced by cancer therapy, including the activity of targeted growth pathways and cellular populations. In this manuscript, we review the underlying principles of PET imaging, choices for PET radiopharmaceuticals, methods for tumor analysis and PET applications for cancer therapy response assessment including potential future directions.
Collapse
Affiliation(s)
- David A Mankoff
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sharyn I Katz
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
11
|
Chen X, Yang Y, Berger I, Khalid U, Patel A, Cai J, Farwell MD, Langer C, Aggarwal C, Albelda SM, Katz SI. Early detection of pemetrexed-induced inhibition of thymidylate synthase in non-small cell lung cancer with FLT-PET imaging. Oncotarget 2018; 8:24213-24223. [PMID: 27655645 PMCID: PMC5421841 DOI: 10.18632/oncotarget.12085] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 07/13/2016] [Indexed: 11/25/2022] Open
Abstract
Inhibition of thymidylate synthase (TS) results in a transient flare in DNA thymidine salvage pathway activity measurable with FLT ([18F]thymidine)-positron emission tomography (PET). Here we characterize this imaging strategy for potential clinical translation in non-small cell lung cancer (NSCLC). Since pemetrexed acts by inhibiting TS, we defined the kinetics of increases in thymidine salvage pathway mediated by TS inhibition following treatment with pemetrexed in vitro. Next, using a mouse model of NSCLC, we validated the kinetics of the pemetrexed-mediated flare in thymidine salvage pathway activity in vivo using FLT-PET imaging. Finally, we translated our findings into a proof-of-principle clinical trial of FLT-PET in a human NSCLC patient. In NSCLC cells in vitro, we identified a burst in pemetrexed-mediated thymidine salvage pathway activity, assessed by 3H-thymidine assays, thymidine kinase 1 (TK1) expression, and equilibrative nucleoside transporter 1 (ENT1) mobilization to the cell membrane, that peaked at 2hrs. This 2hr time-point was also optimal for FLT-PET imaging of pemetrexed-mediated TS inhibition in murine xenograft tumors and was demonstrated to be feasible in a NSCLC patient. FLT-PET imaging of pemetrexed-induced TS inhibition is optimal at 2hrs from therapy start; this timing is feasible in human clinical trials.
Collapse
Affiliation(s)
- Xiao Chen
- Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Department of Radiology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yizeng Yang
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ian Berger
- Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Urooj Khalid
- Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Akash Patel
- Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jenny Cai
- Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Michael D Farwell
- Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Corey Langer
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Charu Aggarwal
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Steven M Albelda
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sharyn I Katz
- Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
12
|
Mogensen MB, Loft A, Aznar M, Axelsen T, Vainer B, Osterlind K, Kjaer A. FLT-PET for early response evaluation of colorectal cancer patients with liver metastases: a prospective study. EJNMMI Res 2017; 7:56. [PMID: 28695424 PMCID: PMC5503853 DOI: 10.1186/s13550-017-0302-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 06/20/2017] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Fluoro-L-thymidine (FLT) is a positron emission tomography/computed tomography (PET/CT) tracer which reflects proliferative activity in a cancer lesion. The main objective of this prospective explorative study was to evaluate whether FLT-PET can be used for the early evaluation of treatment response in colorectal cancer patients (CRC) with liver metastases. Patients with metastatic CRC having at least one measurable (>1 cm) liver metastasis receiving first-line chemotherapy were included. A FLT-PET/CT scan was performed at baseline and after the first treatment. The maximum and mean standardised uptake values (SUVmax, SUVmean) were measured. After three cycles of chemotherapy, treatment response was assessed by CT scan based on RECIST 1.1. RESULTS Thirty-nine consecutive patients were included of which 27 were evaluable. Dropout was mainly due to disease complications. Nineteen patients (70%) had a partial response, seven (26%) had stable disease and one (4%) had progressive disease. A total of 23 patients (85%) had a decrease in FLT uptake following the first treatment. The patient with progressive disease had the highest increase in FLT uptake in SUVmax. There was no correlation between the response according to RECIST and the early changes in FLT uptake measured as SUVmax (p = 0.24). CONCLUSIONS No correlation was found between early changes in FLT uptake after the first cycle of treatment and the response evaluated from subsequent CT scans. It seems unlikely that FLT-PET can be used on its own for the early response evaluation of metastatic CRC.
Collapse
Affiliation(s)
- Marie Benzon Mogensen
- Department of Oncology, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Annika Loft
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| | - Marianne Aznar
- Department of Oncology, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Thomas Axelsen
- Department of Radiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Ben Vainer
- Department of Pathology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Kell Osterlind
- Department of Oncology, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Andreas Kjaer
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
13
|
Chen X, Yang Y, Katz S. Early detection of thymidylate synthase resistance in non-small cell lung cancer with FLT-PET imaging. Oncotarget 2017; 8:82705-82713. [PMID: 29137296 PMCID: PMC5669922 DOI: 10.18632/oncotarget.19751] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 06/01/2017] [Indexed: 11/25/2022] Open
Abstract
Introduction Inhibition of thymidylate synthase (TS) results in a transient compensatory "flare" in thymidine salvage pathway activity measureable with 18F-thymidine (FLT)- positron emission tomography (PET) at 2hrs. of therapy which may predict non-small cell lung cancer (NSCLC) sensitivity to TS inhibition. Materials and Methods Resistance to TS inhibition by pemetrexed was induced in NSCLC cell lines H460 and H1299 through TS overexpression. TS overexpression was confirmed with RT-PCR and Western blotting and pemetrexed resistance confirmed with IC50 assays. The presence of a pemetrexed-induced thymidine salvage pathway "flare" was then measured using 3H-thymidine in both pemetrexed sensitive (H460 and H1299) and resistant (H460R, H1299R, CALU-6, H522, H650, H661, H820, H1838) lines in vitro, and validated with FLT-PET in vivo using H460 and H460R xenografts. Results Overexpression of TS induced pemetrexed resistance with IC50 for H460, H1299, H460R and H1299R measured as 0.141 μM, 0.656 μM, 22.842 μM, 213.120 μM, respectively. Thymidine salvage pathway 3H-thymidine "flare" was observed following pemetrexed in H460 and H1299 but not H460R, H1299R, CALU-6, H522, H650, H661, H820 or H1838 in vitro. Similarly, a FLT "flare" was observed in vivo following pemetrexed therapy in H460 but not H460R tumor-bearing xenografts. Conclusions Imaging of TS inhibition is predictive of NSCLC sensitivity to pemetrexed.
Collapse
Affiliation(s)
- Xiao Chen
- Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Department of Radiology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yizeng Yang
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sharyn Katz
- Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
14
|
Nakajo M, Kajiya Y, Tani A, Jinguji M, Nakajo M, Kitazono M, Yoshiura T. A pilot study for texture analysis of 18F-FDG and 18F-FLT-PET/CT to predict tumor recurrence of patients with colorectal cancer who received surgery. Eur J Nucl Med Mol Imaging 2017; 44:2158-2168. [DOI: 10.1007/s00259-017-3787-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 07/19/2017] [Indexed: 01/07/2023]
|
15
|
Heskamp S, Heijmen L, Gerrits D, Molkenboer-Kuenen JDM, Ter Voert EGW, Heinzmann K, Honess DJ, Smith DM, Griffiths JR, Doblas S, Sinkus R, Laverman P, Oyen WJG, Heerschap A, Boerman OC. Response Monitoring with [ 18F]FLT PET and Diffusion-Weighted MRI After Cytotoxic 5-FU Treatment in an Experimental Rat Model for Colorectal Liver Metastases. Mol Imaging Biol 2017; 19:540-549. [PMID: 27798786 PMCID: PMC5498638 DOI: 10.1007/s11307-016-1021-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
PURPOSE The aim of the study was to investigate the potential of diffusion-weighted magnetic resonance imaging (DW-MRI) and 3'-dexoy-3'-[18F]fluorothymidine ([18F]FLT) positron emission tomography (PET) as early biomarkers of treatment response of 5-fluorouracil (5-FU) in a syngeneic rat model of colorectal cancer liver metastases. PROCEDURES Wag/Rij rats with intrahepatic syngeneic CC531 tumors were treated with 5-FU (15, 30, or 60 mg/kg in weekly intervals). Before treatment and at days 1, 3, 7, and 14 after treatment rats underwent DW-MRI and [18F]FLT PET. Tumors were analyzed immunohistochemically for Ki67, TK1, and ENT1 expression. RESULTS 5-FU inhibited the growth of CC531 tumors in a dose-dependent manner. Immunohistochemical analysis did not show significant changes in Ki67, TK1, and ENT1 expression. However, [18F]FLT SUVmean and SUVmax were significantly increased at days 4 and 7 after treatment with 5-FU (60 mg/kg) and returned to baseline at day 14 (SUVmax at days -1, 4, 7, and 14 was 1.1 ± 0.1, 2.3 ± 0.5, 2.3 ± 0.6, and 1.5 ± 0.4, respectively). No changes in [18F]FLT uptake were observed in the nontreated animals. Furthermore, the apparent diffusion coefficient (ADCmean) did not change in 5-FU-treated rats compared to untreated rats. CONCLUSION This study suggests that 5-FU treatment induces a flare in [18F]FLT uptake of responsive CC531 tumors in the liver, while the ADCmean did not change significantly. Future studies in larger groups are warranted to further investigate whether [18F]FLT PET can discriminate between disease progression and treatment response.
Collapse
Affiliation(s)
- Sandra Heskamp
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Linda Heijmen
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Danny Gerrits
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Edwin G W Ter Voert
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Kathrin Heinzmann
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Davina J Honess
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | | | - John R Griffiths
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Sabrina Doblas
- LBI, CRI - UMR 1149 Inserm, Université Paris Diderot, Paris, France
| | - Ralph Sinkus
- BHF Centre of Excellence, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, SE1 7EH, UK
| | - Peter Laverman
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Wim J G Oyen
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Arend Heerschap
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Otto C Boerman
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
16
|
Nakajo M, Kajiya Y, Jinguji M, Nakabeppu Y, Nakajo M, Nihara T, Yoshiura T. Current clinical status of 18F-FLT PET or PET/CT in digestive and abdominal organ oncology. Abdom Radiol (NY) 2017; 42:951-961. [PMID: 27770160 DOI: 10.1007/s00261-016-0947-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Positron emission tomography (PET) or PET/computed tomography (CT) using 18F-3'-fluoro-3'-deoxythymidine (18F-FLT) offers noninvasive assessment of cell proliferation in human cancers in vivo. The present review discusses the current status on clinical applications of 18F-FLT-PET (or PET/CT) in digestive and abdominal oncology by comparing with 18F-fluorodeoxyglucose (18F-FDG)-PET (or PET/CT). The results of this review show that although 18F-FLT uptake is lower in most cases of digestive and abdominal malignancies compared with 18F-FDG uptake, 18F-FLT-PET can be used to detect primary tumors. 18F-FLT-PET has shown greater specificity for N staging than 18F-FDG-PET which can show false-positive uptake in areas of inflammation. However, because of the high background uptake in the liver and bone marrow, it has a limited role of assessing liver and bone metastases. Instead, 18F-FLT-PET will be a powerful tool for monitoring response to treatment and provide prognostic information in digestive and abdominal oncology.
Collapse
Affiliation(s)
- Masatoyo Nakajo
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan.
- Department of Radiology, Nanpuh Hospital, 14-3 Nagata, Kagoshima, 892-8512, Japan.
| | - Yoriko Kajiya
- Department of Radiology, Nanpuh Hospital, 14-3 Nagata, Kagoshima, 892-8512, Japan
| | - Megumi Jinguji
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Yoshiaki Nakabeppu
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Masayuki Nakajo
- Department of Radiology, Nanpuh Hospital, 14-3 Nagata, Kagoshima, 892-8512, Japan
| | - Tohru Nihara
- Department of Gastroentenology, Nanpuh Hospital, 14-3 Nagata, Kagoshima, 892-8512, Japan
| | - Takashi Yoshiura
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| |
Collapse
|
17
|
Qi S, Zhongyi Y, Yingjian Z, Chaosu H. 18F-FLT and 18F-FDG PET/CT in Predicting Response to Chemoradiotherapy in Nasopharyngeal Carcinoma: Preliminary Results. Sci Rep 2017; 7:40552. [PMID: 28091565 PMCID: PMC5238364 DOI: 10.1038/srep40552] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 12/07/2016] [Indexed: 12/25/2022] Open
Abstract
The purpose of this study was to explore the feasibility of 18F-Fluorothymidine (18F-FLT) and 18F-Fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) in predicting treatment response of nasopharyngeal carcinoma (NPC). Patients with NPC of Stage II-IVB were prospectively enrolled, receiving 2 cycles of neoadjuvant chemotherapy (NACT), followed by concurrent chemoradiotherapy. Each patient underwent pretreatment and post-NACT FLT PET/CT and FDG PET/CT. Standard uptake values (SUV) and tumor volume were measured. Tumor response to NACT was evaluated before radiotherapy by MRI (magnetic resonance imaging), and tumor regression at the end of radiotherapy was evaluated at 55 Gy, according to RECIST 1.1 Criteria. Finally, 20 patients were consecutively enrolled. At the end of radiotherapy, 7 patients reached complete regression while others were partial regression. After 2 cycles of NACT both FLT and FDG parameters declined remarkably. Parameters of FDG PET were more strongly correlated to tumor regression than those of FLT PET.70% SUVmax was the best threshold to define contouring margin around the target. Some residual lesions after NACT showed by MRI were negative in PET/CT. Preliminary results showed both 18F-FDG and 18F-FLT PET have the potential to monitor and predict tumor regression.
Collapse
Affiliation(s)
- Shi Qi
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yang Zhongyi
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University; Center for Biomedical Imaging, Fudan University; Shanghai Engineering Research Center for Molecular Imaging Probes, Shanghai 200032, China
| | - Zhang Yingjian
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University; Center for Biomedical Imaging, Fudan University; Shanghai Engineering Research Center for Molecular Imaging Probes, Shanghai 200032, China
| | - Hu Chaosu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| |
Collapse
|
18
|
McHugh CI, Lawhorn-Crews JM, Modi D, Douglas KA, Jones SK, Mangner TJ, Collins JM, Shields AF. Effects of capecitabine treatment on the uptake of thymidine analogs using exploratory PET imaging agents: 18F-FAU, 18F-FMAU, and 18F-FLT. Cancer Imaging 2016; 16:34. [PMID: 27751167 PMCID: PMC5067904 DOI: 10.1186/s40644-016-0092-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 10/03/2016] [Indexed: 12/02/2022] Open
Abstract
Background A principal goal for the use of positron emission tomography (PET) in oncology is for real-time evaluation of tumor response to chemotherapy. Given that many contemporary anti-neoplastic agents function by impairing cellular proliferation, it is of interest to develop imaging modalities to monitor these pathways. Here we examined the effect of capecitabine on the uptake of thymidine analogs used with PET: 3’-deoxy-3’-[18F]fluorothymidine (18F-FLT), 1-(2’-deoxy-2’-[18F]fluoro-β-D-arabinofuranosyl) thymidine (18F-FMAU), and 1-(2’-deoxy-2’-[18F]fluoro-β-D-arabinofuranosyl) uracil (18F-FAU) in patients with advanced cancer. Methods Fifteen patients were imaged, five with each imaging agent. Patients had been previously diagnosed with breast, colorectal, gastric, and esophageal cancers and had not received therapy for at least 4 weeks prior to the first scan, and had not been treated with any prior fluoropyrimidines. Subjects were imaged within a week before the start of capecitabine and on the second day of treatment, after the third dose of capecitabine. Tracer uptake was quantified by mean standard uptake value (SUVmean) and using kinetic analysis. Results Patients imaged with 18F-FLT showed variable changes in retention and two patients exhibited an increase in SUVmean of 172.3 and 89.9 %, while the other patients had changes ranging from +19.4 to -25.4 %. The average change in 18F-FMAU retention was 0.2 % (range -24.4 to 23.1) and 18F-FAU was -10.2 % (range -40.3 to 19.2). Observed changes correlated strongly with SUVmax but not kinetic measurements. Conclusions This pilot study demonstrates that patients treated with capecitabine can produce a marked increase in 18F-FLT retention in some patients, which will require further study to determine if this flare is predictive of therapeutic response. 18F-FAU and 18F-FMAU showed little change, on average, after treatment. Electronic supplementary material The online version of this article (doi:10.1186/s40644-016-0092-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Christopher I McHugh
- Cancer Biology Graduate Program, Wayne State University, Detroit, MI, 48201, USA
| | - Jawana M Lawhorn-Crews
- Karmanos Cancer Institute and Oncology, Wayne State University, 4100 John R., HW04HO, Detroit, MI, 48201, USA
| | - Dipenkumar Modi
- Karmanos Cancer Institute and Oncology, Wayne State University, 4100 John R., HW04HO, Detroit, MI, 48201, USA
| | - Kirk A Douglas
- Karmanos Cancer Institute and Oncology, Wayne State University, 4100 John R., HW04HO, Detroit, MI, 48201, USA
| | - Steven K Jones
- Cancer Biology Graduate Program, Wayne State University, Detroit, MI, 48201, USA
| | | | | | - Anthony F Shields
- Karmanos Cancer Institute and Oncology, Wayne State University, 4100 John R., HW04HO, Detroit, MI, 48201, USA.
| |
Collapse
|
19
|
Yoshii Y, Furukawa T, Aoyama H, Adachi N, Zhang MR, Wakizaka H, Fujibayashi Y, Saga T. Regorafenib as a potential adjuvant chemotherapy agent in disseminated small colon cancer: Drug selection outcome of a novel screening system using nanoimprinting 3-dimensional culture with HCT116-RFP cells. Int J Oncol 2016; 48:1477-84. [PMID: 26820693 DOI: 10.3892/ijo.2016.3361] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 12/18/2015] [Indexed: 11/05/2022] Open
Abstract
Colon cancer is one of the leading causes of cancer death worldwide. Adjuvant chemotherapy following primary surgical treatment is suggested to be beneficial in eradicating invisible disseminated small tumors in colon cancer; however, an effective drug remains to be developed. Recently, we reported a novel drug screening system using a nanoimprinting 3-dimensional (3D) culture that creates multicellular spheroids, which simulate in vivo conditions and, thereby, predict effective drugs in vivo. This study aimed to perform drug selection using our recently developed 3D culture system in a human colon cancer HCT116 cell line stably expressing red fluorescent protein (HCT116-RFP), to determine the most effective agent in a selection of clinically used antitumor agents for colon cancer. In addition, we confirmed the efficacy of the selected drug regorafenib, in vivo using a mouse model of disseminated small tumors. HCT116-RFP cells were cultured using a nanoimprinting 3D culture and in vitro drug selection was performed with 8 clinically used drugs [bevacizumab, capecitabine, cetuximab, 5-fluorouracil (5-FU), irinotecan, oxaliplatin, panitumumab and regorafenib]. An in vivo study was performed in mice bearing HCT116-RFP intraperitoneally disseminated small tumors using 3'-[18F]-fluoro-3'-deoxythymidine-positron emission tomography and fluorescence microscopy imaging to evaluate the therapeutic effects. Regorafenib was determined to be the most effective drug in the 3D culture, and significantly inhibited tumor growth in vivo, compared to the untreated control and 5-FU-treated group. The drug 5-FU is commonly used in colon cancer treatment and was used as a reference. Our results demonstrate that regorafenib is a potentially efficacious adjuvant chemotherapeutic agent for the treatment of disseminated small colon cancer and, therefore, warrants further preclinical and clinical studies.
Collapse
Affiliation(s)
- Yukie Yoshii
- Molecular Imaging Center, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Takako Furukawa
- Molecular Imaging Center, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Hironori Aoyama
- Molecular Imaging Center, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Naoya Adachi
- Molecular Imaging Center, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Ming-Rong Zhang
- Molecular Imaging Center, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Hidekatsu Wakizaka
- Molecular Imaging Center, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Yasuhisa Fujibayashi
- Molecular Imaging Center, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Tsuneo Saga
- Molecular Imaging Center, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| |
Collapse
|
20
|
A systematic review on [(18)F]FLT-PET uptake as a measure of treatment response in cancer patients. Eur J Cancer 2016; 55:81-97. [PMID: 26820682 DOI: 10.1016/j.ejca.2015.11.018] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 11/15/2015] [Indexed: 12/19/2022]
Abstract
Imaging biomarkers have a potential to depict the hallmarks of cancers that characterise cancer cells as compared to normal cells. One pertinent example is 3'-deoxy-3'-(18)F-fluorothymidine positron emission tomography ([(18)F]FLT-PET), which allows non-invasive in vivo assessment of tumour proliferation. Most importantly, [(18)F]FLT does not seem to be accumulating in inflammatory processes, as seen in [(18)F]-fludeoxyglucose, the most commonly used PET tracer for assessment of cell metabolism. [(18)F]FLT could therefore provide additional information about the tumour biology before, during and after treatment. This systematic review focuses on the use of [(18)F]FLT-PET tumour uptake values as a measure of tumour response to therapeutic interventions. The clinical studies which evaluated the role of [(18)F]FLT-PET as a measure of tumour response to treatment are summarised and the evidence linking [(18)F]FLT-PET tumour uptake values with clinical outcome is evaluated.
Collapse
|
21
|
Doot RK, McDonald ES, Mankoff DA. Role of PET quantitation in the monitoring of cancer response to treatment: Review of approaches and human clinical trials. Clin Transl Imaging 2014; 2:295-303. [PMID: 25229053 DOI: 10.1007/s40336-014-0071-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Positron emission tomography (PET) measures of cancer metabolism and cellular proliferation are increasingly being studied as markers of cancer response to treatment, with the goal of using them as predictors of patient therapeutic outcomes - i.e., as surrogate outcome measures. The primary PET radiotracers thus far used for monitoring response of cancer to treatment are 18F-fluorodeoxyglucose (FDG) for studying abnormal energy metabolism and 18F-fluorothymidine (FLT) for examining cell proliferation. Both FDG and FLT PET quantitation of cancer response to treatment have been found to correlate with patient outcomes, mostly in single-center studies. The aim of this review is to summarize the impact of commonly selected PET quantitation methods on the ability of PET measures to quantitate cancer response to treatment. An understanding of the biochemistry and kinetics of FDG and FLT uptake and knowledge of the expected tracer uptake by cancerous processes relative to background uptake are required to select appropriate PET quantitation methods for trials testing for correlations between PET measures and patient outcome. PET measures may eventually serve as predictive biomarkers capable of guiding individualized treatment and improving patient outcomes and quality of life by early identification of ineffective therapies. PET can also potentially identify patients who would be good candidates for molecularly targeted drugs and monitor response to these personalized therapies.
Collapse
Affiliation(s)
- Robert K Doot
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Elizabeth S McDonald
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - David A Mankoff
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|