1
|
Jacobs AH, Schelhaas S, Viel T, Waerzeggers Y, Winkeler A, Zinnhardt B, Gelovani J. Imaging of Gene and Cell-Based Therapies: Basis and Clinical Trials. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00060-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
2
|
Carlin D, Weller A, Kramer G, Liu Y, Waterton JC, Chiti A, Sollini M, Joop de Langen A, O'Brien MER, Urbanowicz M, Jacobs BK, deSouza N. Evaluation of diffusion-weighted MRI and (18F) fluorothymidine-PET biomarkers for early response assessment in patients with operable non-small cell lung cancer treated with neoadjuvant chemotherapy. BJR Open 2019; 1:20190029. [PMID: 33178953 PMCID: PMC7592464 DOI: 10.1259/bjro.20190029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 07/09/2019] [Indexed: 12/13/2022] Open
Abstract
Objective: To correlate changes in the apparent diffusion coefficient (ADC) from diffusion-weighted (DW)-MRI and standardised uptake value (SUV) from fluorothymidine (18FLT)-PET/CT with histopathological estimates of response in patients with non-small cell lung cancer (NSCLC) treated with neoadjuvant chemotherapy and track longitudinal changes in these biomarkers in a multicentre, multivendor setting. Methods: 14 patients with operable NSCLC recruited to a prospective, multicentre imaging trial (EORTC-1217) were treated with platinum-based neoadjuvant chemotherapy. 13 patients had DW-MRI and FLT-PET/CT at baseline (10 had both), 12 were re-imaged at Day 14 (eight dual-modality) and nine after completing chemotherapy, immediately before surgery (six dual-modality). Surgical specimens (haematoxylin-eosin and Ki67 stained) estimated the percentage of residual viable tumour/necrosis and proliferation index. Results: Despite the small numbers,significant findings were possible. ADCmedian increased (p < 0.001) and SUVmean decreased (p < 0.001) significantly between baseline and Day 14; changes between Day 14 and surgery were less marked. All responding tumours (>30% reduction in unidimensional measurement pre-surgery), showed an increase at Day 14 in ADC75th centile and reduction in total lesion proliferation (SUVmean x proliferative volume) greater than established measurement variability. Change in imaging biomarkers did not correlate with histological response (residual viable tumour, necrosis). Conclusion: Changes in ADC and FLT-SUV following neoadjuvant chemotherapy in NSCLC were measurable by Day 14 and preceded changes in unidimensional size but did not correlate with histopathological response. However, the magnitude of the changes and their utility in predicting (non-) response (tumour size/clinical outcome) remains to be established. Advances in knowledge: During treatment, ADC increase precedes size reductions, but does not reflect histopathological necrosis.
Collapse
Affiliation(s)
- Dominic Carlin
- CRUK Imaging Centre, The Institute of Cancer Research, Sutton, Surrey SM2 5NG, UK
| | | | - Gem Kramer
- Department of Respiratory Diseases, VU University Medical Center, Amsterdam, The Netherlands
| | - Yan Liu
- EORTC Headquarters, Brussels, Belgium
| | - John C Waterton
- Centre for Imaging Sciences, Division of Informatics Imaging & Data Sciences, School of Health Sciences, Faculty of Biology Medicine & Health, University of Manchester, Manchester Academic Health Sciences Centre, Oxford Road Manchester M13 9PL UK
| | | | - Martina Sollini
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | | | - Mary E R O'Brien
- The Royal Marsden Hospital, Downs Road, Sutton, Surrey SM2 5PT, UK
| | | | | | | |
Collapse
|
3
|
Evaluation of [ 18F]FDG/[ 18F]FLT/[ 18F]FMISO-based micro-positron emission tomography in detection of liver metastasis in human colorectal cancer. Nucl Med Biol 2019; 72-73:36-44. [PMID: 31330410 DOI: 10.1016/j.nucmedbio.2019.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 06/10/2019] [Accepted: 07/06/2019] [Indexed: 01/21/2023]
Abstract
INTRODUCTION Positron emission tomography (PET) is extensively used in clinical oncology for tumor detection. This study aimed to explore the application of the radiotracers [18F]fluorodeoxyglucose ([18F]FDG), 3'-deoxy-3'- [18F]fluorothymidine ([18F]FLT), and [18F]fluoromisonidazole ([18F]FMISO) in the diagnosis and monitoring of hepatic metastasis in human colorectal cancer (CRC). METHODS A mouse model of human CRC with hepatic metastasis was established by intrasplenic implantation of human CRC cell lines LoVo or HCT8. Metastatic potential of these two cell lines was evaluated by wound healing assay in vitro and survival analysis. Uptake of radiotracers between LoVo and HCT8 cells and uptake of radiotracers in the resulting mouse tumor models were examined by in vivo and in vitro experiments. Uptake of each radiotracer in hepatic metastatic lesions was quantified and expressed as standard uptake value (SUV). Protein expression of multiple tumor biomarkers was determined in metastatic lesions. The correlation between tracer uptake and tumor marker expression was evaluated using linear regression. RESULTS LoVo cells exhibited a stronger metastatic potential and a higher radiotracer uptake ability than HCT8 cells, as evidenced by significantly greater wound closure percentage, shorter survival, higher incidence of liver metastases, and higher cellular radiotracer levels in LoVo cells or LoVo cell-xenografted mice. SUV values of [18F]FLT and [18F]FMISO, but not [18F]FDG, in LoVo cell-derived metastatic lesions were significantly greater than those in HCT8 lesions. Mechanistically, the expression of MACC1, HIF-1α, and GLUT-1(metastasis associated in colon cancer 1, MACC1; hypoxia-inducible factor 1-alpha, HIF-1α; and glucose transporter 1, GLUT-1, respectively) in LoVo cell-derived metastatic lesions was more effectively induced than in HCT8-derived ones. A linear regression analysis demonstrated significant positive correlations between [18F]FLT/[18F]FMISO uptake and tumor biomarker expression in metastatic tissues. CONCLUSIONS [18F]FLT and [18F]FMISO-based PET imaging may serve as a promising method for early detection and monitoring of hepatic metastasis in patients with CRC.
Collapse
|
4
|
Schelhaas S, Wachsmuth L, Hermann S, Rieder N, Heller A, Heinzmann K, Honess DJ, Smith DM, Fricke IB, Just N, Doblas S, Sinkus R, Döring C, Schäfers KP, Griffiths JR, Faber C, Schneider R, Aboagye EO, Jacobs AH. Thymidine Metabolism as a Confounding Factor for 3'-Deoxy-3'- 18F-Fluorothymidine Uptake After Therapy in a Colorectal Cancer Model. J Nucl Med 2018; 59:1063-1069. [PMID: 29476002 DOI: 10.2967/jnumed.117.206250] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 01/22/2018] [Indexed: 12/12/2022] Open
Abstract
Noninvasive monitoring of tumor therapy response helps in developing personalized treatment strategies. Here, we performed sequential PET and diffusion-weighted MRI to evaluate changes induced by a FOLFOX-like combination chemotherapy in colorectal cancer xenografts, to identify the cellular and molecular determinants of these imaging biomarkers. Methods: Tumor-bearing CD1 nude mice, engrafted with FOLFOX-sensitive Colo205 colorectal cancer xenografts, were treated with FOLFOX (5-fluorouracil, leucovorin, and oxaliplatin) weekly. On days 1, 2, 6, 9, and 13 of therapy, tumors were assessed by in vivo imaging and ex vivo analyses. In addition, HCT116 xenografts, which did not respond to the FOLFOX treatment, were imaged on day 1 of therapy. Results: In Colo205 xenografts, FOLFOX induced a profound increase in uptake of the proliferation PET tracer 3'-deoxy-3'-18F-fluorothymidine (18F-FLT) accompanied by increases in markers for proliferation (Ki-67, thymidine kinase 1) and for activated DNA damage response (γH2AX), whereas the effect on cell death was minimal. Because tracer uptake was unaltered in the HCT116 model, these changes appear to be specific for tumor response. Conclusion: We demonstrated that 18F-FLT PET can noninvasively monitor cancer treatment-induced molecular alterations, including thymidine metabolism and DNA damage response. The cellular or imaging changes may not, however, be directly related to therapy response as assessed by volumetric measurements.
Collapse
Affiliation(s)
- Sonja Schelhaas
- European Institute for Molecular Imaging, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Lydia Wachsmuth
- Department of Clinical Radiology, University Hospital of Münster, Münster, Germany
| | - Sven Hermann
- European Institute for Molecular Imaging, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Natascha Rieder
- Pathology and Tissue Analytics, Roche Pharma Research and Early Development, Roche Innovation Center, Munich, Germany
| | - Astrid Heller
- Pathology and Tissue Analytics, Roche Pharma Research and Early Development, Roche Innovation Center, Munich, Germany
| | - Kathrin Heinzmann
- Comprehensive Cancer Imaging Centre, Imperial College London, London, United Kingdom
| | - Davina J Honess
- Cancer Research U.K. Cambridge Institute, Cambridge, United Kingdom
| | | | - Inga B Fricke
- European Institute for Molecular Imaging, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Nathalie Just
- Department of Clinical Radiology, University Hospital of Münster, Münster, Germany
| | - Sabrina Doblas
- Laboratory of Imaging Biomarkers, UMR 1149-CRI, INSERM, Paris Diderot University, Paris, France
| | - Ralph Sinkus
- Imaging Sciences and Biomedical Engineering Division, Kings College, London, United Kingdom
| | - Christian Döring
- European Institute for Molecular Imaging, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Klaus P Schäfers
- European Institute for Molecular Imaging, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - John R Griffiths
- Cancer Research U.K. Cambridge Institute, Cambridge, United Kingdom
| | - Cornelius Faber
- Department of Clinical Radiology, University Hospital of Münster, Münster, Germany
| | | | - Eric O Aboagye
- Comprehensive Cancer Imaging Centre, Imperial College London, London, United Kingdom
| | - Andreas H Jacobs
- European Institute for Molecular Imaging, Westfälische Wilhelms-Universität Münster, Münster, Germany
- Department of Geriatric Medicine, Johanniter Hospital, Bonn, Germany
| |
Collapse
|
5
|
Xu HL, Li M, Zhang RJ, Jiang HJ, Zhang MY, Li X, Wang YQ, Pan WB. Prediction of tumor biological characteristics in different colorectal cancer liver metastasis animal models using 18F-FDG and 18F-FLT. Hepatobiliary Pancreat Dis Int 2018; 17:140-148. [PMID: 29571649 DOI: 10.1016/j.hbpd.2018.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 03/06/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Positron emission tomography (PET) is a noninvasive method to characterize different metabolic activities of tumors, providing information for staging, prognosis, and therapeutic response of patients with cancer. The aim of this study was to evaluate the feasibility of 18F-fludeoxyglucose (18F-FDG) and 3'-deoxy-3'-18F-fluorothymidine (18F-FLT) PET in predicting tumor biological characteristics of colorectal cancer liver metastasis. METHODS The uptake rate of 18F-FDG and 18F-FLT in SW480 and SW620 cells was measured via an in vitro cell uptake assay. The region of interest was drawn over the tumor and liver to calculate the maximum standardized uptake value ratio (tumor/liver) from PET images in liver metastasis model. The correlation between tracer uptake in liver metastases and VEGF, Ki67 and CD44 expression was evaluated by linear regression. RESULTS Compared to SW620 tumor-bearing mice, SW480 tumor-bearing mice presented a higher rate of liver metastases. The uptake rate of 18F-FDG in SW480 and SW620 cells was 6.07% ± 1.19% and 2.82% ± 0.15%, respectively (t = 4.69, P = 0.04); that of 18F-FLT was 24.81% ± 0.45% and 15.57% ± 0.66%, respectively (t = 19.99, P < 0.001). Micro-PET scan showed that all parameters of FLT were significantly higher in SW480 tumors than those in SW620 tumors. A moderate relationship was detected between metastases in the liver and 18F-FLT uptake in primary tumors (r = 0.73, P = 0.0019). 18F-FLT uptake was also positively correlated with the expression of CD44 in liver metastases (r = 0.81, P = 0.0049). CONCLUSIONS The uptake of 18F-FLT in metastatic tumor reflects different biological behaviors of colon cancer cells. 18F-FLT can be used to evaluate the metastatic potential of colorectal cancer in nude mice.
Collapse
Affiliation(s)
- Hai-Long Xu
- Department of Radiology, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Man Li
- Endoscopy Center, the Third Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Rong-Jun Zhang
- Key Laboratory of Nuclear Medicine of the Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Wuxi 214063, China
| | - Hui-Jie Jiang
- Department of Radiology, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China.
| | - Ming-Yu Zhang
- Department of Radiology, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Xin Li
- Department of Radiology, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Yi-Qiao Wang
- Department of Radiology, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Wen-Bin Pan
- Department of Radiology, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| |
Collapse
|
6
|
Schelhaas S, Heinzmann K, Honess DJ, Smith DM, Keen H, Heskamp S, Witney TH, Besret L, Doblas S, Griffiths JR, Aboagye EO, Jacobs AH. 3'-Deoxy-3'-[ 18F]Fluorothymidine Uptake Is Related to Thymidine Phosphorylase Expression in Various Experimental Tumor Models. Mol Imaging Biol 2018; 20:194-199. [PMID: 28971330 DOI: 10.1007/s11307-017-1125-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
PURPOSE We recently reported that high thymidine phosphorylase (TP) expression is accompanied by low tumor thymidine concentration and high 3'-deoxy-3'-[18F]fluorothymidine ([18F]FLT) uptake in four untreated lung cancer xenografts. Here, we investigated whether this relationship also holds true for a broader range of tumor models. PROCEDURES Lysates from n = 15 different tumor models originating from n = 6 institutions were tested for TP and thymidylate synthase (TS) expression using western blots. Results were correlated to [18F]FLT accumulation in the tumors as determined by positron emission tomography (PET) measurements in the different institutions and to previously published thymidine concentrations. RESULTS Expression of TP correlated positively with [18F]FLT SUVmax (ρ = 0.549, P < 0.05). Furthermore, tumors with high TP levels possessed lower levels of thymidine (ρ = - 0.939, P < 0.001). CONCLUSIONS In a broad range of tumors, [18F]FLT uptake as measured by PET is substantially influenced by TP expression and tumor thymidine concentrations. These data strengthen the role of TP as factor confounding [18F]FLT uptake.
Collapse
Affiliation(s)
- Sonja Schelhaas
- European Institute for Molecular Imaging (EIMI), Westfälische Wilhelms-Universität (WWU) Münster, Waldeyerstr. 15, 48149, Münster, Germany
| | - Kathrin Heinzmann
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Comprehensive Cancer Imaging Centre, Imperial College London, London, UK
| | - Davina J Honess
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | | | - Heather Keen
- PHB Imaging Group, AstraZeneca, Alderley Park, Macclesfield, UK
| | - Sandra Heskamp
- Department of Radiology and Nuclear Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Timothy H Witney
- Comprehensive Cancer Imaging Centre, Imperial College London, London, UK
- UCL Centre for Advanced Biomedical Imaging, University College London, London, UK
| | | | | | - John R Griffiths
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Eric O Aboagye
- Comprehensive Cancer Imaging Centre, Imperial College London, London, UK
| | - Andreas H Jacobs
- European Institute for Molecular Imaging (EIMI), Westfälische Wilhelms-Universität (WWU) Münster, Waldeyerstr. 15, 48149, Münster, Germany.
- Department of Geriatric Medicine, Johanniter Hospital, Bonn, Germany.
| |
Collapse
|
7
|
Liu Y, Wang Y, Tang W, Jiang M, Li K, Tao X. Multiparametric MR imaging detects therapy efficacy of radioactive seeds brachytherapy in pancreatic ductal adenocarcinoma xenografts. Radiol Med 2018; 123:481-488. [PMID: 29508241 DOI: 10.1007/s11547-018-0867-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 02/15/2018] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To investigate the therapeutic efficacy of Iodine-125 (125I) seeds brachytherapy to pancreatic ductal adenocarcinoma (PDAC) xenografts via multiparametric magnetic resonance imaging (MRI) analysis. MATERIALS AND METHODS Twenty mice were implanted subcutaneously with SW-1990 PDAC xenografts. The tumor-bearing mice were randomly divided into 125I seeds group (n = 10) and blank control group (n = 10). Treatment response was monitored by diffusion-weighted magnetic resonance imaging (DW-MRI) and dynamic contrast-enhanced MRI (DCE-MRI) obtained 1 day before, 14 and 60 days after treatment. Imaging results were correlated with histopathology. RESULTS 125I seeds brachytherapy resulted in a significant increase in mean tumor apparent diffusion coefficient (ADC) values compared to the control at 14 and 60 days after treatment (p < 0.05). DCE-MRI showed a significant decrease in the perfusion parameters including Ktrans and Kep (p < 0.05). The mean ADCs within the peripheral region of the tumors were linearly proportional to the mean apoptotic cell density (p = 0.015; Spearman's coefficient = 0.945). The Ktrans and Kep were linearly proportional to microvessel density (MVD) (p = 0.043, 0.047; Spearman's coefficient = 0.891, 0.884). CONCLUSION 125I seeds brachytherapy leads to effective inhibition of PDAC cell proliferation, higher degree of necrosis and necroptosis, and lower MVD. Both DW-MRI and DCE-MRI are feasible to monitor a response to 125I seeds brachytherapy in the PDAC xenografts. This paper shows an original project concerning about a possible palliative treatment not only in a murine model (preclinical setting) but also in humans.
Collapse
Affiliation(s)
- Yu Liu
- Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, ZhiZaoJu Road, Shanghai, 200011, China
| | - Yuanjun Wang
- Institute of Medical Imaging and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Weiqing Tang
- Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, ZhiZaoJu Road, Shanghai, 200011, China
| | - Mengda Jiang
- Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, ZhiZaoJu Road, Shanghai, 200011, China
| | - Kaicheng Li
- Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, ZhiZaoJu Road, Shanghai, 200011, China. .,Hainan West Central Hospital, Danzhou, Hainan, China.
| | - Xiaofeng Tao
- Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, ZhiZaoJu Road, Shanghai, 200011, China.
| |
Collapse
|
8
|
Li Y, Wei R, Song S. Diagnostic and Prognostic Value of Serum Thymidine Kinase 1 in Cancer Patients. Indian J Hematol Blood Transfus 2018; 34:168-170. [DOI: 10.1007/s12288-017-0812-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 04/03/2017] [Indexed: 10/19/2022] Open
|
9
|
Heskamp S, Heijmen L, Gerrits D, Molkenboer-Kuenen JDM, Ter Voert EGW, Heinzmann K, Honess DJ, Smith DM, Griffiths JR, Doblas S, Sinkus R, Laverman P, Oyen WJG, Heerschap A, Boerman OC. Response Monitoring with [ 18F]FLT PET and Diffusion-Weighted MRI After Cytotoxic 5-FU Treatment in an Experimental Rat Model for Colorectal Liver Metastases. Mol Imaging Biol 2017; 19:540-549. [PMID: 27798786 PMCID: PMC5498638 DOI: 10.1007/s11307-016-1021-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
PURPOSE The aim of the study was to investigate the potential of diffusion-weighted magnetic resonance imaging (DW-MRI) and 3'-dexoy-3'-[18F]fluorothymidine ([18F]FLT) positron emission tomography (PET) as early biomarkers of treatment response of 5-fluorouracil (5-FU) in a syngeneic rat model of colorectal cancer liver metastases. PROCEDURES Wag/Rij rats with intrahepatic syngeneic CC531 tumors were treated with 5-FU (15, 30, or 60 mg/kg in weekly intervals). Before treatment and at days 1, 3, 7, and 14 after treatment rats underwent DW-MRI and [18F]FLT PET. Tumors were analyzed immunohistochemically for Ki67, TK1, and ENT1 expression. RESULTS 5-FU inhibited the growth of CC531 tumors in a dose-dependent manner. Immunohistochemical analysis did not show significant changes in Ki67, TK1, and ENT1 expression. However, [18F]FLT SUVmean and SUVmax were significantly increased at days 4 and 7 after treatment with 5-FU (60 mg/kg) and returned to baseline at day 14 (SUVmax at days -1, 4, 7, and 14 was 1.1 ± 0.1, 2.3 ± 0.5, 2.3 ± 0.6, and 1.5 ± 0.4, respectively). No changes in [18F]FLT uptake were observed in the nontreated animals. Furthermore, the apparent diffusion coefficient (ADCmean) did not change in 5-FU-treated rats compared to untreated rats. CONCLUSION This study suggests that 5-FU treatment induces a flare in [18F]FLT uptake of responsive CC531 tumors in the liver, while the ADCmean did not change significantly. Future studies in larger groups are warranted to further investigate whether [18F]FLT PET can discriminate between disease progression and treatment response.
Collapse
Affiliation(s)
- Sandra Heskamp
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Linda Heijmen
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Danny Gerrits
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Edwin G W Ter Voert
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Kathrin Heinzmann
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Davina J Honess
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | | | - John R Griffiths
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Sabrina Doblas
- LBI, CRI - UMR 1149 Inserm, Université Paris Diderot, Paris, France
| | - Ralph Sinkus
- BHF Centre of Excellence, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, SE1 7EH, UK
| | - Peter Laverman
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Wim J G Oyen
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Arend Heerschap
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Otto C Boerman
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
10
|
Wang FL, Tan YY, Gu XM, Li TR, Lu GM, Liu G, Huo TL. Comparison of Positron Emission Tomography Using 2-[18F]-fluoro-2-deoxy-D-glucose and 3-deoxy-3-[18F]-fluorothymidine in Lung Cancer Imaging. Chin Med J (Engl) 2017; 129:2926-2935. [PMID: 27958224 PMCID: PMC5198527 DOI: 10.4103/0366-6999.195468] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Background: The detection of solitary pulmonary nodules (SPNs) that may potentially develop into a malignant lesion is essential for early clinical interventions. However, grading classification based on computed tomography (CT) imaging results remains a significant challenge. The 2-[18F]-fluoro-2-deoxy-D-glucose (18F-FDG) positron emission tomography (PET)/CT imaging produces both false-positive and false-negative findings for the diagnosis of SPNs. In this study, we compared 18F-FDG and 3-deoxy-3-[18F]-fluorothymidine (18F-FLT) in lung cancer PET/CT imaging. Methods: The binding ratios of the two tracers to A549 lung cancer cells were calculated. The mouse lung cancer model was established (n = 12), and micro-PET/CT analysis using the two tracers was performed. Images using the two tracers were collected from 55 lung cancer patients with SPNs. The correlation among the cell-tracer binding ratios, standardized uptake values (SUVs), and Ki-67 proliferation marker expression were investigated. Results: The cell-tracer binding ratio for the A549 cells using the 18F-FDG was greater than the ratio using 18F-FLT (P < 0.05). The Ki-67 expression showed a significant positive correlation with the 18F-FLT binding ratio (r = 0.824, P < 0.01). The tumor-to-nontumor uptake ratio of 18F-FDG imaging in xenografts was higher than that of 18F-FLT imaging. The diagnostic sensitivity, specificity, and the accuracy of 18F-FDG for lung cancer were 89%, 67%, and 73%, respectively. Moreover, the diagnostic sensitivity, specificity, and the accuracy of 18F-FLT for lung cancer were 71%, 79%, and 76%, respectively. There was an obvious positive correlation between the lung cancer Ki-67 expression and the mean maximum SUV of 18F-FDG and 18F-FLT (r = 0.658, P < 0.05 and r = 0.724, P < 0.01, respectively). Conclusions: The 18F-FDG uptake ratio is higher than that of 18F-FLT in A549 cells at the cellular level. 18F-FLT imaging might be superior for the quantitative diagnosis of lung tumor tissue and could distinguish lung cancer nodules from other SPNs.
Collapse
Affiliation(s)
- Fu-Li Wang
- Department of Hospital Management, The First Affiliated Hospital of Chinese PLA General Hospital, Beijing 100048, China
| | - Ye-Ying Tan
- Department of Radiology, Xuzhou Center Hospital, Xuzhou, Jiangsu 221000, China
| | - Xiang-Min Gu
- Department of Hospital Management, The First Affiliated Hospital of Chinese PLA General Hospital, Beijing 100048, China
| | - Tian-Ran Li
- Department of Radiology, The First Affiliated Hospital of Chinese PLA General Hospital, Beijing 100048; Department of Radiology, Nanjing General Hospital of Chinese PLA, Nanjing, Jiangsu 210000, China
| | - Guang-Ming Lu
- Department of Radiology, Nanjing General Hospital of Chinese PLA, Nanjing, Jiangsu 210000, China
| | - Gang Liu
- Department of Radiology, The First Affiliated Hospital of Chinese PLA General Hospital, Beijing 100048, China
| | - Tian-Long Huo
- Department of Radiology, Peking University People's Hospital, Beijing 100048, China
| |
Collapse
|
11
|
Schelhaas S, Held A, Wachsmuth L, Hermann S, Honess DJ, Heinzmann K, Smith DM, Griffiths JR, Faber C, Jacobs AH. Gemcitabine Mechanism of Action Confounds Early Assessment of Treatment Response by 3'-Deoxy-3'-[18F]Fluorothymidine in Preclinical Models of Lung Cancer. Cancer Res 2016; 76:7096-7105. [PMID: 27784748 DOI: 10.1158/0008-5472.can-16-1479] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 10/13/2016] [Accepted: 10/17/2016] [Indexed: 11/16/2022]
Abstract
3'-Deoxy-3'-[18F]fluorothymidine positron emission tomography ([18F]FLT-PET) and diffusion-weighted MRI (DW-MRI) are promising approaches to monitor tumor therapy response. Here, we employed these two imaging modalities to evaluate the response of lung carcinoma xenografts in mice after gemcitabine therapy. Caliper measurements revealed that H1975 xenografts responded to gemcitabine treatment, whereas A549 growth was not affected. In both tumor models, uptake of [18F]FLT was significantly reduced 6 hours after drug administration. On the basis of the gemcitabine concentration and [18F]FLT excretion measured, this was presumably related to a direct competition of gemcitabine with the radiotracer for cellular uptake. On day 1 after therapy, [18F]FLT uptake was increased in both models, which was correlated with thymidine kinase 1 (TK1) expression. Two and 3 days after drug administration, [18F]FLT uptake as well as TK1 and Ki67 expression were unchanged. A reduction in [18F]FLT in the responsive H1975 xenografts could only be noted on day 5 of therapy. Changes in ADCmean in A549 xenografts 1 or 2 days after gemcitabine did not seem to be of therapy-related biological relevance as they were not related to cell death (assessed by caspase-3 IHC and cellular density) or tumor therapy response. Taken together, in these models, early changes of [18F]FLT uptake in tumors reflected mechanisms, such as competing gemcitabine uptake or gemcitabine-induced thymidylate synthase inhibition, and only reflected growth-inhibitory effects at a later time point. Hence, the time point for [18F]FLT-PET imaging of tumor response to gemcitabine is of crucial importance. Cancer Res; 76(24); 7096-105. ©2016 AACR.
Collapse
Affiliation(s)
- Sonja Schelhaas
- European Institute for Molecular Imaging (EIMI), Westfälische Wilhelms-Universität (WWU) Münster, Münster, Germany
| | - Annelena Held
- European Institute for Molecular Imaging (EIMI), Westfälische Wilhelms-Universität (WWU) Münster, Münster, Germany
| | - Lydia Wachsmuth
- Department of Clinical Radiology, University Hospital of Münster, Münster, Germany
| | - Sven Hermann
- European Institute for Molecular Imaging (EIMI), Westfälische Wilhelms-Universität (WWU) Münster, Münster, Germany
| | - Davina J Honess
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Kathrin Heinzmann
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Donna-Michelle Smith
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - John R Griffiths
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Cornelius Faber
- Department of Clinical Radiology, University Hospital of Münster, Münster, Germany
| | - Andreas H Jacobs
- European Institute for Molecular Imaging (EIMI), Westfälische Wilhelms-Universität (WWU) Münster, Münster, Germany.
- Department of Geriatric Medicine, Johanniter Hospital, Bonn, Germany
| |
Collapse
|
12
|
Heinzmann K, Honess DJ, Lewis DY, Smith DM, Cawthorne C, Keen H, Heskamp S, Schelhaas S, Witney TH, Soloviev D, Williams KJ, Jacobs AH, Aboagye EO, Griffiths JR, Brindle KM. The relationship between endogenous thymidine concentrations and [(18)F]FLT uptake in a range of preclinical tumour models. EJNMMI Res 2016; 6:63. [PMID: 27515446 PMCID: PMC4980847 DOI: 10.1186/s13550-016-0218-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 07/28/2016] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Recent studies have shown that 3'-deoxy-3'-[(18)F] fluorothymidine ([(18)F]FLT)) uptake depends on endogenous tumour thymidine concentration. The purpose of this study was to investigate tumour thymidine concentrations and whether they correlated with [(18)F]FLT uptake across a broad spectrum of murine cancer models. A modified liquid chromatography-mass spectrometry (LC-MS/MS) method was used to determine endogenous thymidine concentrations in plasma and tissues of tumour-bearing and non-tumour bearing mice and rats. Thymidine concentrations were determined in 22 tumour models, including xenografts, syngeneic and spontaneous tumours, from six research centres, and a subset was compared for [(18)F]FLT uptake, described by the maximum and mean tumour-to-liver uptake ratio (TTL) and SUV. RESULTS The LC-MS/MS method used to measure thymidine in plasma and tissue was modified to improve sensitivity and reproducibility. Thymidine concentrations determined in the plasma of 7 murine strains and one rat strain were between 0.61 ± 0.12 μM and 2.04 ± 0.64 μM, while the concentrations in 22 tumour models ranged from 0.54 ± 0.17 μM to 20.65 ± 3.65 μM. TTL at 60 min after [(18)F]FLT injection, determined in 14 of the 22 tumour models, ranged from 1.07 ± 0.16 to 5.22 ± 0.83 for the maximum and 0.67 ± 0.17 to 2.10 ± 0.18 for the mean uptake. TTL did not correlate with tumour thymidine concentrations. CONCLUSIONS Endogenous tumour thymidine concentrations alone are not predictive of [(18)F]FLT uptake in murine cancer models.
Collapse
Affiliation(s)
- Kathrin Heinzmann
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Present address: Comprehensive Cancer Imaging Centre, Imperial College London, London, UK
| | - Davina Jean Honess
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - David Yestin Lewis
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- CRUK-EPSRC Cancer Imaging Centre in Cambridge and Manchester, Cambridge, UK
| | | | - Christopher Cawthorne
- Wolfson Molecular Imaging Centre, Manchester Pharmacy School, University of Manchester, Manchester, UK
- Present address: Positron Emission Tomography Research Centre, University of Hull, Hull, UK
| | - Heather Keen
- Personalised Healthcare and Biomarkers, AstraZeneca, Alderley Park, Macclesfield, UK
| | - Sandra Heskamp
- Department of Radiology and Nuclear Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Sonja Schelhaas
- European Institute for Molecular Imaging (EIMI), Westfälische Wilhelms-Universität (WWU), University Hospital of Münster, Münster, Germany
| | - Timothy Howard Witney
- Comprehensive Cancer Imaging Centre, Imperial College London, London, UK
- Present address: UCL Centre for Advanced Biomedical Imaging, University College London, London, UK
| | - Dmitry Soloviev
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- CRUK-EPSRC Cancer Imaging Centre in Cambridge and Manchester, Cambridge, UK
| | - Kaye Janine Williams
- Wolfson Molecular Imaging Centre, Manchester Pharmacy School, University of Manchester, Manchester, UK
- CRUK-EPSRC Cancer Imaging Centre in Cambridge and Manchester, Cambridge, UK
| | - Andreas Hans Jacobs
- European Institute for Molecular Imaging (EIMI), Westfälische Wilhelms-Universität (WWU), University Hospital of Münster, Münster, Germany
| | - Eric Ofori Aboagye
- Comprehensive Cancer Imaging Centre, Imperial College London, London, UK
| | | | - Kevin Michael Brindle
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
- CRUK-EPSRC Cancer Imaging Centre in Cambridge and Manchester, Cambridge, UK.
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK.
| |
Collapse
|
13
|
Schelhaas S, Held A, Bäumer N, Viel T, Hermann S, Müller-Tidow C, Jacobs AH. Preclinical Evidence That 3′-Deoxy-3′-[18F]Fluorothymidine PET Can Visualize Recovery of Hematopoiesis after Gemcitabine Chemotherapy. Cancer Res 2016; 76:7089-7095. [DOI: 10.1158/0008-5472.can-16-1478] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 09/19/2016] [Accepted: 10/06/2016] [Indexed: 11/16/2022]
|
14
|
Doblas S, Almeida GS, Blé FX, Garteiser P, Hoff BA, McIntyre DJ, Wachsmuth L, Chenevert TL, Faber C, Griffiths JR, Jacobs AH, Morris DM, O’Connor JP, Robinson SP, Van Beers BE, Waterton JC. Apparent diffusion coefficient is highly reproducible on preclinical imaging systems: Evidence from a seven-center multivendor study. J Magn Reson Imaging 2015; 42:1759-64. [PMID: 26012876 PMCID: PMC5968828 DOI: 10.1002/jmri.24955] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 05/08/2015] [Accepted: 05/11/2015] [Indexed: 12/11/2022] Open
Abstract
PURPOSE To evaluate between-site agreement of apparent diffusion coefficient (ADC) measurements in preclinical magnetic resonance imaging (MRI) systems. MATERIALS AND METHODS A miniaturized thermally stable ice-water phantom was devised. ADC (mean and interquartile range) was measured over several days, on 4.7T, 7T, and 9.4T Bruker, Agilent, and Magnex small-animal MRI systems using a common protocol across seven sites. Day-to-day repeatability was expressed as percent variation of mean ADC between acquisitions. Cross-site reproducibility was expressed as 1.96 × standard deviation of percent deviation of ADC values. RESULTS ADC measurements were equivalent across all seven sites with a cross-site ADC reproducibility of 6.3%. Mean day-to-day repeatability of ADC measurements was 2.3%, and no site was identified as presenting different measurements than others (analysis of variance [ANOVA] P = 0.02, post-hoc test n.s.). Between-slice ADC variability was negligible and similar between sites (P = 0.15). Mean within-region-of-interest ADC variability was 5.5%, with one site presenting a significantly greater variation than the others (P = 0.0013). CONCLUSION Absolute ADC values in preclinical studies are comparable between sites and equipment, provided standardized protocols are employed.
Collapse
Affiliation(s)
- Sabrina Doblas
- Laboratory of imaging biomarkers, UMR 1149 – CRI, Inserm, Paris Diderot University, Paris, France
| | - Gilberto S. Almeida
- Division of Radiotherapy and Imaging, Institute of Cancer Research, London, UK
| | | | - Philippe Garteiser
- Laboratory of imaging biomarkers, UMR 1149 – CRI, Inserm, Paris Diderot University, Paris, France
| | - Benjamin A. Hoff
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Lydia Wachsmuth
- Department of Clinical Radiology, Münster University Hospital, Westfälische Wilhelms-Universität, Münster, Germany
| | | | - Cornelius Faber
- Department of Clinical Radiology, Münster University Hospital, Westfälische Wilhelms-Universität, Münster, Germany
| | | | - Andreas H. Jacobs
- European Institute for Molecular Imaging, Westfälische Wilhelms-Universität, Münster, Germany
| | - David M. Morris
- Centre for Imaging Sciences, University of Manchester, Manchester, UK
| | | | - Simon P. Robinson
- Division of Radiotherapy and Imaging, Institute of Cancer Research, London, UK
| | - Bernard E. Van Beers
- Laboratory of imaging biomarkers, UMR 1149 – CRI, Inserm, Paris Diderot University, Paris, France
| | - John C. Waterton
- Centre for Imaging Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
15
|
Del Gobbo A, Pellegrinelli A, Gaudioso G, Castellani M, Zito Marino F, Franco R, Palleschi A, Nosotti M, Bosari S, Vaira V, Ferrero S. Analysis of NSCLC tumour heterogeneity, proliferative and 18F-FDG PET indices reveals Ki67 prognostic role in adenocarcinomas. Histopathology 2015; 68:746-51. [PMID: 26272457 DOI: 10.1111/his.12808] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 08/11/2015] [Indexed: 11/27/2022]
Abstract
AIMS The role of tumour metabolic and proliferative indices in predicting non-small-cell lung cancer (NSCLC) patients' prognosis is unclear. We correlated fluorine 18 ((18) F)-fluorodeoxyglucose (FDG)-positron emission tomography (PET) value and Ki67 index to patients' survival, taking into account tumour heterogeneity, disease characteristics and genetic aberrations. METHODS AND RESULTS A series of 383 NSCLCs was arranged into tissue microarrays and Ki67 staining was analysed by immunohistochemistry. The maximum standardized uptake (SUV(MAX) ) value detected by (18) F-FDG-PET analysis was calculated over a region of interest. Large-cell and squamous cell carcinomas had higher proliferative and metabolic activities than adenocarcinomas, and the two measures were correlated significantly. The hot-spot Ki67 value was correlated with patients' survival and the cut-off to discriminate patients in the survival risk groups was 20%. Ki67 hot-spot values were greater in anaplastic lymphoma kinase (ALK) rearranged tumours. Adenocarcinomas showed the highest intratumour heterogeneity in proliferative activity and the hot-spot Ki67 value predicted only the prognosis of patients in this group. Although tumour metabolic activity was not associated with patients' prognosis, a SUV(MAX) > 2 was related to nodal metastases, tumour size and grade. CONCLUSIONS Our results highlight how tumour heterogeneity influences evaluation of prognostic biomarkers. Our data support Ki67 evaluation to estimate NSCLC patients' prognosis, particularly for adenocarcinoma.
Collapse
Affiliation(s)
- Alessandro Del Gobbo
- Division of Pathology, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Alessio Pellegrinelli
- Division of Pathology, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Organ Transplantation, University of Milan, Milan, Italy
| | - Gabriella Gaudioso
- Division of Pathology, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Organ Transplantation, University of Milan, Milan, Italy
| | - Massimo Castellani
- Division of Nuclear Medicine, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Federica Zito Marino
- Struttura Complessa di Anatomia Patologica, Istituto Nazionale Tumori, Fondazione G. Pascale, Naples, Italy
| | - Renato Franco
- Struttura Complessa di Anatomia Patologica, Istituto Nazionale Tumori, Fondazione G. Pascale, Naples, Italy
| | - Alessandro Palleschi
- Division of Thoracic Surgery, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Mario Nosotti
- Division of Thoracic Surgery, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Silvano Bosari
- Division of Pathology, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Organ Transplantation, University of Milan, Milan, Italy
| | - Valentina Vaira
- Division of Pathology, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy.,Istituto Nazionale Genetica Molecolare 'Romeo ed Enrica Invernizzi', Milan, Italy
| | - Stefano Ferrero
- Division of Pathology, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy.,Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| |
Collapse
|
16
|
Tran LBA, Bol A, Labar D, Karroum O, Mignion L, Bol V, Jordan BF, Grégoire V, Gallez B. DW-MRI and18F-FLT PET for early assessment of response to radiation therapy associated with hypoxia-driven interventions. Preclinical studies using manipulation of oxygenation and/or dose escalation. CONTRAST MEDIA & MOLECULAR IMAGING 2015; 11:115-21. [DOI: 10.1002/cmmi.1670] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Revised: 07/17/2015] [Accepted: 09/03/2015] [Indexed: 01/17/2023]
Affiliation(s)
- Ly-Binh-An Tran
- Louvain Drug Research Institute, Biomedical Magnetic Resonance Research Group; Université catholique de Louvain; Brussels Belgium
| | - Anne Bol
- Institut de Recherche Expérimentale et Clinique, Center for Molecular Imaging, Radiotherapy and Oncology; Université catholique de Louvain; Brussels Belgium
| | - Daniel Labar
- Institut de Recherche Expérimentale et Clinique, Center for Molecular Imaging, Radiotherapy and Oncology; Université catholique de Louvain; Brussels Belgium
| | - Oussama Karroum
- Louvain Drug Research Institute, Biomedical Magnetic Resonance Research Group; Université catholique de Louvain; Brussels Belgium
| | - Lionel Mignion
- Louvain Drug Research Institute, Biomedical Magnetic Resonance Research Group; Université catholique de Louvain; Brussels Belgium
| | - Vanesa Bol
- Institut de Recherche Expérimentale et Clinique, Center for Molecular Imaging, Radiotherapy and Oncology; Université catholique de Louvain; Brussels Belgium
| | - Bénédicte F. Jordan
- Louvain Drug Research Institute, Biomedical Magnetic Resonance Research Group; Université catholique de Louvain; Brussels Belgium
| | - Vincent Grégoire
- Institut de Recherche Expérimentale et Clinique, Center for Molecular Imaging, Radiotherapy and Oncology; Université catholique de Louvain; Brussels Belgium
| | - Bernard Gallez
- Louvain Drug Research Institute, Biomedical Magnetic Resonance Research Group; Université catholique de Louvain; Brussels Belgium
| |
Collapse
|
17
|
Yoon SH, Goo JM, Lee SM, Park CM, Cheon GJ. PET/MR Imaging for Chest Diseases. Magn Reson Imaging Clin N Am 2015; 23:245-59. [DOI: 10.1016/j.mric.2015.01.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
18
|
Alam IS, Arshad MA, Nguyen QD, Aboagye EO. Radiopharmaceuticals as probes to characterize tumour tissue. Eur J Nucl Med Mol Imaging 2015; 42:537-61. [PMID: 25647074 DOI: 10.1007/s00259-014-2984-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 12/18/2014] [Indexed: 01/06/2023]
Abstract
Tumour cells exhibit several properties that allow them to grow and divide. A number of these properties are detectable by nuclear imaging methods. We discuss crucial tumour properties that can be described by current radioprobe technologies, further discuss areas of emerging radioprobe development, and finally articulate need areas that our field should aspire to develop. The review focuses largely on positron emission tomography and draws upon the seminal 'Hallmarks of Cancer' review article by Hanahan and Weinberg in 2011 placing into context the present and future roles of radiotracer imaging in characterizing tumours.
Collapse
Affiliation(s)
- Israt S Alam
- Comprehensive Cancer Imaging Centre, Imperial College London, London, W12 0NN, UK
| | | | | | | |
Collapse
|