1
|
Zhang S, Wang X, Gao X, Chen X, Li L, Li G, Liu C, Miao Y, Wang R, Hu K. Radiopharmaceuticals and their applications in medicine. Signal Transduct Target Ther 2025; 10:1. [PMID: 39747850 PMCID: PMC11697352 DOI: 10.1038/s41392-024-02041-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/30/2024] [Accepted: 10/28/2024] [Indexed: 01/04/2025] Open
Abstract
Radiopharmaceuticals involve the local delivery of radionuclides to targeted lesions for the diagnosis and treatment of multiple diseases. Radiopharmaceutical therapy, which directly causes systematic and irreparable damage to targeted cells, has attracted increasing attention in the treatment of refractory diseases that are not sensitive to current therapies. As the Food and Drug Administration (FDA) approvals of [177Lu]Lu-DOTA-TATE, [177Lu]Lu-PSMA-617 and their complementary diagnostic agents, namely, [68Ga]Ga-DOTA-TATE and [68Ga]Ga-PSMA-11, targeted radiopharmaceutical-based theranostics (radiotheranostics) are being increasingly implemented in clinical practice in oncology, which lead to a new era of radiopharmaceuticals. The new generation of radiopharmaceuticals utilizes a targeting vector to achieve the accurate delivery of radionuclides to lesions and avoid off-target deposition, making it possible to improve the efficiency and biosafety of tumour diagnosis and therapy. Numerous studies have focused on developing novel radiopharmaceuticals targeting a broader range of disease targets, demonstrating remarkable in vivo performance. These include high tumor uptake, prolonged retention time, and favorable pharmacokinetic properties that align with clinical standards. While radiotheranostics have been widely applied in tumor diagnosis and therapy, their applications are now expanding to neurodegenerative diseases, cardiovascular diseases, and inflammation. Furthermore, radiotheranostic-empowered precision medicine is revolutionizing the cancer treatment paradigm. Diagnostic radiopharmaceuticals play a pivotal role in patient stratification and treatment planning, leading to improved therapeutic outcomes in targeted radionuclide therapy. This review offers a comprehensive overview of the evolution of radiopharmaceuticals, including both FDA-approved and clinically investigated agents, and explores the mechanisms of cell death induced by radiopharmaceuticals. It emphasizes the significance and future prospects of theranostic-based radiopharmaceuticals in advancing precision medicine.
Collapse
Grants
- 82372002 National Natural Science Foundation of China (National Science Foundation of China)
- 0104002 Beijing Nova Program
- L248087; L234044 Natural Science Foundation of Beijing Municipality (Beijing Natural Science Foundation)
- Nonprofit Central Research Institute Fund of the Chinese Academy of Medical Sciences (No. 2022-RC350-04), the CAMS Innovation Fund for Medical Sciences (Nos. 2021-I2M-1-026, 2022-I2M-2-002-2, and 2021-I2M-3-001), the National Key Research and Development Program of China (No. 2022YFE0111700),the Fundamental Research Funds for the Central Universities (Nos. 3332023044 and 3332023151), the CIRP Open Fund of Radiation Protection Laboratories (No. ZHYLYB2021005), and the China National Nuclear Corporation Young Talent Program.
- Fundamental Research Funds for the Central Universities,Nos. 3332023044
- Fundamental Research Funds for the Central Universities,Nos. 3332023151
- he Nonprofit Central Research Institute Fund of Chinese Academy of Medical Sciences,No. 2022-RC350-04;the CAMS Innovation Fund for Medical Sciences,Nos. 2021-I2M-1-026, 2022-I2M-2-002-2, and 2021-I2M-3-001;the National Key Research and Development Program of China,No. 2022YFE0111700
Collapse
Affiliation(s)
- Siqi Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Xingkai Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Xin Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Xueyao Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Linger Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Guoqing Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Can Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Yuan Miao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Rui Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China.
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Lanzhou University, 2019RU066, 730000, Lanzhou, China.
| | - Kuan Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China.
| |
Collapse
|
2
|
Wu M, Ren C, Mao C, Dong L, Li B, Yang X, Huang Z, Zhang H, Li Y, Yan M, Ge Q, Wu R, Feng F, Cui M, Gao J, Huo L. Evaluation of a novel PET tracer [ 18F]-Florbetazine for Alzheimer's disease diagnosis and β-amyloid deposition quantification. Neuroimage 2024; 298:120779. [PMID: 39122059 DOI: 10.1016/j.neuroimage.2024.120779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/17/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024] Open
Abstract
[18F]-Florbetazine ([18F]-92) is a selective PET tracer for β-amyloid (Aβ) depositions with a novel diaryl-azine scaffold to reduce lipophilicity and to achieve higher gray-to-white matter contrast. We aimed to assess its diagnostic value in Alzheimer's disease (AD) and pharmacokinetics characteristics in human subjects. METHODS Six healthy controls (HCs) and nine AD patients underwent dynamic PET examination with [18F]-Florbetazine and a structural MRI scan. The time-activity-curves (TACs) for volumes of interest (VOIs) in cerebral cortex, cerebellar cortex and cerebral white matter was depicted and their standardized uptake value ratios (SUVRs) with cerebellar cortex as reference were compared between HCs and AD patients. The cerebral gray-to-white matter SUV ratio (GWR) was also calculated. RESULTS In HCs, radioactivities in the cerebral cortex VOIs were homogeneously low and at the same level as in cerebellar cortex, while in AD patients, cortical VOIs expected to contain Aβ exhibited high radioactivity. Cerebral cortex SUVRs remain relatively low in HCs while keep increasing along with time in AD patients. After 15 min, the cerebral cortex SUVRs became significant higher in AD patients compared to HCs with 100 % discrimination accuracy. In AD patients, GWR remained over 1.3 for all time intervals and visual inspection showed lower uptake in cerebral white matter compared to cerebral cortex. CONCLUSION [18F]-Florbetazine PET showed high uptake on Aβ plaques and high gray-to-white contrast in AD patients that are favorable in visual read. [18F]-Florbetazine can be potentially used for detection and quantification of Aβ depositions in the living human brain.
Collapse
Affiliation(s)
- Meiqi Wu
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Center for Rare Diseases Research, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China.
| | - Chao Ren
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Center for Rare Diseases Research, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China.
| | - Chenhui Mao
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Liling Dong
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Bo Li
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Xueqian Yang
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Center for Rare Diseases Research, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Zhenghai Huang
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Center for Rare Diseases Research, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Haiqiong Zhang
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Center for Rare Diseases Research, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Yuying Li
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing, 100875, China
| | - Mengshi Yan
- Beijing United Imaging Research Institute of Intelligent Imaging, Beijing, 100094, China
| | - Qi Ge
- Beijing United Imaging Research Institute of Intelligent Imaging, Beijing, 100094, China
| | - Runze Wu
- Beijing United Imaging Research Institute of Intelligent Imaging, Beijing, 100094, China
| | - Feng Feng
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Mengchao Cui
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing, 100875, China
| | - Jing Gao
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Li Huo
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Center for Rare Diseases Research, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
3
|
Mattsson P, Cselényi Z, Forsberg Morén A, Freund-Levi Y, Wahlund LO, Halldin C, Farde L. High Contrast PET Imaging of Subcortical and Allocortical Amyloid-β in Early Alzheimer's Disease Using [11C]AZD2184. J Alzheimers Dis 2024; 98:1391-1401. [PMID: 38552111 PMCID: PMC11091650 DOI: 10.3233/jad-231013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2024] [Indexed: 04/20/2024]
Abstract
Background Deposits of amyloid-β (Aβ) appear early in Alzheimer's disease (AD). Objective The aim of the present study was to compare the presence of cortical and subcortical Aβ in early AD using positron emission tomography (PET). Methods Eight cognitively unimpaired (CU) subjects, 8 with mild cognitive impairment (MCI) and 8 with mild AD were examined with PET and [11C]AZD2184. A data driven cut-point for Aβ positivity was defined by Gaussian mixture model of isocortex binding potential (BPND) values. Results Sixteen subjects (3 CU, 5 MCI and 8 AD) were Aβ-positive. BPND was lower in subcortical and allocortical regions compared to isocortex. Fifteen of the 16 Aβ-positive subjects displayed Aβ binding in striatum, 14 in thalamus and 10 in allocortical regions. Conclusions Aβ deposits appear to be widespread in early AD. It cannot be excluded that deposits appear simultaneously throughout the whole brain which has implications for improved diagnostics and disease monitoring.
Collapse
Affiliation(s)
- Patrik Mattsson
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm Health Care Services, Stockholm, Sweden
| | - Zsolt Cselényi
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm Health Care Services, Stockholm, Sweden
- PET Science Centre, Personalized Medicine and Biosamples, R&D, AstraZeneca, Stockholm, Sweden
| | - Anton Forsberg Morén
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm Health Care Services, Stockholm, Sweden
| | - Yvonne Freund-Levi
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
- School of Medicine, Örebro University, Örebro, Sweden
- Department of Geriatrics, Örebro University Hospital, Örebro and Södertälje Hospital, Södertälje, Sweden
| | - Lars-Olof Wahlund
- Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Christer Halldin
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm Health Care Services, Stockholm, Sweden
| | - Lars Farde
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm Health Care Services, Stockholm, Sweden
| |
Collapse
|
4
|
Abstract
This article presents an overview of imaging agents for PET that have been applied for research and diagnostic purposes in patients affected by dementia. Classified by the target which the agents visualize, seven groups of tracers can be distinguished, namely radiopharmaceuticals for: (1) Misfolded proteins (ß-amyloid, tau, α-synuclein), (2) Neuroinflammation (overexpression of translocator protein), (3) Elements of the cholinergic system, (4) Elements of monoamine neurotransmitter systems, (5) Synaptic density, (6) Cerebral energy metabolism (glucose transport/ hexokinase), and (7) Various other proteins. This last category contains proteins involved in mechanisms underlying neuroinflammation or cognitive impairment, which may also be potential therapeutic targets. Many receptors belong to this category: AMPA, cannabinoid, colony stimulating factor 1, metabotropic glutamate receptor 1 and 5 (mGluR1, mGluR5), opioid (kappa, mu), purinergic (P2X7, P2Y12), sigma-1, sigma-2, receptor for advanced glycation endproducts, and triggering receptor expressed on myeloid cells-1, besides several enzymes: cyclooxygenase-1 and 2 (COX-1, COX-2), phosphodiesterase-5 and 10 (PDE5, PDE10), and tropomyosin receptor kinase. Significant advances in neuroimaging have been made in the last 15 years. The use of 2-[18F]-fluoro-2-deoxy-D-glucose (FDG) for quantification of regional cerebral glucose metabolism is well-established. Three tracers for ß-amyloid plaques have been approved by the Food and Drug Administration and European Medicines Agency. Several tracers for tau neurofibrillary tangles are already applied in clinical research. Since many novel agents are in the preclinical or experimental stage of development, further advances in nuclear medicine imaging can be expected in the near future. PET studies with established tracers and tracers for novel targets may result in early diagnosis and better classification of neurodegenerative disorders and in accurate monitoring of therapy trials which involve these targets. PET data have prognostic value and may be used to assess the response of the human brain to interventions, or to select the appropriate treatment strategy for an individual patient.
Collapse
Affiliation(s)
- Aren van Waarde
- University of Groningen, University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Groningen, the Netherlands.
| | - Sofia Marcolini
- University of Groningen, University Medical Center Groningen, Department of Neurology, Groningen, the Netherlands
| | - Peter Paul de Deyn
- University of Groningen, University Medical Center Groningen, Department of Neurology, Groningen, the Netherlands; University of Antwerp, Born-Bunge Institute, Neurochemistry and Behavior, Campus Drie Eiken, Wilrijk, Belgium
| | - Rudi A J O Dierckx
- University of Groningen, University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Groningen, the Netherlands; Ghent University, Ghent, Belgium
| |
Collapse
|
5
|
Giovacchini G, Giovannini E, Borsò E, Lazzeri P, Duce V, Ferrando O, Foppiano F, Ciarmiello A. Impact of Tracer Retention Levels on Visual Analysis of Cerebral [ 18F]- Florbetaben Pet Images. Curr Radiopharm 2020; 14:70-77. [PMID: 32727344 DOI: 10.2174/1874471013666200729155717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 06/15/2020] [Accepted: 06/19/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND To compare visual and semi-quantitative analysis of brain [18F]Florbetaben PET images in Mild Cognitive Impairment (MCI) patients and relate this finding to the degree of ß-amyloid burden. METHODS A sample of 71 amnestic MCI patients (age 74 ± 7.3 years, Mini Mental State Examination 24.2 ± 5.3) underwent cerebral [18F]Florbetaben PET/CT. Images were visually scored as positive or negative independently by three certified readers blinded to clinical and neuropsychological assessment. Amyloid positivity was also assessed by semiquantitative approach by means of a previously published threshold (SUVr ≥ 1.3). Fleiss kappa coefficient was used to compare visual analysis (after consensus among readers) and semi-quantitative analysis. Statistical significance was taken at P<0.05. RESULTS After the consensus reading, 43/71 (60.6%) patients were considered positive. Cases that were interpreted as visually positive had higher SUVr than visually negative patients (1.48 ± 0.19 vs 1.11 ± 0.09) (P<0.05). Agreement between visual analysis and semi-quantitative analysis was excellent (k=0.86, P<0.05). Disagreement occurred in 7/71 patients (9.9%) (6 false positives and 1 false negative). Agreement between the two analyses was 90.0% (18/20) for SUVr < 1.1, 83% (24/29) for SUVr between 1.1 and 1.5, and 100% (22/22) for SUVr > 1.5 indicating lowest agreement for the group with intermediate amyloid burden. CONCLUSION Inter-rater agreement of visual analysis of amyloid PET images is high. Agreement between visual analysis and SUVr semi-quantitative analysis decreases in the range of 1.1<SUVr <=1.5, where the clinical scenario is more challenging.
Collapse
Affiliation(s)
- Giampiero Giovacchini
- Nuclear Medicine Unit S. Andrea Hospital Via Vittorio Veneto, 197 19124 La Spezia, Italy
| | - Elisabetta Giovannini
- Nuclear Medicine Unit S. Andrea Hospital Via Vittorio Veneto, 197 19124 La Spezia, Italy
| | - Elisa Borsò
- Nuclear Medicine Unit S. Andrea Hospital Via Vittorio Veneto, 197 19124 La Spezia, Italy
| | - Patrizia Lazzeri
- Nuclear Medicine Unit S. Andrea Hospital Via Vittorio Veneto, 197 19124 La Spezia, Italy
| | - Valerio Duce
- Nuclear Medicine Unit S. Andrea Hospital Via Vittorio Veneto, 197 19124 La Spezia, Italy
| | | | | | - Andrea Ciarmiello
- Nuclear Medicine Unit S. Andrea Hospital Via Vittorio Veneto, 197 19124 La Spezia, Italy
| |
Collapse
|
6
|
Yeo SK, Shepelytskyi Y, Grynko V, Albert MS. Molecular Imaging of Fluorinated Probes for Tau Protein and Amyloid-β Detection. Molecules 2020; 25:molecules25153413. [PMID: 32731418 PMCID: PMC7435578 DOI: 10.3390/molecules25153413] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/24/2020] [Accepted: 07/24/2020] [Indexed: 12/16/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common form of dementia and results in progressive neurodegeneration. The incidence rate of AD is increasing, creating a major public health issue. AD is characterized by neurofibrillary tangles (NFTs) composed of hyperphosphorylated tau protein and senile plaques composed of amyloid-β (Aβ). Currently, a definitive diagnosis of AD is accomplished post-mortem. Thus, the use of molecular probes that are able to selectively bind to NFTs or Aβ can be valuable tools for the accurate and early diagnosis of AD. The aim of this review is to summarize and highlight fluorinated molecular probes that can be used for molecular imaging to detect either NFTs or Aβ. Specifically, fluorinated molecular probes used in conjunction with 19F MRI, PET, and fluorescence imaging will be explored.
Collapse
Affiliation(s)
- Sarah K. Yeo
- Biology Department, Lakehead University, Thunder Bay, ON P7B 5E1, Canada;
| | - Yurii Shepelytskyi
- Chemistry and Materials Science Program, Lakehead University, Thunder Bay, ON P7B 5E1, Canada; (Y.S.); (V.G.)
- Thunder Bay Regional Health Research Institute, Thunder Bay, ON P7B 6V4, Canada
| | - Vira Grynko
- Chemistry and Materials Science Program, Lakehead University, Thunder Bay, ON P7B 5E1, Canada; (Y.S.); (V.G.)
- Thunder Bay Regional Health Research Institute, Thunder Bay, ON P7B 6V4, Canada
| | - Mitchell S. Albert
- Thunder Bay Regional Health Research Institute, Thunder Bay, ON P7B 6V4, Canada
- Chemistry Department, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
- Northern Ontario School of Medicine, Thunder Bay, ON P7B 5E1, Canada
- Correspondence: ; Tel.: +1-807-355-9191
| |
Collapse
|
7
|
Grimmer T, Shi K, Diehl-Schmid J, Natale B, Drzezga A, Förster S, Förstl H, Schwaiger M, Yakushev I, Wester HJ, Kurz A, Yousefi BH. 18F-FIBT may expand PET for β-amyloid imaging in neurodegenerative diseases. Mol Psychiatry 2020; 25:2608-2619. [PMID: 30120417 PMCID: PMC7515824 DOI: 10.1038/s41380-018-0203-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 06/22/2018] [Accepted: 07/18/2018] [Indexed: 11/09/2022]
Abstract
18F-FIBT, 2-(p-Methylaminophenyl)-7-(2-[18F]fluoroethoxy)imidazo-[2,1-b]benzothiazole, is a new selective PET tracer under clinical investigation to specifically image β-amyloid depositions (Aβ) in humans in-vivo that binds to Aβ with excellent affinity (Kd 0.7 ± 0.2) and high selectivity over tau and α-synuclein aggregates (Ki > 1000 nM). We aimed to characterize 18F-FIBT in a series of patients with different clinical-pathophysiological phenotypes and to compare its binding characteristics to the reference compound PiB. Six patients (mild late-onset and moderate early-onset AD dementia, mild cognitive impairment due to AD, intermediate likelihood, mild behavioral variant of frontotemporal dementia, subjective memory impairment without evidence of neurodegeneration, and mild dementia due to Posterior Cortical Atrophy) underwent PET imaging with 18F-FIBT on PET/MR. With the guidance of MRI, PET images were corrected for partial volume effect, time-activity curves (TACs) of regions of interest (ROIs) were extracted, and non-displaceable binding potentials (BPnd), standardized uptake value ratios (SUVR), and distribution volume ratio (DVR) were compared. Specific binding was detected in the cases with evidence of the AD pathophysiological process visualized in images of BPnd, DVR and SUVR, consistently with patterns of different tracers in previous studies. SUVR showed the highest correlation with clinical severity. The previous preclinical characterization and the results of this case series suggest the clinical usefulness of FIBT as a selective and highly affine next-generation 18F-labeled tracer for amyloid-imaging with excellent pharmacokinetics in the diagnosis of neurodegenerative diseases. The results compare well to the gold standard PiB and hence support further investigation in larger human samples.
Collapse
Affiliation(s)
- Timo Grimmer
- Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar der Technischen Universität München, Ismaninger Str. 22, 81675, Munich, Germany.
| | - Kuangyu Shi
- grid.15474.330000 0004 0477 2438Department of Nuclear Medicine, Klinikum rechts der Isar der Technischen Universität München, Ismaninger Str. 22, 81675 Munich, Germany ,grid.5734.50000 0001 0726 5157Department of Nuclear Medicine, University of Bern, Freiburgstr. 10, 3010 Bern, Switzerland
| | - Janine Diehl-Schmid
- grid.15474.330000 0004 0477 2438Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar der Technischen Universität München, Ismaninger Str. 22, 81675 Munich, Germany
| | - Bianca Natale
- grid.15474.330000 0004 0477 2438Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar der Technischen Universität München, Ismaninger Str. 22, 81675 Munich, Germany
| | - Alexander Drzezga
- grid.411097.a0000 0000 8852 305XDepartment of Nuclear Medicine, University Hospital of Cologne, Kerpener Straße 62, 50937 Cologne, Germany
| | - Stefan Förster
- grid.15474.330000 0004 0477 2438Department of Nuclear Medicine, Klinikum rechts der Isar der Technischen Universität München, Ismaninger Str. 22, 81675 Munich, Germany
| | - Hans Förstl
- grid.15474.330000 0004 0477 2438Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar der Technischen Universität München, Ismaninger Str. 22, 81675 Munich, Germany
| | - Markus Schwaiger
- grid.15474.330000 0004 0477 2438Department of Nuclear Medicine, Klinikum rechts der Isar der Technischen Universität München, Ismaninger Str. 22, 81675 Munich, Germany
| | - Igor Yakushev
- grid.15474.330000 0004 0477 2438Department of Nuclear Medicine, Klinikum rechts der Isar der Technischen Universität München, Ismaninger Str. 22, 81675 Munich, Germany
| | - Hans-Jürgen Wester
- grid.6936.a0000000123222966Pharmaceutical Radiochemistry, Technische Universität München, Walther-Meißner-Str. 3, 85748 Garching, Germany
| | - Alexander Kurz
- grid.15474.330000 0004 0477 2438Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar der Technischen Universität München, Ismaninger Str. 22, 81675 Munich, Germany
| | - Behrooz Hooshyar Yousefi
- grid.15474.330000 0004 0477 2438Department of Nuclear Medicine, Klinikum rechts der Isar der Technischen Universität München, Ismaninger Str. 22, 81675 Munich, Germany
| |
Collapse
|
8
|
Tiepolt S, Patt M, Aghakhanyan G, Meyer PM, Hesse S, Barthel H, Sabri O. Current radiotracers to image neurodegenerative diseases. EJNMMI Radiopharm Chem 2019; 4:17. [PMID: 31659510 PMCID: PMC6660543 DOI: 10.1186/s41181-019-0070-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 07/16/2019] [Indexed: 12/11/2022] Open
Abstract
The term of neurodegenerative diseases covers a heterogeneous group of disorders that are distinguished by progressive degeneration of the structure and function of the nervous system such as dementias, movement disorders, motor neuron disorders, as well as some prion disorders. In recent years, a paradigm shift started for the diagnosis of neurodegenerative diseases, for which successively clinical testing is supplemented by biomarker information. In research scenarios, it was even proposed recently to substitute the current syndromic by a biological definition of Alzheimer's diseases. PET examinations with various radiotracers play an important role in providing non-invasive biomarkers and co-morbidity information in neurodegeneration. Information on co-morbidity, e.g. Aβ plaques and Lewy-bodies or Aβ plaques in patients with aphasia or the absence of Aβ plaques in clinical AD patients are of interest to expand our knowledge about the pathogenesis of different phenotypically defined neurodegenerative diseases. Moreover, this information is also important in therapeutic trials targeting histopathological abnormalities.The aim of this review is to present an overview of the currently available radiotracers for imaging neurodegenerative diseases in research and in routine clinical settings. In this context, we also provide a short summary of the most frequent neurodegenerative diseases from a nuclear medicine point of view, their clinical and pathophysiological as well as nuclear imaging characteristics, and the resulting need for new radiotracers.
Collapse
Affiliation(s)
- Solveig Tiepolt
- Department of Nuclear Medicine, University of Leipzig, Liebigstraße 18, 04103 Leipzig, Germany
| | - Marianne Patt
- Department of Nuclear Medicine, University of Leipzig, Liebigstraße 18, 04103 Leipzig, Germany
| | - Gayane Aghakhanyan
- Department of Nuclear Medicine, University of Leipzig, Liebigstraße 18, 04103 Leipzig, Germany
| | - Philipp M. Meyer
- Department of Nuclear Medicine, University of Leipzig, Liebigstraße 18, 04103 Leipzig, Germany
| | - Swen Hesse
- Department of Nuclear Medicine, University of Leipzig, Liebigstraße 18, 04103 Leipzig, Germany
| | - Henryk Barthel
- Department of Nuclear Medicine, University of Leipzig, Liebigstraße 18, 04103 Leipzig, Germany
| | - Osama Sabri
- Department of Nuclear Medicine, University of Leipzig, Liebigstraße 18, 04103 Leipzig, Germany
| |
Collapse
|
9
|
Nakanishi K, Hirano Y, Yamamoto S. Comparison of Noise Equivalent Count Rates (NECRs) for the PET Systems With Different Ring Diameter and Electronics. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2019. [DOI: 10.1109/trpms.2018.2876410] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
10
|
Hudd F, Shiel A, Harris M, Bowdler P, McCann B, Tsivos D, Wearn A, Knight M, Kauppinen R, Coulthard E, White P, Conway ME. Novel Blood Biomarkers that Correlate with Cognitive Performance and Hippocampal Volumetry: Potential for Early Diagnosis of Alzheimer’s Disease. J Alzheimers Dis 2019; 67:931-947. [PMID: 30689581 DOI: 10.3233/jad-180879] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Fred Hudd
- Faculty of Health and Life Sciences, University of the West of England, Bristol, UK
| | - Anna Shiel
- Faculty of Health and Life Sciences, University of the West of England, Bristol, UK
| | - Matthew Harris
- Faculty of Health and Life Sciences, University of the West of England, Bristol, UK
| | - Paul Bowdler
- Faculty of Health and Life Sciences, University of the West of England, Bristol, UK
| | - Bryony McCann
- Clinical Research and Imaging Centre (CRICBristol), University of Bristol, Bristol, UK
| | - Demitra Tsivos
- Dementia Research Group, Faculty of Medicine and Dentistry, University of Bristol, Bristol, UK
| | - Alfie Wearn
- Dementia Research Group, Faculty of Medicine and Dentistry, University of Bristol, Bristol, UK
| | - Michael Knight
- Clinical Research and Imaging Centre (CRICBristol), University of Bristol, Bristol, UK
| | - Risto Kauppinen
- Clinical Research and Imaging Centre (CRICBristol), University of Bristol, Bristol, UK
| | - Elizabeth Coulthard
- Dementia Research Group, Faculty of Medicine and Dentistry, University of Bristol, Bristol, UK
| | - Paul White
- Faculty of Health and Life Sciences, University of the West of England, Bristol, UK
| | | |
Collapse
|
11
|
Kim K, Lee K, Lee H, Joo S, Kang J. An iterative sinogram gap-filling method with object- and scanner-dedicated discrete cosine transform (DCT)-domain filters for high resolution PET scanners. Jpn J Radiol 2017; 36:59-67. [PMID: 29086347 DOI: 10.1007/s11604-017-0697-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 10/17/2017] [Indexed: 11/27/2022]
Abstract
PURPOSE We aimed to develop a gap-filling algorithm, in particular the filter mask design method of the algorithm, which optimizes the filter to the imaging object by an adaptive and iterative process, rather than by manual means. METHODS Two numerical phantoms (Shepp-Logan and Jaszczak) were used for sinogram generation. The algorithm works iteratively, not only on the gap-filling iteration but also on the mask generation, to identify the object-dedicated low frequency area in the DCT-domain that is to be preserved. We redefine the low frequency preserving region of the filter mask at every gap-filling iteration, and the region verges on the property of the original image in the DCT domain. RESULTS The previous DCT2 mask for each phantom case had been manually well optimized, and the results show little difference from the reference image and sinogram. We observed little or no difference between the results of the manually optimized DCT2 algorithm and those of the proposed algorithm. CONCLUSIONS The proposed algorithm works well for various types of scanning object and shows results that compare to those of the manually optimized DCT2 algorithm without perfect or full information of the imaging object.
Collapse
Affiliation(s)
- Kwangdon Kim
- Department of IT-Convergence, Korea University, Anam-ro 145, Seongbuk-gu, Seoul, South Korea
| | - Kisung Lee
- Department of Bio-Convergence Engineering, Korea University, Hana B, Anam-ro 145, Seongbuk-gu, Seoul, South Korea.
| | - Hakjae Lee
- Department of Bio-Convergence Engineering and Medical Imaging Device Company, ARARE Lab., Anam-ro 145, Seongbuk-gu, Seoul, South Korea
| | - Sungkwan Joo
- School of Electrical Engineering, Korea University, Anam-ro 145, Seongbuk-gu, Seoul, South Korea
| | - Jungwon Kang
- Department of Electronics and Electrical Engineering, Dankook University, 152, Jukjeon-ro, Suji-gu, Yongin-Si, Gyeonggi-do, 16890, South Korea
| |
Collapse
|
12
|
Byun BH, Kim BI, Park SY, Ko IO, Lee KC, Kim KM, Kim YK, Lee JY, Bu SH, Kim JH, Chi DY, Ha JH, Lim SM. Head-to-head comparison of 11C-PiB and 18F-FC119S for Aβ imaging in healthy subjects, mild cognitive impairment patients, and Alzheimer's disease patients. Medicine (Baltimore) 2017; 96:e6441. [PMID: 28328855 PMCID: PMC5371492 DOI: 10.1097/md.0000000000006441] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
As a new beta amyloid (Aβ) positron emission tomography (PET) tracer, F-FC119S has shown higher cortical uptake in patients with Alzheimer's disease (AD) than that in healthy control subjects without adverse effects in a previous preliminary study. The aim of this study was to compare F-FC119S PET and C-PiB PET in healthy control (HC) subjects, mild cognitive impairment (MCI) patients, and AD patients.A total of 48 subjects, including 28 HC subjects, 10 MCI patients, and 10 AD patients, underwent static F-FC119S PET (30 minutes after intravenous [i.v.] injection) and C-PiB PET (40 minutes after i.v. injection) on the same day. Both PET images were visually and quantitatively assessed. Standardized uptake value ratios (SUVRs) were calculated for each brain region using the cerebellar cortex as a reference region.None (0%) of the 28 HC subjects and 4 (40%) of 10 MCI patients had positive scans on both PET images. Of the 10 AD patients, 7 (70%) had positive scans on C-PiB PET while 6 (60%) had positive scans on F-FC119S PET. Overall, 47 (98%) of 48 participants showed identical results based on visual analysis. Cortical SUVR of F-FC119S was higher in AD patients (1.38 ± 0.16), followed by that in MCI patients (1.24 ± 0.10) and in HC subjects (1.14 ± 0.05). Compared with C-PiB PET, F-FC119S PET yielded a higher effect size (d = 2.02 vs. 1.67) in AD patients and a slightly lower effect size (d = 1.26 vs. 1.38) in MCI patients. In HC subjects, the nonspecific binding of F-FC119S to white matter (with the frontal cortex-to-white matter SUV ratio of 0.76) was slightly lower than that of C-PiB (ratio of 0.73). There was a significant linear correlation (slope = 0.41, r = 0.78, P < 0.001) between C-PiB and F-FC119S cortical SUVR.We could safely obtain images similar to C-PiB PET imaging Aβ in the brain using F-FC119S PET. Therefore, F-FC119S might be suitable for imaging Aβ deposition.
Collapse
Affiliation(s)
| | | | - Su Yeon Park
- Department of Neurology, Korea Cancer Center Hospital
| | - In Ok Ko
- Molecular Imaging Research Center, Korea Institute of Radiological & Medical Sciences
| | - Kyo Chul Lee
- Molecular Imaging Research Center, Korea Institute of Radiological & Medical Sciences
| | - Kyeong Min Kim
- Molecular Imaging Research Center, Korea Institute of Radiological & Medical Sciences
| | | | - Jun-Young Lee
- Department of Psychiatry and Behavioral Science, College of Medicine, Seoul National University, Boramae Hospital
| | - Seon Hee Bu
- Department of Neurology, Seoul Bukbu Hospital
| | | | - Dae Yoon Chi
- Research Institute of Labeling, FutureChem Co., Ltd
- Department of Chemistry, Sogang University, Seoul, Republic of Korea
| | - Jeong Ho Ha
- Department of Neurology, Korea Cancer Center Hospital
| | | |
Collapse
|
13
|
Arakawa Y, Nai Y, Shidahara M, Furumoto S, Seki C, Okamura N, Tashiro M, Kudo Y, Yanai K, Gonda K, Watabe H. Prediction of the Clinical SUV Ratio in Amyloid PET Imaging Using a Biomathematic Modeling Approach Toward the Efficient Development of a Radioligand. J Nucl Med 2017; 58:1285-1292. [DOI: 10.2967/jnumed.116.183566] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 12/07/2016] [Indexed: 11/16/2022] Open
|
14
|
Characterization of the radiolabeled metabolite of tau PET tracer 18F-THK5351. Eur J Nucl Med Mol Imaging 2016; 43:2211-2218. [DOI: 10.1007/s00259-016-3453-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 06/23/2016] [Indexed: 10/21/2022]
|
15
|
Quantitative multimodal multiparametric imaging in Alzheimer's disease. Brain Inform 2016; 3:29-37. [PMID: 27747597 PMCID: PMC4883163 DOI: 10.1007/s40708-015-0028-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 12/07/2015] [Indexed: 12/18/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder, causing changes in memory, thinking, and other dysfunction of brain functions. More and more people are suffering from the disease. Early neuroimaging techniques of AD are needed to develop. This review provides a preliminary summary of the various neuroimaging techniques that have been explored for in vivo imaging of AD. Recent advances in magnetic resonance (MR) techniques, such as functional MR imaging (fMRI) and diffusion MRI, give opportunities to display not only anatomy and atrophy of the medial temporal lobe, but also at microstructural alterations or perfusion disturbance within the AD lesions. Positron emission tomography (PET) imaging has become the subject of intense research for the diagnosis and facilitation of drug development of AD in both animal models and human trials due to its non-invasive and translational characteristic. Fluorodeoxyglucose (FDG) PET and amyloid PET are applied in clinics and research departments. Amyloid beta (Aβ) imaging using PET has been recognized as one of the most important methods for the early diagnosis of AD, and numerous candidate compounds have been tested for Aβ imaging. Besides in vivo imaging method, a lot of ex vivo modalities are being used in the AD researches. Multiphoton laser scanning microscopy, neuroimaging of metals, and several metal bioimaging methods are also mentioned here. More and more multimodality and multiparametric neuroimaging techniques should improve our understanding of brain function and open new insights into the pathophysiology of AD. We expect exciting results will emerge from new neuroimaging applications that will provide scientific and medical benefits.
Collapse
|
16
|
Amyloid PET imaging: applications beyond Alzheimer's disease. Clin Transl Imaging 2015; 3:39-55. [PMID: 25741489 PMCID: PMC4339781 DOI: 10.1007/s40336-014-0098-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 12/22/2014] [Indexed: 12/14/2022]
Abstract
As a biomarker of beta-amyloid, positron emission tomography (PET) amyloid imaging offers a unique opportunity to detect the presence of this protein in the human body during life. Besides Alzheimer's disease (AD), deposits of beta-amyloid in the brain are also present in other neurodegenerative diseases associated to dementia, such as Parkinson's disease and dementia with Lewy bodies, as well as in other processes affecting brain function, such as cerebral amyloid angiopathy, brain trauma, Down's syndrome and meningiomas, as shown by post-mortem pathology studies. Furthermore, in systemic amyloidosis other organs besides the brain are affected, and amyloid PET imaging may be suitable for the identification of these extra-cerebral amyloid depositions. Finally, the potential use of amyloid PET tracer accumulation in cerebral white matter (WM) as a marker of myelin is being investigated, leading to some promising results in patients with WM lesions and multiple sclerosis. In this article, a review of the ongoing research pointing to a broader application of amyloid PET imaging in clinical practice beyond AD is provided.
Collapse
|