1
|
Singh P, Singh D, Srivastava P, Mishra G, Tiwari AK. Evaluation of advanced, pathophysiologic new targets for imaging of CNS. Drug Dev Res 2023; 84:484-513. [PMID: 36779375 DOI: 10.1002/ddr.22040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/12/2022] [Accepted: 12/31/2022] [Indexed: 02/14/2023]
Abstract
The inadequate information about the in vivo pathological, physiological, and neurological impairments, as well as the absence of in vivo tools for assessing brain penetrance and the efficiency of newly designed drugs, has hampered the development of new techniques for the treatment for variety of new central nervous system (CNS) diseases. The searching sites such as Science Direct and PubMed were used to find out the numerous distinct tracers across 16 CNS targets including tau, synaptic vesicle glycoprotein, the adenosine 2A receptor, the phosphodiesterase enzyme PDE10A, and the purinoceptor, among others. Among the most encouraging are [18 F]FIMX for mGluR imaging, [11 C]Martinostat for Histone deacetylase, [18 F]MNI-444 for adenosine 2A imaging, [11 C]ER176 for translocator protein, and [18 F]MK-6240 for tau imaging. We also reviewed the findings for each tracer's features and potential for application in CNS pathophysiology and therapeutic evaluation investigations, including target specificity, binding efficacy, and pharmacokinetic factors. This review aims to present a current evaluation of modern positron emission tomography tracers for CNS targets, with a focus on recent advances for targets that have newly emerged for imaging in humans.
Collapse
Affiliation(s)
- Priya Singh
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| | - Deepika Singh
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| | - Pooja Srivastava
- Division of Cyclotron and Radiopharmaceuticals Sciences, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Gauri Mishra
- Department of Zoology, Swami Shraddhananad College, University of Delhi, Alipur, Delhi, India
| | - Anjani K Tiwari
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
2
|
Receptor mapping using methoxy phenyl piperazine derivative: Preclinical PET imaging. Bioorg Chem 2021; 117:105429. [PMID: 34736134 DOI: 10.1016/j.bioorg.2021.105429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/01/2021] [Accepted: 10/11/2021] [Indexed: 12/18/2022]
Abstract
This study aimed at assessing 2-methoxyphenyl piperazine derivative for its binding specificity and suitability in mapping metabotropic glutamate receptor subtype 1, which is implicated in several neuropsychiatric disorders. N-(2-(4-(2-Methoxyphenyl)piperazin-1-yl)ethyl)-N-methylpyridin-2-amine was synthesised and evaluated for brain imaging subsequent to radiolabelling with [11C] radioisotope via methylation process in 98.9% purity and 52 ± 6% yield (decay corrected). The specific activity was in the range of 72-93 GBq/µmol. The haemolysis of blood was 2-5% for initial 4 hr and remained < 10% after 24 h of incubation indicating low toxicity. In vitro autoradiograms after coincubation with unlabelled ligand confirmed the high uptake of the PET radioligand in the mGluR1 receptor rich regions. The PET as well as biodistribution studies also showed high activity in the brain with a direct correlation between receptor abundance distribution pattern and tracer activity. The biodistribution analyses revealed initial high brain uptake (4.18 ± 0.48). The highest uptake was found in cerebellum (SUV 4.7 ± 0.2), followed by thalamus (SUV 3.5 ± 0.1), and striatum (SUV 3 ± 0.1). In contrast, pons had negligible tracer activity. The high uptake observed in all the regions with known mGluR1 activity indicates suitability of the ligand for mGluR1 imaging.
Collapse
|
3
|
He Y, Whitehead DM, Briard E, Numao S, Mu L, Schibli R, Ametamey SM, Auberson YP. Evaluation of 5H-Thiazolo[3,2-α]pyrimidin-5-ones as Potential GluN2A PET Tracers. ChemMedChem 2020; 15:2448-2461. [PMID: 32544308 DOI: 10.1002/cmdc.202000340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Indexed: 11/10/2022]
Abstract
We describe here our efforts to develop a PET tracer for imaging GluN2A-containing NMDA receptors, based on a 5H-thiazolo[3,2-α]pyrimidin-5-one scaffold. The metabolic stability and overall properties could be optimized satisfactorily, although binding affinities remained a limiting factor for in vivo imaging. We nevertheless identified 7-(((2-fluoroethyl)(3-fluorophenyl)amino)-methyl)-3-(2-(hydroxymethyl)cyclopropyl)-2-methyl-5H-thiazolo-[3,2-α]pyrimidin-5-one ([18 F]7b) as a radioligand providing good-quality images in autoradiographic studies, as well as a tritiated derivative, 2-(7-(((2-fluoroethyl)(4-fluorophenyl)amino)methyl)-2-methyl-5-oxo-5H-thiazolo[3,2-α]pyrimidin-3-yl)cyclopropane-1-carbonitrile ([3 H2 ]15b), which was used for the successful development of a radioligand binding assay. These are valuable new tools for the study of GluN2A-containing NMDA receptors, and for the optimization of allosteric modulators binding to the pharmacophore located at the dimer interface of the GluN1-GluN2A ligand-binding domain.
Collapse
Affiliation(s)
- Yingfang He
- Department of Chemistry and Applied Biosciences ETH Zürich, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - David M Whitehead
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Fabrikstrasse 2, 4056, Basel, Switzerland
| | - Emmanuelle Briard
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Fabrikstrasse 2, 4056, Basel, Switzerland
| | - Shin Numao
- Chemical Biology & Therapeutics, Novartis Institutes for BioMedical Research, Fabrikstrasse 2, 4056, Basel, Switzerland
| | - Linjing Mu
- Department of Chemistry and Applied Biosciences ETH Zürich, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Roger Schibli
- Department of Chemistry and Applied Biosciences ETH Zürich, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Simon M Ametamey
- Department of Chemistry and Applied Biosciences ETH Zürich, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Yves P Auberson
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Fabrikstrasse 2, 4056, Basel, Switzerland
| |
Collapse
|
4
|
Characterization of [ 11C]PXT012253 as a PET Radioligand for mGlu 4 Allosteric Modulators in Nonhuman Primates. Mol Imaging Biol 2020; 21:500-508. [PMID: 30066121 DOI: 10.1007/s11307-018-1257-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE Modulation of presynaptic metabotropic glutamate receptor 4 (mGlu4) by an allosteric ligand has been proposed as a promising therapeutic target in Parkinson's disease and levodopa-induced dyskinesia. A positron emission tomography (PET) ligand for an allosteric site of mGlu4 may provide evidence that a clinical drug candidate reaches and binds the target. A carbon-11-labeled PET radioligand binding an allosteric site of mGlu4, [11C]PXT012253, has been recently developed. Here, we describe the detailed characterization of this novel radiolabeled mGlu4 ligand in nonhuman primates. PROCEDURES [11C]PXT012253 binding in the brain of cynomolgus monkeys, under the baseline and blocking conditions with the structurally different mGlu4 allosteric ligand PXT002331, currently in clinical trials for Parkinson's disease, was quantified with compartment and graphical modeling approaches using a radiometabolite-corrected plasma input function. Whole-body biodistribution of [11C]PXT012253 was then assessed using PET/x-ray computed tomography to estimate the human effective doses of [11C]PXT012253 for further clinical studies. RESULTS [11C]PXT012253 displayed binding in mGlu4-expressing regions in the brain of cynomolgus monkeys. Brain regional time-activity curves of [11C]PXT012253 were well described in the two-tissue compartment model (2TC). Total distribution volume was stably estimated using Logan plot and multilinear analysis (MA1) although 2TC showed unstable values in some cases. Competition with PXT002331 showed high specific binding in the total distribution volume. Whole-body PET showed high accumulation of [11C]PXT012253 in the liver, kidney, heart, and brain in the initial phase. The radioligand was excreted through both the gastrointestinal and the urinary tracts. Effective dose of [11C]PXT012253 was estimated to be 0.0042 mSv/MBq. CONCLUSIONS [11C]PXT012253 was shown to be a promising PET radioligand for mGlu4 allosteric modulators in the monkey brain. MA1 would be the choice of quantitative method. Further development of [11C]PXT012253 in human subjects is warranted.
Collapse
|
5
|
McCluskey SP, Plisson C, Rabiner EA, Howes O. Advances in CNS PET: the state-of-the-art for new imaging targets for pathophysiology and drug development. Eur J Nucl Med Mol Imaging 2020; 47:451-489. [PMID: 31541283 PMCID: PMC6974496 DOI: 10.1007/s00259-019-04488-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 08/15/2019] [Indexed: 02/07/2023]
Abstract
PURPOSE A limit on developing new treatments for a number of central nervous system (CNS) disorders has been the inadequate understanding of the in vivo pathophysiology underlying neurological and psychiatric disorders and the lack of in vivo tools to determine brain penetrance, target engagement, and relevant molecular activity of novel drugs. Molecular neuroimaging provides the tools to address this. This article aims to provide a state-of-the-art review of new PET tracers for CNS targets, focusing on developments in the last 5 years for targets recently available for in-human imaging. METHODS We provide an overview of the criteria used to evaluate PET tracers. We then used the National Institute of Mental Health Research Priorities list to identify the key CNS targets. We conducted a PubMed search (search period 1st of January 2013 to 31st of December 2018), which yielded 40 new PET tracers across 16 CNS targets which met our selectivity criteria. For each tracer, we summarised the evidence of its properties and potential for use in studies of CNS pathophysiology and drug evaluation, including its target selectivity and affinity, inter and intra-subject variability, and pharmacokinetic parameters. We also consider its potential limitations and missing characterisation data, but not specific applications in drug development. Where multiple tracers were present for a target, we provide a comparison of their properties. RESULTS AND CONCLUSIONS Our review shows that multiple new tracers have been developed for proteinopathy targets, particularly tau, as well as the purinoceptor P2X7, phosphodiesterase enzyme PDE10A, and synaptic vesicle glycoprotein 2A (SV2A), amongst others. Some of the most promising of these include 18F-MK-6240 for tau imaging, 11C-UCB-J for imaging SV2A, 11C-CURB and 11C-MK-3168 for characterisation of fatty acid amide hydrolase, 18F-FIMX for metabotropic glutamate receptor 1, and 18F-MNI-444 for imaging adenosine 2A. Our review also identifies recurrent issues within the field. Many of the tracers discussed lack in vivo blocking data, reducing confidence in selectivity. Additionally, late-stage identification of substantial off-target sites for multiple tracers highlights incomplete pre-clinical characterisation prior to translation, as well as human disease state studies carried out without confirmation of test-retest reproducibility.
Collapse
Affiliation(s)
- Stuart P McCluskey
- Invicro LLC, A Konica Minolta Company, Burlington Danes Building, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK.
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital, London, UK.
| | - Christophe Plisson
- Invicro LLC, A Konica Minolta Company, Burlington Danes Building, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - Eugenii A Rabiner
- Invicro LLC, A Konica Minolta Company, Burlington Danes Building, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - Oliver Howes
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital, London, UK
| |
Collapse
|
6
|
Beaurain M, Salabert AS, Ribeiro MJ, Arlicot N, Damier P, Le Jeune F, Demonet JF, Payoux P. Innovative Molecular Imaging for Clinical Research, Therapeutic Stratification, and Nosography in Neuroscience. Front Med (Lausanne) 2019; 6:268. [PMID: 31828073 PMCID: PMC6890558 DOI: 10.3389/fmed.2019.00268] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 11/01/2019] [Indexed: 01/06/2023] Open
Abstract
Over the past few decades, several radiotracers have been developed for neuroimaging applications, especially in PET. Because of their low steric hindrance, PET radionuclides can be used to label molecules that are small enough to cross the blood brain barrier, without modifying their biological properties. As the use of 11C is limited by its short physical half-life (20 min), there has been an increasing focus on developing tracers labeled with 18F for clinical use. The first such tracers allowed cerebral blood flow and glucose metabolism to be measured, and the development of molecular imaging has since enabled to focus more closely on specific targets such as receptors, neurotransmitter transporters, and other proteins. Hence, PET and SPECT biomarkers have become indispensable for innovative clinical research. Currently, the treatment options for a number of pathologies, notably neurodegenerative diseases, remain only supportive and symptomatic. Treatments that slow down or reverse disease progression are therefore the subject of numerous studies, in which molecular imaging is proving to be a powerful tool. PET and SPECT biomarkers already make it possible to diagnose several neurological diseases in vivo and at preclinical stages, yielding topographic, and quantitative data about the target. As a result, they can be used for assessing patients' eligibility for new treatments, or for treatment follow-up. The aim of the present review was to map major innovative radiotracers used in neuroscience, and explain their contribution to clinical research. We categorized them according to their target: dopaminergic, cholinergic or serotoninergic systems, β-amyloid plaques, tau protein, neuroinflammation, glutamate or GABA receptors, or α-synuclein. Most neurological disorders, and indeed mental disorders, involve the dysfunction of one or more of these targets. Combinations of molecular imaging biomarkers can afford us a better understanding of the mechanisms underlying disease development over time, and contribute to early detection/screening, diagnosis, therapy delivery/monitoring, and treatment follow-up in both research and clinical settings.
Collapse
Affiliation(s)
- Marie Beaurain
- CHU de Toulouse, Toulouse, France.,ToNIC, Toulouse NeuroImaging Center, Inserm U1214, Toulouse, France
| | - Anne-Sophie Salabert
- CHU de Toulouse, Toulouse, France.,ToNIC, Toulouse NeuroImaging Center, Inserm U1214, Toulouse, France
| | - Maria Joao Ribeiro
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.,Inserm CIC 1415, University Hospital, Tours, France.,CHRU Tours, Tours, France
| | - Nicolas Arlicot
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.,Inserm CIC 1415, University Hospital, Tours, France.,CHRU Tours, Tours, France
| | - Philippe Damier
- Inserm U913, Neurology Department, University Hospital, Nantes, France
| | | | - Jean-François Demonet
- Leenards Memory Centre, Department of Clinical Neuroscience, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Pierre Payoux
- CHU de Toulouse, Toulouse, France.,ToNIC, Toulouse NeuroImaging Center, Inserm U1214, Toulouse, France
| |
Collapse
|
7
|
Head-to-head comparison of 11C-PBR28 and 11C-ER176 for quantification of the translocator protein in the human brain. Eur J Nucl Med Mol Imaging 2019; 46:1822-1829. [DOI: 10.1007/s00259-019-04349-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 04/29/2019] [Indexed: 10/26/2022]
|
8
|
Xu Y, Li Z. Imaging metabotropic glutamate receptor system: Application of positron emission tomography technology in drug development. Med Res Rev 2019; 39:1892-1922. [DOI: 10.1002/med.21566] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 01/18/2019] [Accepted: 01/24/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Youwen Xu
- Independent Consultant and Contractor, Radiopharmaceutical Development, Validation and Bio-Application; Philadelphia Pennsylvania
| | - Zizhong Li
- Pharmaceutical Research and Development, SOFIE Biosciences; Somerset New Jersey
| |
Collapse
|
9
|
Greenwald MK. Anti-stress neuropharmacological mechanisms and targets for addiction treatment: A translational framework. Neurobiol Stress 2018; 9:84-104. [PMID: 30238023 PMCID: PMC6138948 DOI: 10.1016/j.ynstr.2018.08.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 07/30/2018] [Accepted: 08/10/2018] [Indexed: 12/18/2022] Open
Abstract
Stress-related substance use is a major challenge for treating substance use disorders. This selective review focuses on emerging pharmacotherapies with potential for reducing stress-potentiated seeking and consumption of nicotine, alcohol, marijuana, cocaine, and opioids (i.e., key phenotypes for the most commonly abused substances). I evaluate neuropharmacological mechanisms in experimental models of drug-maintenance and relapse, which translate more readily to individuals presenting for treatment (who have initiated and progressed). An affective/motivational systems model (three dimensions: valence, arousal, control) is mapped onto a systems biology of addiction approach for addressing this problem. Based on quality of evidence to date, promising first-tier neurochemical receptor targets include: noradrenergic (α1 and β antagonist, α2 agonist), kappa-opioid antagonist, nociceptin antagonist, orexin-1 antagonist, and endocannabinoid modulation (e.g., cannabidiol, FAAH inhibition); second-tier candidates may include corticotropin releasing factor-1 antagonists, serotonergic agents (e.g., 5-HT reuptake inhibitors, 5-HT3 antagonists), glutamatergic agents (e.g., mGluR2/3 agonist/positive allosteric modulator, mGluR5 antagonist/negative allosteric modulator), GABA-promoters (e.g., pregabalin, tiagabine), vasopressin 1b antagonist, NK-1 antagonist, and PPAR-γ agonist (e.g., pioglitazone). To address affective/motivational mechanisms of stress-related substance use, it may be advisable to combine agents with actions at complementary targets for greater efficacy but systematic studies are lacking except for interactions with the noradrenergic system. I note clinically-relevant factors that could mediate/moderate the efficacy of anti-stress therapeutics and identify research gaps that should be pursued. Finally, progress in developing anti-stress medications will depend on use of reliable CNS biomarkers to validate exposure-response relationships.
Collapse
Affiliation(s)
- Mark K. Greenwald
- Department of Psychiatry and Behavioral Neurosciences, School of Medicine, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, 48201, USA
| |
Collapse
|
10
|
Paul S, Haskali MB, Liow JS, Zoghbi SS, Barth VN, Kolodrubetz MC, Bond MR, Morse CL, Gladding RL, Frankland MP, Kant N, Slieker L, Shcherbinin S, Nuthall HN, Zanotti-Fregonara P, Hanover JA, Jesudason C, Pike VW, Innis RB. Evaluation of a PET Radioligand to Image O-GlcNAcase in Brain and Periphery of Rhesus Monkey and Knock-Out Mouse. J Nucl Med 2018; 60:129-134. [PMID: 30213846 DOI: 10.2967/jnumed.118.213231] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/09/2018] [Indexed: 02/07/2023] Open
Abstract
Accumulation of hyperphosphorylated tau, a microtubule-associated protein, plays an important role in the progression of Alzheimer disease. Animal studies suggest that one strategy for treating Alzheimer disease and related tauopathies may be inhibition of O-GlcNAcase (OGA), which may subsequently decrease pathologic tau phosphorylation. Here, we report the pharmacokinetics of a novel PET radioligand, 18F-LSN3316612, which binds with high affinity and selectivity to OGA. Methods: PET imaging was performed on rhesus monkeys at baseline and after administration of either thiamet-G, a potent OGA inhibitor, or nonradioactive LSN3316612. The density of the enzyme was calculated as distribution volume using a 2-tissue-compartment model and serial concentrations of parent radioligand in arterial plasma. The radiation burden for future studies was based on whole-body imaging of monkeys. Oga ∆Br, a mouse brain-specific knockout of Oga, was also scanned to assess the specificity of the radioligand for its target enzyme. Results: Uptake of radioactivity in monkey brain was high (∼5 SUV) and followed by slow washout. The highest uptake was in the amygdala, followed by striatum and hippocampus. Pretreatment with thiamet-G or nonradioactive LSN3316612 reduced brain uptake to a low and uniform concentration in all regions, corresponding to an approximately 90% decrease in distribution volume. Whole-body imaging of rhesus monkeys showed high uptake in kidney, spleen, liver, and testes. In Oga ∆Br mice, brain uptake of 18F-LSN3316612 was reduced by 82% compared with control mice. Peripheral organs were unaffected in Oga ∆Br mice, consistent with loss of OGA expression exclusively in the brain. The effective dose of 18F-LSN3316612 in humans was calculated to be 22 μSv/MBq, which is typical for 18F-labeled radioligands. Conclusion: These results show that 18F-LSN3316612 is an excellent radioligand for imaging and quantifying OGA in rhesus monkeys and mice. On the basis of these data, 18F-LSN3316612 merits evaluation in humans.
Collapse
Affiliation(s)
- Soumen Paul
- Molecular Imaging Branch, NIMH, National Institutes of Health, Bethesda, Maryland
| | - Mohammad B Haskali
- Molecular Imaging Branch, NIMH, National Institutes of Health, Bethesda, Maryland.,Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Jeih-San Liow
- Molecular Imaging Branch, NIMH, National Institutes of Health, Bethesda, Maryland
| | - Sami S Zoghbi
- Molecular Imaging Branch, NIMH, National Institutes of Health, Bethesda, Maryland
| | | | | | - Michelle R Bond
- LCMB, NIDDK, National Institutes of Health, Bethesda, Maryland
| | - Cheryl L Morse
- Molecular Imaging Branch, NIMH, National Institutes of Health, Bethesda, Maryland
| | - Robert L Gladding
- Molecular Imaging Branch, NIMH, National Institutes of Health, Bethesda, Maryland
| | - Michael P Frankland
- Molecular Imaging Branch, NIMH, National Institutes of Health, Bethesda, Maryland
| | - Nancy Kant
- Eli Lilly and Company, Indianapolis, Indiana
| | | | | | | | | | - John A Hanover
- LCMB, NIDDK, National Institutes of Health, Bethesda, Maryland
| | | | - Victor W Pike
- Molecular Imaging Branch, NIMH, National Institutes of Health, Bethesda, Maryland
| | - Robert B Innis
- Molecular Imaging Branch, NIMH, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
11
|
Palomero-Gallagher N, Zilles K. Cyto- and receptor architectonic mapping of the human brain. HANDBOOK OF CLINICAL NEUROLOGY 2018; 150:355-387. [PMID: 29496153 DOI: 10.1016/b978-0-444-63639-3.00024-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mapping of the human brain is more than the generation of an atlas-based parcellation of brain regions using histologic or histochemical criteria. It is the attempt to provide a topographically informed model of the structural and functional organization of the brain. To achieve this goal a multimodal atlas of the detailed microscopic and neurochemical structure of the brain must be registered to a stereotaxic reference space or brain, which also serves as reference for topographic assignment of functional data, e.g., functional magnet resonance imaging, electroencephalography, or magnetoencephalography, as well as metabolic imaging, e.g., positron emission tomography. Although classic maps remain pioneering steps, they do not match recent concepts of the functional organization in many regions, and suffer from methodic drawbacks. This chapter provides a summary of the recent status of human brain mapping, which is based on multimodal approaches integrating results of quantitative cyto- and receptor architectonic studies with focus on the cerebral cortex in a widely used reference brain. Descriptions of the methods for observer-independent and statistically testable cytoarchitectonic parcellations, quantitative multireceptor mapping, and registration to the reference brain, including the concept of probability maps and a toolbox for using the maps in functional neuroimaging studies, are provided.
Collapse
Affiliation(s)
- Nicola Palomero-Gallagher
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany; Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH, Aachen, Germany
| | - Karl Zilles
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany; Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH, Aachen, Germany; JARA-BRAIN, Jülich-Aachen Research Alliance, Jülich, Germany.
| |
Collapse
|
12
|
Pike VW. Hypervalent aryliodine compounds as precursors for radiofluorination. J Labelled Comp Radiopharm 2018; 61:196-227. [PMID: 28981159 PMCID: PMC10081107 DOI: 10.1002/jlcr.3570] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 09/27/2017] [Indexed: 12/12/2022]
Abstract
Over the last 2 decades or so, hypervalent iodine compounds, such as diaryliodonium salts and aryliodonium ylides, have emerged as useful precursors for labeling homoarenes and heteroarenes with no-carrier-added cyclotron-produced [18 F]fluoride ion (t1/2 = 109.8 min). They permit rapid and effective radiofluorination at electron-rich as well as electron-deficient aryl rings, and often with unrestricted choice of ring position. Consequently, hypervalent aryliodine compounds have found special utility as precursors to various small-molecule 18 F-labeling synthons and to many radiotracers for biomedical imaging with positron emission tomography. This review summarizes this advance in radiofluorination chemistry, with emphasis on precursor synthesis, radiofluorination mechanism, method scope, and method application.
Collapse
Affiliation(s)
- Victor W Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
13
|
Abstract
Single-photon emission computed tomography (SPECT) and positron emission tomography (PET) with different radiotracers enable regional evaluation of blood flow and glucose metabolism, of receptors and transporters of several molecules, and of abnormal deposition of peptides and proteins in the brain. The cerebellum has been used as a reference region for different radiotracers in several disease conditions. Whole-brain voxel-wise analysis is not affected by a priori knowledge bias and should be preferred. SPECT and PET have contributed to establishing the cerebellum role in motion, cognition, and emotion control in physiologic and pathophysiologic conditions. The basic abnormal imaging findings include decreased or increased uptake of flow or metabolism tracers in the cerebellum alone or as part of a network. Decreased uptake is generally observed in primary structural damage of the cerebellum, but can also represent a distant effect of cerebral damage (crossed diaschisis). Increased uptake can be observed in Freidreich ataxia, inflammatory or immune-mediated diseases of the cerebellum, and in status epilepticus. The possibility is also recognized that primary structural damage of the cerebellum might determine distance effects on other brain structures (reversed diaschisis). So far, SPECT and PET have been predominantly used in clinical studies to investigate cerebellar changes in neurologic and psychiatric diseases and in connection with pharmacologic, transcranial magnetic stimulation, deep-brain stimulation, or surgical treatments.
Collapse
|
14
|
Imaging the glutamate receptor subtypes-Much achieved, and still much to do. DRUG DISCOVERY TODAY. TECHNOLOGIES 2017; 25:27-36. [PMID: 29233264 DOI: 10.1016/j.ddtec.2017.10.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 10/17/2017] [Accepted: 10/24/2017] [Indexed: 11/20/2022]
Abstract
Functional imaging of glutamate receptors using PET imaging modality can be used to study numerous CNS disorders and also to select appropriate doses of clinically relevant glutamate-receptor-targeting candidate drugs. Great strides have been made in developing PET imaging probes for the non-invasive detection of glutamate receptors in the brain. This review highlights recent progress made towards the development of glutamatergic PET imaging agents. Focus is placed on PET imaging probes that have been labelled with either carbon-11 or fluorine-18.
Collapse
|
15
|
Lohith TG, Tsujikawa T, Siméon FG, Veronese M, Zoghbi SS, Lyoo CH, Kimura Y, Morse CL, Pike VW, Fujita M, Innis RB. Comparison of two PET radioligands, [ 11C]FPEB and [ 11C]SP203, for quantification of metabotropic glutamate receptor 5 in human brain. J Cereb Blood Flow Metab 2017; 37:2458-2470. [PMID: 27629098 PMCID: PMC5531344 DOI: 10.1177/0271678x16668891] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Of the two 18F-labeled PET ligands currently available to image metabotropic glutamate receptor 5 (mGluR5), [18F]FPEB is reportedly superior because [18F]SP203 undergoes glutathionlyation, generating [18F]-fluoride ion that accumulates in brain and skull. To allow multiple PET studies on the same day with lower radiation exposure, we prepared [11C]FPEB and [11C]SP203 from [11C]hydrogen cyanide and compared their abilities to accurately quantify mGluR5 in human brain, especially as regards radiometabolite accumulation. Genomic plot was used to estimate the ratio of specific-to-nondisplaceable uptake ( BPND) without using a receptor blocking drug. Both tracers quantified mGluR5; however [11C]SP203, like [18F]SP203, had radiometabolite accumulation in brain, as evidenced by increased distribution volume ( VT) over the scan period. Absolute VT values were ∼30% lower for 11C-labeled compared with 18F-labeled radioligands, likely caused by the lower specific activities (and high receptor occupancies) of the 11C radioligands. The genomic plot indicated ∼60% specific binding in cerebellum, which makes it inappropriate as a reference region. Whole-body scans performed in healthy subjects demonstrated a low radiation burden typical for 11C-ligands. Thus, the evidence suggests that [11C]FPEB is superior to [11C]SP203. If prepared in higher specific activity, [11C]FPEB would presumably be as effective as [18F]FPEB for quantifying mGluR5 in human brain.
Collapse
Affiliation(s)
- Talakad G Lohith
- 1 Molecular Imaging Branch, National Institute of Mental Health, Bethesda, USA
| | - Tetsuya Tsujikawa
- 1 Molecular Imaging Branch, National Institute of Mental Health, Bethesda, USA
| | - Fabrice G Siméon
- 1 Molecular Imaging Branch, National Institute of Mental Health, Bethesda, USA
| | - Mattia Veronese
- 1 Molecular Imaging Branch, National Institute of Mental Health, Bethesda, USA.,2 Department of Neuroimaging, King's College London, London, UK
| | - Sami S Zoghbi
- 1 Molecular Imaging Branch, National Institute of Mental Health, Bethesda, USA
| | - Chul Hyoung Lyoo
- 1 Molecular Imaging Branch, National Institute of Mental Health, Bethesda, USA
| | - Yasuyuki Kimura
- 1 Molecular Imaging Branch, National Institute of Mental Health, Bethesda, USA
| | - Cheryl L Morse
- 1 Molecular Imaging Branch, National Institute of Mental Health, Bethesda, USA
| | - Victor W Pike
- 1 Molecular Imaging Branch, National Institute of Mental Health, Bethesda, USA
| | - Masahiro Fujita
- 1 Molecular Imaging Branch, National Institute of Mental Health, Bethesda, USA
| | - Robert B Innis
- 1 Molecular Imaging Branch, National Institute of Mental Health, Bethesda, USA
| |
Collapse
|
16
|
mGlu1 receptor as a drug target for treatment of substance use disorders: time to gather stones together? Psychopharmacology (Berl) 2017; 234:1333-1345. [PMID: 28285325 DOI: 10.1007/s00213-017-4581-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 02/21/2017] [Indexed: 10/20/2022]
Abstract
Modulation of the mGlu1 receptor was repeatedly shown to inhibit various phenomena associated with exposure to abused drugs. Efficacy in preclinical models was observed with both positive and negative allosteric modulators (PAMs and NAMs, respectively) using essentially non-overlapping sets of experimental methods. Taken together, these data indicate that the mGlu1 receptor certainly plays a significant role in the plasticity triggered by the exposure to abused drugs and is involved in the maintenance of drug-seeking and drug-taking behaviors. Understanding whether modulation of the mGlu1 receptor activity can also affect drug-seeking and drug-taking in humans could have a significant impact on the future development of medications in this field. We argue that the mGlu1 receptor NAMs have a significant value as potential tools for human experimental pharmacology that could help to validate methods used in preclinical research. Compared with the PAMs, the mGlu1 receptor NAMs appear to be better candidates for this role due to the following: (1) a number of highly potent, selective, and chemically diverse mGlu1 receptor NAMs to choose from; (2) availability of high-quality PET ligands to monitor target exposure; and (3) a rich pharmacological profile with a number of effects that can complement anti-addictive action (e.g., anxiolytic/antidepressant) and may also serve as additional pharmacodynamic readouts during the preclinical-to-clinical translation. We believe that the mGlu1 receptor NAMs have a significant value as potential tools for human experimental pharmacology that could help to validate methods used in preclinical research.
Collapse
|
17
|
Approaches for the discovery of novel positron emission tomography radiotracers for brain imaging. Clin Transl Imaging 2017. [DOI: 10.1007/s40336-017-0221-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
18
|
Positron emission tomography in amyotrophic lateral sclerosis: Towards targeting of molecular pathological hallmarks. Eur J Nucl Med Mol Imaging 2016; 44:533-547. [PMID: 27933416 DOI: 10.1007/s00259-016-3587-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 11/23/2016] [Indexed: 12/18/2022]
|
19
|
Spectral Analysis of Dynamic PET Studies: A Review of 20 Years of Method Developments and Applications. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2016; 2016:7187541. [PMID: 28050197 PMCID: PMC5165231 DOI: 10.1155/2016/7187541] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 10/27/2016] [Indexed: 11/17/2022]
Abstract
In Positron Emission Tomography (PET), spectral analysis (SA) allows the quantification of dynamic data by relating the radioactivity measured by the scanner in time to the underlying physiological processes of the system under investigation. Among the different approaches for the quantification of PET data, SA is based on the linear solution of the Laplace transform inversion whereas the measured arterial and tissue time-activity curves of a radiotracer are used to calculate the input response function of the tissue. In the recent years SA has been used with a large number of PET tracers in brain and nonbrain applications, demonstrating that it is a very flexible and robust method for PET data analysis. Differently from the most common PET quantification approaches that adopt standard nonlinear estimation of compartmental models or some linear simplifications, SA can be applied without defining any specific model configuration and has demonstrated very good sensitivity to the underlying kinetics. This characteristic makes it useful as an investigative tool especially for the analysis of novel PET tracers. The purpose of this work is to offer an overview of SA, to discuss advantages and limitations of the methodology, and to inform about its applications in the PET field.
Collapse
|
20
|
Abstract
To date, little is known about how neurodegeneration and neuroinflammation propagate in Huntington's disease (HD). Unfortunately, no treatment is available to cure or reverse the progressive decline of function caused by the disease, thus considering HD a fatal disease. Mutation gene carriers typically remain asymptomatic for many years although alterations in the basal ganglia and cortex occur early on in mutant HD gene-carriers. Positron Emission Tomography (PET) is a functional imaging technique of nuclear medicine which enables in vivo visualization of numerous biological molecules expressed in several human tissues. Brain PET is most powerful to study in vivo neuronal and glial cells function as well as cerebral blood flow in a plethora of neurodegenerative disorders including Parkinson's disease, Alzheimer's and HD. In absence of HD-specific biomarkers for monitoring disease progression, previous PET studies in HD were merely focused on the study of dopaminergic terminals, cerebral blood flow and glucose metabolism in manifest and premanifest HD-gene carriers. More recently, research interest has been exploring novel PET targets in HD including the state of phosphodiesterse expression and the role of activated microglia. Hence, a better understanding of the HD pathogenesis mechanisms may lead to the development of targeted therapies. PET imaging follow-up studies with novel selective PET radiotracers such as 11C-IMA-107 and 11C-PBR28 may provide insight on disease progression and identify prognostic biomarkers, elucidate the underlying HD pathology and assess novel pharmaceutical agents and over time.
Collapse
Affiliation(s)
| | - Paola Piccini
- Correspondence to: Professor Paola Piccini, Imperial CollegeLondon, Hammersmith Hospital, Neurology Imaging Unit, 1stfloor, B-Block, Du Cane Road, London, W12 0NN, UK. Tel.: +44 2083833773; Fax: +44 2033131783; E-mail:
| |
Collapse
|
21
|
MENGA: A New Comprehensive Tool for the Integration of Neuroimaging Data and the Allen Human Brain Transcriptome Atlas. PLoS One 2016; 11:e0148744. [PMID: 26882227 PMCID: PMC4755531 DOI: 10.1371/journal.pone.0148744] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 01/22/2016] [Indexed: 12/31/2022] Open
Abstract
Introduction Brain-wide mRNA mappings offer a great potential for neuroscience research as they can provide information about system proteomics. In a previous work we have correlated mRNA maps with the binding patterns of radioligands targeting specific molecular systems and imaged with positron emission tomography (PET) in unrelated control groups. This approach is potentially applicable to any imaging modality as long as an efficient procedure of imaging-genomic matching is provided. In the original work we considered mRNA brain maps of the whole human genome derived from the Allen human brain database (ABA) and we performed the analysis with a specific region-based segmentation with a resolution that was limited by the PET data parcellation. There we identified the need for a platform for imaging-genomic integration that should be usable with any imaging modalities and fully exploit the high resolution mapping of ABA dataset. Aim In this work we present MENGA (Multimodal Environment for Neuroimaging and Genomic Analysis), a software platform that allows the investigation of the correlation patterns between neuroimaging data of any sort (both functional and structural) with mRNA gene expression profiles derived from the ABA database at high resolution. Results We applied MENGA to six different imaging datasets from three modalities (PET, single photon emission tomography and magnetic resonance imaging) targeting the dopamine and serotonin receptor systems and the myelin molecular structure. We further investigated imaging-genomic correlations in the case of mismatch between selected proteins and imaging targets.
Collapse
|
22
|
Veronese M, Zanotti-Fregonara P, Rizzo G, Bertoldo A, Innis RB, Turkheimer FE. Measuring specific receptor binding of a PET radioligand in human brain without pharmacological blockade: The genomic plot. Neuroimage 2016; 130:1-12. [PMID: 26850512 DOI: 10.1016/j.neuroimage.2016.01.058] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 01/26/2016] [Indexed: 12/11/2022] Open
Abstract
PET studies allow in vivo imaging of the density of brain receptor species. The PET signal, however, is the sum of the fraction of radioligand that is specifically bound to the target receptor and the non-displaceable fraction (i.e. the non-specifically bound radioligand plus the free ligand in tissue). Therefore, measuring the non-displaceable fraction, which is generally assumed to be constant across the brain, is a necessary step to obtain regional estimates of the specific fractions. The nondisplaceable binding can be directly measured if a reference region, i.e. a region devoid of any specific binding, is available. Many receptors are however widely expressed across the brain, and a true reference region is rarely available. In these cases, the nonspecific binding can be obtained after competitive pharmacological blockade, which is often contraindicated in humans. In this work we introduce the genomic plot for estimating the nondisplaceable fraction using baseline scans only. The genomic plot is a transformation of the Lassen graphical method in which the brain maps of mRNA transcripts of the target receptor obtained from the Allen brain atlas are used as a surrogate measure of the specific binding. Thus, the genomic plot allows the calculation of the specific and nondisplaceable components of radioligand uptake without the need of pharmacological blockade. We first assessed the statistical properties of the method with computer simulations. Then we sought ground-truth validation using human PET datasets of seven different neuroreceptor radioligands, where nonspecific fractions were either obtained separately using drug displacement or available from a true reference region. The population nondisplaceable fractions estimated by the genomic plot were very close to those measured by actual human blocking studies (mean relative difference between 2% and 7%). However, these estimates were valid only when mRNA expressions were predictive of protein levels (i.e. there were no significant post-transcriptional changes). This condition can be readily established a priori by assessing the correlation between PET and mRNA expression.
Collapse
Affiliation(s)
- Mattia Veronese
- Department of Neuroimaging, IoPPN, King's College London, London, UK
| | - Paolo Zanotti-Fregonara
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, MD, USA; INCIA UMR-CNRS 5287, Université de Bordeaux, Bordeaux, France
| | - Gaia Rizzo
- Department of Information Engineering, University of Padova, Padova, Italy
| | | | - Robert B Innis
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, MD, USA
| | | |
Collapse
|
23
|
Pike VW. Considerations in the Development of Reversibly Binding PET Radioligands for Brain Imaging. Curr Med Chem 2016; 23:1818-69. [PMID: 27087244 PMCID: PMC5579844 DOI: 10.2174/0929867323666160418114826] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 04/04/2016] [Accepted: 04/15/2016] [Indexed: 12/17/2022]
Abstract
The development of reversibly binding radioligands for imaging brain proteins in vivo, such as enzymes, neurotransmitter transporters, receptors and ion channels, with positron emission tomography (PET) is keenly sought for biomedical studies of neuropsychiatric disorders and for drug discovery and development, but is recognized as being highly challenging at the medicinal chemistry level. This article aims to compile and discuss the main considerations to be taken into account by chemists embarking on programs of radioligand development for PET imaging of brain protein targets.
Collapse
Affiliation(s)
- Victor W Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Rm. B3C346A, 10 Center Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
24
|
Hong J, Lu S, Xu R, Liow JS, Woock AE, Jenko KJ, Gladding RL, Zoghbi SS, Innis RB, Pike VW. [carbonyl-11C]4-Fluoro-N-methyl-N-(4-(6-(methylamino)pyrimidin-4-yl)thiazol-2-yl)benzamide ([11C]FIMX) is an effective radioligand for PET imaging of metabotropic glutamate receptor 1 (mGluR1) in monkey brain. Nucl Med Biol 2015; 42:967-74. [PMID: 26320813 PMCID: PMC4658304 DOI: 10.1016/j.nucmedbio.2015.07.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 07/14/2015] [Accepted: 07/18/2015] [Indexed: 11/23/2022]
Abstract
INTRODUCTION Metabotropic glutamate subtype receptor 1 (mGluR1) is implicated in several neuropsychiatric disorders and is a target for drug development. [(18)F]FIMX ([(18)F]4-fluoro--N-methyl-N--(4-(6-(methylamino)pyrimidin-4-yl)thiazol-2-yl)benzamide) is an effective radioligand for imaging brain mGluR1 with PET. A similarly effective radioligand with a shorter half-life would usefully allow PET studies of mGluR1 at baseline and after pharmacological or other challenge on the same day. Here we describe the preparation of [(11)C]FIMX for evaluation in monkey with PET. METHODS [(11)C]FIMX was prepared via Pd-promoted carbonylation of 1-fluoro-4-iodobenzene with [(11)C]carbon monoxide, aminolysis of the [(11)C]acyl-palladium complex with the requisite Boc-protected amine, and deprotection with HCl in THF. PET scans of [(11)C]FIMX injected into a monkey were performed at baseline and after preblock of mGluR1 with measurement of the arterial input function. RESULTS The radiosynthesis required 42 min and gave [(11)C]FIMX in about 5% overall decay-corrected radiochemical yield and with a specific activity of about 100 GBq/μmol. PET in rhesus monkey at baseline showed that radioactivity peaked high in receptor-rich cerebellum and much lower in receptor-poor occipital cortex. Radioactivity in cerebellum declined to 32% of peak at 85 min. VT at baseline appeared stable in all brain regions after 60 min. Under mGluR1 pre-blocked condition, radioactivity uptake in all regions declined more rapidly to a low level. Receptor pre-block reduced VT from 13.0 to 1.5 in cerebellum and from 2.9 to 1.4 in occipital cortex. CONCLUSION [(11)C]FIMX is an effective radioligand for imaging mGluR1 in monkey with PET.
Collapse
Affiliation(s)
- Jinsoo Hong
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Room B3 C346A, 10 Center Drive, Bethesda, MD, 20892-1003, United States
| | - Shuiyu Lu
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Room B3 C346A, 10 Center Drive, Bethesda, MD, 20892-1003, United States
| | - Rong Xu
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Room B3 C346A, 10 Center Drive, Bethesda, MD, 20892-1003, United States
| | - Jeih-San Liow
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Room B3 C346A, 10 Center Drive, Bethesda, MD, 20892-1003, United States
| | - Alicia E Woock
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Room B3 C346A, 10 Center Drive, Bethesda, MD, 20892-1003, United States
| | - Kimberly J Jenko
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Room B3 C346A, 10 Center Drive, Bethesda, MD, 20892-1003, United States
| | - Robert L Gladding
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Room B3 C346A, 10 Center Drive, Bethesda, MD, 20892-1003, United States
| | - Sami S Zoghbi
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Room B3 C346A, 10 Center Drive, Bethesda, MD, 20892-1003, United States
| | - Robert B Innis
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Room B3 C346A, 10 Center Drive, Bethesda, MD, 20892-1003, United States
| | - Victor W Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Room B3 C346A, 10 Center Drive, Bethesda, MD, 20892-1003, United States.
| |
Collapse
|