1
|
Wenjun H, Xueyao C, Qijun C, Yingxin L, Bingyu R, Xiaoling C, Yong C, Yuanfang J, Lu H, Jie M, Weijian Y, Siqi Z, Lu W, Hao X, Kuan H, Jingjie S. Synthesis and Preclinical Evaluation of Peptide Dimer-Based PET Tracers for Imaging VEGFR-2 Expression in Tumors. J Labelled Comp Radiopharm 2025; 68:e4138. [PMID: 40113215 DOI: 10.1002/jlcr.4138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/12/2025] [Accepted: 02/20/2025] [Indexed: 03/22/2025]
Abstract
The vascular endothelial growth factor A (VEGF-A)/VEGF receptor 2 (VEGFR-2) signaling pathway is pivotal in regulating angiogenesis. We have synthesized a linear peptide-based VEGFR-2-targeted positron emission tomography (PET) tracer, but its target affinity and in vivo stability need further improvement. In this study, we developed two novel 64Cu-labeled VEGFR-2-targeted PET dimer tracer [64Cu]VEGF2215 and [64Cu]VEGF2216 modified with a pegylated linear and branched linker, respectively, to optimize its pharmacokinetic properties and conducted a comprehensive preclinical assessment. Both tracers exhibited a radiochemical yield of over 95% and showed a high affinity for VEGFR-2 in U87MG cells. PET/CT imaging experiments indicated that [64Cu]VEGF2215 exhibited a time-dependent accumulation in the U87MG tumor, with a maximum uptake of 4.95 ± 1.26 %ID/g at 24 h post-injection. In comparison, [64Cu]VEGF2216 showed a consistently lower tumor uptake, peaking at only 3.07 ± 0.35 %ID/g. Blocking and biodistribution experiments further confirmed the specificity of [64Cu]VEGF2215 for VEGFR-2. The favorable properties of [64Cu]VEGF2215, including efficient synthesis, high tumor uptake, and rapid clearance from most normal organs, suggest it is a promising PET tracer for VEGFR-2-positive tumors.
Collapse
Affiliation(s)
- He Wenjun
- Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Chen Xueyao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Cai Qijun
- Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Li Yingxin
- Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Ran Bingyu
- Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Cao Xiaoling
- Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Cheng Yong
- Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Jiang Yuanfang
- Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Hou Lu
- Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Ma Jie
- Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Ye Weijian
- Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zhang Siqi
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wang Lu
- Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xu Hao
- Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Hu Kuan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shang Jingjie
- Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
2
|
Ayeni A, Evbuomwan O, Vangu MDTW. The Role of [ 18F]FDG PET/CT in Monitoring of Therapy Response in Lung Cancer. Semin Nucl Med 2025; 55:175-189. [PMID: 40021362 DOI: 10.1053/j.semnuclmed.2025.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 02/06/2025] [Indexed: 03/03/2025]
Abstract
Lung cancer remains a leading cause of cancer deaths worldwide, with an all stage 5-year relative survival rate of less than 30%. Multiple treatment strategies are available and continue to evolve, with therapy primarily tailored to the type and stage of the disease. Accurate monitoring of therapy response is crucial for optimizing treatment outcomes. PET/CT imaging with [18F]FDG has become the standard of care across various phases of lung cancer management due to its ability to assess metabolic activity. This review underscores the pivotal role of [18F]FDG PET/CT in evaluating therapy response in lung cancer, particularly in non-small cell lung cancer (NSCLC). It examines conventional response criteria and their adaptations in the era of immunotherapy, highlighting the value of integrating metabolic imaging with established criteria to improve treatment assessment and guide clinical decisions. The potential of non-[18F]FDG PET tracers targeting diverse biological pathways to provide deeper insights into tumor biology, therapy response and predictive outcomes is also explored. Additionally, the emerging role of radiomics in enhancing treatment efficacy assessment and improving patient management is briefly highlighted. Despite the challenges in the routine clinical application of various metabolic response criteria, [18F]FDG PET/CT remains a crucial tool in monitoring therapy response in lung cancer. Ongoing advancements in therapeutic strategies, radiopharmaceuticals, and imaging techniques continue to drive progress in lung cancer management, promising improved patient outcomes.
Collapse
Affiliation(s)
- Akinwale Ayeni
- Division of Nuclear Medicine, Department of Radiation Sciences, Faculty of Health Sciences, University of The Witwatersrand, Johannesburg, South Africa; Nuclear Medicine, Klerksdorp/Tshepong Hospital Complex, Klerksdorp, North West Province, South Africa; Division of Nuclear Medicine, Department of Radiation Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.
| | - Osayande Evbuomwan
- Department of Nuclear Medicine, Faculty of Health Sciences, University of The Free State, Bloemfontein, South Africa
| | - Mboyo-Di-Tamba Willy Vangu
- Division of Nuclear Medicine, Department of Radiation Sciences, Faculty of Health Sciences, University of The Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
3
|
Zhang S, Wang X, Gao X, Chen X, Li L, Li G, Liu C, Miao Y, Wang R, Hu K. Radiopharmaceuticals and their applications in medicine. Signal Transduct Target Ther 2025; 10:1. [PMID: 39747850 PMCID: PMC11697352 DOI: 10.1038/s41392-024-02041-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/30/2024] [Accepted: 10/28/2024] [Indexed: 01/04/2025] Open
Abstract
Radiopharmaceuticals involve the local delivery of radionuclides to targeted lesions for the diagnosis and treatment of multiple diseases. Radiopharmaceutical therapy, which directly causes systematic and irreparable damage to targeted cells, has attracted increasing attention in the treatment of refractory diseases that are not sensitive to current therapies. As the Food and Drug Administration (FDA) approvals of [177Lu]Lu-DOTA-TATE, [177Lu]Lu-PSMA-617 and their complementary diagnostic agents, namely, [68Ga]Ga-DOTA-TATE and [68Ga]Ga-PSMA-11, targeted radiopharmaceutical-based theranostics (radiotheranostics) are being increasingly implemented in clinical practice in oncology, which lead to a new era of radiopharmaceuticals. The new generation of radiopharmaceuticals utilizes a targeting vector to achieve the accurate delivery of radionuclides to lesions and avoid off-target deposition, making it possible to improve the efficiency and biosafety of tumour diagnosis and therapy. Numerous studies have focused on developing novel radiopharmaceuticals targeting a broader range of disease targets, demonstrating remarkable in vivo performance. These include high tumor uptake, prolonged retention time, and favorable pharmacokinetic properties that align with clinical standards. While radiotheranostics have been widely applied in tumor diagnosis and therapy, their applications are now expanding to neurodegenerative diseases, cardiovascular diseases, and inflammation. Furthermore, radiotheranostic-empowered precision medicine is revolutionizing the cancer treatment paradigm. Diagnostic radiopharmaceuticals play a pivotal role in patient stratification and treatment planning, leading to improved therapeutic outcomes in targeted radionuclide therapy. This review offers a comprehensive overview of the evolution of radiopharmaceuticals, including both FDA-approved and clinically investigated agents, and explores the mechanisms of cell death induced by radiopharmaceuticals. It emphasizes the significance and future prospects of theranostic-based radiopharmaceuticals in advancing precision medicine.
Collapse
Grants
- 82372002 National Natural Science Foundation of China (National Science Foundation of China)
- 0104002 Beijing Nova Program
- L248087; L234044 Natural Science Foundation of Beijing Municipality (Beijing Natural Science Foundation)
- Nonprofit Central Research Institute Fund of the Chinese Academy of Medical Sciences (No. 2022-RC350-04), the CAMS Innovation Fund for Medical Sciences (Nos. 2021-I2M-1-026, 2022-I2M-2-002-2, and 2021-I2M-3-001), the National Key Research and Development Program of China (No. 2022YFE0111700),the Fundamental Research Funds for the Central Universities (Nos. 3332023044 and 3332023151), the CIRP Open Fund of Radiation Protection Laboratories (No. ZHYLYB2021005), and the China National Nuclear Corporation Young Talent Program.
- Fundamental Research Funds for the Central Universities,Nos. 3332023044
- Fundamental Research Funds for the Central Universities,Nos. 3332023151
- he Nonprofit Central Research Institute Fund of Chinese Academy of Medical Sciences,No. 2022-RC350-04;the CAMS Innovation Fund for Medical Sciences,Nos. 2021-I2M-1-026, 2022-I2M-2-002-2, and 2021-I2M-3-001;the National Key Research and Development Program of China,No. 2022YFE0111700
Collapse
Affiliation(s)
- Siqi Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Xingkai Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Xin Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Xueyao Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Linger Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Guoqing Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Can Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Yuan Miao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Rui Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China.
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Lanzhou University, 2019RU066, 730000, Lanzhou, China.
| | - Kuan Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China.
| |
Collapse
|
4
|
Chan HW, Kuo DY, Shueng PW, Chuang HY. Visualizing the Tumor Microenvironment: Molecular Imaging Probes Target Extracellular Matrix, Vascular Networks, and Immunosuppressive Cells. Pharmaceuticals (Basel) 2024; 17:1663. [PMID: 39770505 PMCID: PMC11676442 DOI: 10.3390/ph17121663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/08/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
The tumor microenvironment (TME) is a critical factor in cancer progression, driving tumor growth, immune evasion, therapeutic resistance, and metastasis. Understanding the dynamic interactions within the TME is essential for advancing cancer management. Molecular imaging provides a non-invasive, real-time, and longitudinal approach to studying the TME, with techniques such as positron emission tomography (PET), magnetic resonance imaging (MRI), and fluorescence imaging offering complementary strengths, including high sensitivity, spatial resolution, and intraoperative precision. Recent advances in imaging probe development have enhanced the ability to target and monitor specific components of the TME, facilitating early cancer diagnosis, therapeutic monitoring, and deeper insights into tumor biology. By integrating these innovations, molecular imaging offers transformative potential for precision oncology, improving diagnostic accuracy and treatment outcomes through a comprehensive assessment of TME dynamics.
Collapse
Affiliation(s)
- Hui-Wen Chan
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Li-Nong St., Beitou Dist., Taipei City 112, Taiwan;
| | - Deng-Yu Kuo
- Division of Radiation Oncology, Department of Radiology, Far Eastern Memorial Hospital, New Taipei City 220, Taiwan
| | - Pei-Wei Shueng
- Division of Radiation Oncology, Department of Radiology, Far Eastern Memorial Hospital, New Taipei City 220, Taiwan
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei City 112, Taiwan
| | - Hui-Yen Chuang
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Li-Nong St., Beitou Dist., Taipei City 112, Taiwan;
| |
Collapse
|
5
|
Wu Q, Shao H, Zhai W, Huang G, Liu J, Calais J, Wei W. Molecular imaging of renal cell carcinomas: ready for prime time. Nat Rev Urol 2024:10.1038/s41585-024-00962-z. [PMID: 39543358 DOI: 10.1038/s41585-024-00962-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2024] [Indexed: 11/17/2024]
Abstract
The clinical diagnosis of renal cell carcinoma (RCC) is constantly evolving. Diagnostic imaging of RCC relying on enhanced computed tomography (CT) and magnetic resonance imaging (MRI) is commonly used for renal mass characterization and assessment of tumour thrombosis, whereas pathology is the gold standard for establishing diagnosis. However, molecular imaging is rapidly improving the clinical management of RCC, particularly clear-cell RCC. Molecular imaging aids in the non-invasive visualization and characterization of specific biomarkers such as carbonic anhydrase IX and CD70 within the tumours, which help to assess tumour heterogeneity and status. Target-specific molecular imaging of RCCs will substantially improve the diagnostic landscape of RCC and will further facilitate clinical decision-making regarding initial staging and re-staging, monitoring of recurrence and metastasis, patient stratification and selection, and the prediction and evaluation of treatment responses.
Collapse
Affiliation(s)
- Qianyun Wu
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hongda Shao
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Zhai
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gang Huang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianjun Liu
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Jeremie Calais
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA, USA.
| | - Weijun Wei
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
6
|
Lee K, Niku S, Koo SJ, Belezzuoli E, Guma M. Molecular imaging for evaluation of synovitis associated with osteoarthritis: a narrative review. Arthritis Res Ther 2024; 26:25. [PMID: 38229205 PMCID: PMC10790518 DOI: 10.1186/s13075-023-03258-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/28/2023] [Indexed: 01/18/2024] Open
Abstract
Recent evidence highlights the role of low-grade synovial inflammation in the progression of osteoarthritis (OA). Inflamed synovium of OA joints detected by imaging modalities are associated with subsequent progression of OA. In this sense, detecting and quantifying synovitis of OA by imaging modalities may be valuable in predicting OA progressors as well as in improving our understanding of OA progression. Of the several imaging modalities, molecular imaging such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT) has an advantage of visualizing the cellular or subcellular events of the tissues. Depending on the radiotracers used, molecular imaging method can potentially detect and visualize various aspects of synovial inflammation. This narrative review summarizes the recent progresses of imaging modalities in assessing inflammation and OA synovitis and focuses on novel radiotracers. Recent studies about imaging modalities including ultrasonography (US), magnetic resonance imaging (MRI), and molecular imaging that were used to detect and quantify inflammation and OA synovitis are summarized. Novel radiotracers specifically targeting the components of inflammation have been developed. These tracers may show promise in detecting inflamed synovium of OA and help in expanding our understanding of OA progression.
Collapse
Affiliation(s)
- Kwanghoon Lee
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Medicine, Dongguk University Ilsan Hospital, Goyang, Korea
| | - Soheil Niku
- Nuclear Medicine Service, Jennifer Moreno VA San Diego Healthcare System, San Diego, CA, USA
| | - Sonya J Koo
- Department of Radiology, West Los Angeles VA Medical Center, Los Angeles, CA, USA
| | - Ernest Belezzuoli
- Nuclear Medicine Service, Jennifer Moreno VA San Diego Healthcare System, San Diego, CA, USA
- Department of Radiology, University of California San Diego, La Jolla, CA, USA
| | - Monica Guma
- Department of Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
7
|
Naplekov DK, Bárta P, Trejtnar F, Sklenářová H, Lenčo J. Implementing reversed-phase and hydrophilic interaction liquid chromatography into the characterization of DTPA-ramucirumab conjugate before radiolabeling. J Pharm Biomed Anal 2023; 235:115615. [PMID: 37566949 DOI: 10.1016/j.jpba.2023.115615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/27/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023]
Abstract
Radioimmunoconjugates represent a promising class of therapeutics and diagnostics. The characterization of intermediate chelator-antibody products, i.e., without the radionuclide, is frequently omitted, bringing significant uncertainty in the radioimmunoconjugate preparation. In the present study, we explored the utility of reversed-phase (RPLC) and hydrophilic interaction (HILIC) liquid chromatography with UV detection to characterize ramucirumab stochastically conjugated with p-SCN-Bn-CHX-A"-DTPA chelator (shortly DTPA). The conjugation was well reflected in RPLC chromatograms, while chromatograms from HILIC were significantly less informative. RPLC analyses at the intact level confirmed that the conjugation resulted in a heterogeneous mixture of modified ramucirumab. Moreover, the RPLC of DTPA-ramucirumab confirmed heterogeneous conjugation of all subunits. The peptide mapping did not reveal substantial changes after the conjugation, indicating that most parts of ramucirumab molecules remained unmodified and that the DTPA chelator was bound to various sites. Eventually, the RPLC method for analysis of intact ramucirumab was successfully applied to online monitoring of conjugation reaction in 1 h intervals for a total of 24 h synthesis, which readily reflected the structural changes of ramucirumab in the form of retention time shift by 0.21 min and increase in peak width by 0.22 min. The results were obtained in real-time, practically under 10 min per monitoring cycle. To the best of our knowledge, our study represents the first evaluation of RPLC and HILIC to assess the quality of intermediates during the on-site preparation of radioimmunoconjugates prior to radiolabeling.
Collapse
Affiliation(s)
- Denis K Naplekov
- Charles University, Faculty of Pharmacy in Hradec Kralove, Department of Analytical Chemistry, Akademika Heyrovskeho 1203/8, 500 05 Hradec Kralove, Czech Republic
| | - Pavel Bárta
- Charles University, Faculty of Pharmacy in Hradec Kralove, Department of Biophysics and Physical Chemistry, Akademika Heyrovskeho 1203/8, 500 05 Hradec Kralove, Czech Republic
| | - František Trejtnar
- Charles University, Faculty of Pharmacy in Hradec Kralove, Department of Pharmacology and Toxicology, Akademika Heyrovskeho 1203/8, 500 05 Hradec Kralove, Czech Republic
| | - Hana Sklenářová
- Charles University, Faculty of Pharmacy in Hradec Kralove, Department of Analytical Chemistry, Akademika Heyrovskeho 1203/8, 500 05 Hradec Kralove, Czech Republic
| | - Juraj Lenčo
- Charles University, Faculty of Pharmacy in Hradec Kralove, Department of Analytical Chemistry, Akademika Heyrovskeho 1203/8, 500 05 Hradec Kralove, Czech Republic.
| |
Collapse
|
8
|
Zhu T, Hsu JC, Guo J, Chen W, Cai W, Wang K. Radionuclide-based theranostics - a promising strategy for lung cancer. Eur J Nucl Med Mol Imaging 2023; 50:2353-2374. [PMID: 36929181 PMCID: PMC10272099 DOI: 10.1007/s00259-023-06174-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/25/2023] [Indexed: 03/18/2023]
Abstract
PURPOSE This review aims to provide a comprehensive overview of the latest literature on personalized lung cancer management using different ligands and radionuclide-based tumor-targeting agents. BACKGROUND Lung cancer is the leading cause of cancer-related deaths worldwide. Due to the heterogeneity of lung cancer, advances in precision medicine may enhance the disease management landscape. More recently, theranostics using the same molecule labeled with two different radionuclides for imaging and treatment has emerged as a promising strategy for systemic cancer management. In radionuclide-based theranostics, the target, ligand, and radionuclide should all be carefully considered to achieve an accurate diagnosis and optimal therapeutic effects for lung cancer. METHODS We summarize the latest radiotracers and radioligand therapeutic agents used in diagnosing and treating lung cancer. In addition, we discuss the potential clinical applications and limitations associated with target-dependent radiotracers as well as therapeutic radionuclides. Finally, we provide our views on the perspectives for future development in this field. CONCLUSIONS Radionuclide-based theranostics show great potential in tailored medical care. We expect that this review can provide an understanding of the latest advances in radionuclide therapy for lung cancer and promote the application of radioligand theranostics in personalized medicine.
Collapse
Affiliation(s)
- Tianxing Zhu
- Department of Respiratory Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, Zhejiang, China
- Lingang Laboratory, Shanghai, 200031, China
| | - Jessica C Hsu
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Jingpei Guo
- Department of Interventional Medicine, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Weiyu Chen
- Department of Respiratory Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, Zhejiang, China.
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang, China.
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| | - Kai Wang
- Department of Respiratory Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, Zhejiang, China.
| |
Collapse
|
9
|
Zhu J, Pan F, Cai H, Pan L, Li Y, Li L, Li Y, Wu X, Fan H. Positron emission tomography imaging of lung cancer: An overview of alternative positron emission tomography tracers beyond F18 fluorodeoxyglucose. Front Med (Lausanne) 2022; 9:945602. [PMID: 36275809 PMCID: PMC9581209 DOI: 10.3389/fmed.2022.945602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Lung cancer has been the leading cause of cancer-related mortality in China in recent decades. Positron emission tomography-computer tomography (PET/CT) has been established in the diagnosis of lung cancer. 18F-FDG is the most widely used PET tracer in foci diagnosis, tumor staging, treatment planning, and prognosis assessment by monitoring abnormally exuberant glucose metabolism in tumors. However, with the increasing knowledge on tumor heterogeneity and biological characteristics in lung cancer, a variety of novel radiotracers beyond 18F-FDG for PET imaging have been developed. For example, PET tracers that target cellular proliferation, amino acid metabolism and transportation, tumor hypoxia, angiogenesis, pulmonary NETs and other targets, such as tyrosine kinases and cancer-associated fibroblasts, have been reported, evaluated in animal models or under clinical investigations in recent years and play increasing roles in lung cancer diagnosis. Thus, we perform a comprehensive literature review of the radiopharmaceuticals and recent progress in PET tracers for the study of lung cancer biological characteristics beyond glucose metabolism.
Collapse
Affiliation(s)
- Jing Zhu
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China,Respiratory and Critical Care Medicine, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China,NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Fei Pan
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Huawei Cai
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Lili Pan
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yalun Li
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Lin Li
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - YunChun Li
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China,Department of Nuclear Medicine, The Second People’s Hospital of Yibin, Yibin, China
| | - Xiaoai Wu
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China,Xiaoai Wu,
| | - Hong Fan
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China,*Correspondence: Hong Fan,
| |
Collapse
|
10
|
Wang Q, Zhang X, Wei W, Cao M. PET Imaging of Lung Cancers in Precision Medicine: Current Landscape and Future Perspective. Mol Pharm 2022; 19:3471-3483. [PMID: 35771950 DOI: 10.1021/acs.molpharmaceut.2c00353] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Despite the recent advances in cancer treatment, lung cancer remains the leading cause of cancer mortality worldwide. Immunotherapies using immune checkpoint inhibitors (ICIs) achieved substantial efficacy in nonsmall cell lung cancer (NSCLC). Currently, most ICIs are still a monoclonal antibody (mAb). Using mAbs or antibody derivatives labeled with radionuclide as the tracers, immunopositron emission tomography (immunoPET) possesses multiple advantages over traditional 18F-FDG PET in imaging lung cancers. ImmunoPET presents excellent potential in detecting, diagnosing, staging, risk stratification, treatment guidance, and recurrence monitoring of lung cancers. By using radiolabeled mAbs, immunoPET can visualize the biodistribution and uptake of ICIs, providing a noninvasive modality for patient stratification and response evaluation. Some novel targets and associated tracers for immunoPET have been discovered and investigated. This Review introduces the value of immunoPET in imaging lung cancers by summarizing both preclinical and clinical evidence. We also emphasize the value of immunoPET in optimizing immunotherapy in NSCLC. Lastly, immunoPET probes developed for imaging small cell lung cancer (SCLC) will also be discussed. Although the major focus is to summarize the immunoPET tracers for lung cancers, we also highlighted several small-molecule PET tracers to give readers a balanced view of the development status.
Collapse
Affiliation(s)
- Qing Wang
- Department of Thoracic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200217, China
| | - Xindi Zhang
- Department of Thoracic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200217, China
| | - Weijun Wei
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200217, China
| | - Min Cao
- Department of Thoracic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200217, China
| |
Collapse
|
11
|
Manafi-Farid R, Ataeinia B, Ranjbar S, Jamshidi Araghi Z, Moradi MM, Pirich C, Beheshti M. ImmunoPET: Antibody-Based PET Imaging in Solid Tumors. Front Med (Lausanne) 2022; 9:916693. [PMID: 35836956 PMCID: PMC9273828 DOI: 10.3389/fmed.2022.916693] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/24/2022] [Indexed: 12/13/2022] Open
Abstract
Immuno-positron emission tomography (immunoPET) is a molecular imaging modality combining the high sensitivity of PET with the specific targeting ability of monoclonal antibodies. Various radioimmunotracers have been successfully developed to target a broad spectrum of molecules expressed by malignant cells or tumor microenvironments. Only a few are translated into clinical studies and barely into clinical practices. Some drawbacks include slow radioimmunotracer kinetics, high physiologic uptake in lymphoid organs, and heterogeneous activity in tumoral lesions. Measures are taken to overcome the disadvantages, and new tracers are being developed. In this review, we aim to mention the fundamental components of immunoPET imaging, explore the groundbreaking success achieved using this new technique, and review different radioimmunotracers employed in various solid tumors to elaborate on this relatively new imaging modality.
Collapse
Affiliation(s)
- Reyhaneh Manafi-Farid
- Research Center for Nuclear Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahar Ataeinia
- Department of Radiology, Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Shaghayegh Ranjbar
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Zahra Jamshidi Araghi
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mobin Moradi
- Research Center for Nuclear Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Christian Pirich
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Mohsen Beheshti
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
12
|
Abstract
Renal cell carcinoma (RCC) is the sixth most common cancer among men and the ninth among women, and its prognosis is closely correlated with metastasis. Targeted therapy and immunotherapy are the main adjuvant treatments for advanced RCC and require early diagnosis, precise assessment, and prediction of the therapeutic responses. Current conventional imaging methods of RCC only provide structural information rather than biological processes. Noninvasive diagnostic tools are therefore needed to image RCC early and accurately at the molecular level. Nuclear medicine imaging combines the high sensitivity of radionuclides with the high resolution of structural imaging to visualize the metabolic processes and specific targets of RCC for more accurate and reliable diagnosis, staging, prognosis prediction, and response assessment. This review summarizes the most recent applications of nuclear medicine receptor imaging and metabolic imaging in RCC and highlights future development perspectives in the field.
Collapse
Affiliation(s)
- Qianyun Wu
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200217, China
| | - Gang Huang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200217, China
| | - Weijun Wei
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200217, China
| | - Jianjun Liu
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200217, China
| |
Collapse
|
13
|
Siemons M, Luyten K, Khodaparast L, Khodaparast L, Lecina J, Claes F, Gallardo R, Koole M, Ramakers M, Schymkowitz J, Bormans G, Rousseau F. Synthetic Pept-Ins as a Generic Amyloid-Like Aggregation-Based Platform for In Vivo PET Imaging of Intracellular Targets. Bioconjug Chem 2021; 32:2052-2064. [PMID: 34487434 PMCID: PMC8447941 DOI: 10.1021/acs.bioconjchem.1c00369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/25/2021] [Indexed: 11/28/2022]
Abstract
Amyloid-like aggregation of proteins is induced by short amyloidogenic sequence segments within a specific protein sequence resulting in self-assembly into β-sheets. We recently validated a technology platform in which synthetic amyloid peptides ("Pept-ins") containing a specific aggregation-prone region (APR) are used to induce specific functional knockdown of the target protein from which the APR was derived, including bacterial, viral, and mammalian cell proteins. In this work, we investigated if Pept-ins can be used as vector probes for in vivo Positron Emission Tomography (PET) imaging of intracellular targets. The radiolabeled Pept-ins [68Ga]Ga-NODAGA-PEG4-vascin (targeting VEGFR2) and [68Ga]Ga-NODAGA-PEG2-P2 (targeting E. coli) were evaluated as PET probes. The Pept-in based radiotracers were cross-validated in a murine tumor and muscle infection model, respectively, and were found to combine target specificity with favorable in vivo pharmacokinetics. When the amyloidogenicity of the interacting region of the peptide is suppressed by mutation, cellular uptake and in vivo accumulation are abolished, highlighting the importance of the specific design of synthetic Pept-ins. The ubiquity of target-specific amyloidogenic sequence segments in natural proteins, the straightforward sequence-based design of the Pept-in probes, and their spontaneous internalization by cells suggest that Pept-ins may constitute a generic platform for in vivo PET imaging of intracellular targets.
Collapse
Affiliation(s)
- Maxime Siemons
- Laboratory
for Radiopharmaceutical Research, Department of Pharmaceutical and
Pharmacological Sciences, KU Leuven, BE3000 Leuven, Belgium
- Switch
Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium
and Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, BE3000 Leuven, Belgium
| | - Kaat Luyten
- Laboratory
for Radiopharmaceutical Research, Department of Pharmaceutical and
Pharmacological Sciences, KU Leuven, BE3000 Leuven, Belgium
- Switch
Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium
and Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, BE3000 Leuven, Belgium
| | - Ladan Khodaparast
- Switch
Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium
and Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, BE3000 Leuven, Belgium
| | - Laleh Khodaparast
- Switch
Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium
and Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, BE3000 Leuven, Belgium
| | - Joan Lecina
- Laboratory
for Radiopharmaceutical Research, Department of Pharmaceutical and
Pharmacological Sciences, KU Leuven, BE3000 Leuven, Belgium
| | - Filip Claes
- Switch
Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium
and Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, BE3000 Leuven, Belgium
| | - Rodrigo Gallardo
- Switch
Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium
and Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, BE3000 Leuven, Belgium
| | - Michel Koole
- Nuclear
Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven and UZ Leuven, BE3000 Leuven, Belgium
| | - Meine Ramakers
- Switch
Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium
and Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, BE3000 Leuven, Belgium
| | - Joost Schymkowitz
- Switch
Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium
and Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, BE3000 Leuven, Belgium
| | - Guy Bormans
- Laboratory
for Radiopharmaceutical Research, Department of Pharmaceutical and
Pharmacological Sciences, KU Leuven, BE3000 Leuven, Belgium
| | - Frederic Rousseau
- Switch
Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium
and Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, BE3000 Leuven, Belgium
| |
Collapse
|
14
|
Bolcaen J, Nair S, Driver CHS, Boshomane TMG, Ebenhan T, Vandevoorde C. Novel Receptor Tyrosine Kinase Pathway Inhibitors for Targeted Radionuclide Therapy of Glioblastoma. Pharmaceuticals (Basel) 2021; 14:626. [PMID: 34209513 PMCID: PMC8308832 DOI: 10.3390/ph14070626] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma (GB) remains the most fatal brain tumor characterized by a high infiltration rate and treatment resistance. Overexpression and/or mutation of receptor tyrosine kinases is common in GB, which subsequently leads to the activation of many downstream pathways that have a critical impact on tumor progression and therapy resistance. Therefore, receptor tyrosine kinase inhibitors (RTKIs) have been investigated to improve the dismal prognosis of GB in an effort to evolve into a personalized targeted therapy strategy with a better treatment outcome. Numerous RTKIs have been approved in the clinic and several radiopharmaceuticals are part of (pre)clinical trials as a non-invasive method to identify patients who could benefit from RTKI. The latter opens up the scope for theranostic applications. In this review, the present status of RTKIs for the treatment, nuclear imaging and targeted radionuclide therapy of GB is presented. The focus will be on seven tyrosine kinase receptors, based on their central role in GB: EGFR, VEGFR, MET, PDGFR, FGFR, Eph receptor and IGF1R. Finally, by way of analyzing structural and physiological characteristics of the TKIs with promising clinical trial results, four small molecule RTKIs were selected based on their potential to become new therapeutic GB radiopharmaceuticals.
Collapse
Affiliation(s)
- Julie Bolcaen
- Radiobiology, Radiation Biophysics Division, Nuclear Medicine Department, iThemba LABS, Cape Town 7131, South Africa;
| | - Shankari Nair
- Radiobiology, Radiation Biophysics Division, Nuclear Medicine Department, iThemba LABS, Cape Town 7131, South Africa;
| | - Cathryn H. S. Driver
- Radiochemistry, South African Nuclear Energy Corporation, Pelindaba, Brits 0240, South Africa;
- Pre-Clinical Imaging Facility, Nuclear Medicine Research Infrastructure, Pelindaba, Brits 0242, South Africa;
| | - Tebatso M. G. Boshomane
- Department of Nuclear Medicine, University of Pretoria Steve Biko Academic Hospital, Pretoria 0001, South Africa;
| | - Thomas Ebenhan
- Pre-Clinical Imaging Facility, Nuclear Medicine Research Infrastructure, Pelindaba, Brits 0242, South Africa;
- Department of Nuclear Medicine, University of Pretoria Steve Biko Academic Hospital, Pretoria 0001, South Africa;
- Preclinical Drug Development Platform, Department of Science and Technology, North West University, Potchefstroom 2520, South Africa
| | - Charlot Vandevoorde
- Radiobiology, Radiation Biophysics Division, Nuclear Medicine Department, iThemba LABS, Cape Town 7131, South Africa;
| |
Collapse
|
15
|
Novy Z, Janousek J, Barta P, Petrik M, Hajduch M, Trejtnar F. Preclinical evaluation of anti-VEGFR2 monoclonal antibody ramucirumab labelled with zirconium-89 for tumour imaging. J Labelled Comp Radiopharm 2021; 64:262-270. [PMID: 33818828 DOI: 10.1002/jlcr.3909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 03/01/2021] [Accepted: 04/02/2021] [Indexed: 12/11/2022]
Abstract
The key factors participating in angiogenesis include vascular endothelial growth factor (VEGF) and its receptors (VEGFRs), particularly VEGFR2. Angiogenesis suppression comprises the blocking of the VEGFR2 binding site by the monoclonal antibody ramucirumab (RAM). Our study focused on RAM radiolabelling with zirconium-89 along with subsequent in vitro and in vivo biological evaluation. RAM was conjugated with the bifunctional chelator p-SCN-Bn-deferoxamine (DFO) and subsequently radiolabelled with [89 Zr]Zr-oxalate. The binding affinity of [89 Zr]Zr-DFO-RAM to VEGFR2 was tested in vitro on prostate (PC-3) and ovary adenocarcinoma (SK-OV-3) cell lines. The positron emission tomography/computed tomography (PET/CT) imaging and ex vivo biodistribution experiments were performed in PC-3 and SK-OV-3 xenografted mice. The in vitro experiments revealed the preserved binding affinity of [89 Zr]Zr-DFO-RAM to VEGFR2. The obtained ex vivo biodistribution data showed the uptake in PC-3 and SK-OV-3 tumours at about 8.7 ± 0.2 and 12.1 ± 1.6%ID/g, respectively. The tumour-to-muscle ratio for 1, 3 and 6 days post injection was 3.9, 5.5 and 5.12 for PC-3 and 6.0, 8.0 and 8.82 for SK-OV-3 tumours, respectively. PET/CT images showed high radioactivity accumulation in the tumours starting already on the first day after tracer administration. The obtained results proved the potency of [89 Zr]Zr-DFO-RAM to target and image VEGFR2-positive tumours in vivo.
Collapse
Affiliation(s)
- Zbynek Novy
- Palacky University Olomouc, Faculty of Medicine and Dentistry, Institute of Molecular and Translational Medicine, Olomouc, Czech Republic
| | - Jiri Janousek
- Faculty of Pharmacy in Hradec Kralove, Department of Pharmacognosy, Charles University, Hradec Kralove, Czech Republic
| | - Pavel Barta
- Faculty of Pharmacy in Hradec Kralove, Department of Biophysics and Physical Chemistry, Charles University, Hradec Kralove, Czech Republic
| | - Milos Petrik
- Palacky University Olomouc, Faculty of Medicine and Dentistry, Institute of Molecular and Translational Medicine, Olomouc, Czech Republic
| | - Marian Hajduch
- Palacky University Olomouc, Faculty of Medicine and Dentistry, Institute of Molecular and Translational Medicine, Olomouc, Czech Republic
| | - Frantisek Trejtnar
- Faculty of Pharmacy in Hradec Kralove, Department of Pharmacology and Toxicology, Charles University, Hradec Kralove, Czech Republic
| |
Collapse
|
16
|
Chomet M, van Dongen GAMS, Vugts DJ. State of the Art in Radiolabeling of Antibodies with Common and Uncommon Radiometals for Preclinical and Clinical Immuno-PET. Bioconjug Chem 2021; 32:1315-1330. [PMID: 33974403 PMCID: PMC8299458 DOI: 10.1021/acs.bioconjchem.1c00136] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
Inert
and stable radiolabeling of monoclonal antibodies (mAb),
antibody fragments, or antibody mimetics with radiometals is a prerequisite
for immuno-PET. While radiolabeling is preferably fast, mild, efficient,
and reproducible, especially when applied for human use in a current
Good Manufacturing Practice compliant way, it is crucial that the
obtained radioimmunoconjugate is stable and shows preserved immunoreactivity
and in vivo behavior. Radiometals and chelators have
extensively been evaluated to come to the most ideal radiometal–chelator
pair for each type of antibody derivative. Although PET imaging of
antibodies is a relatively recent tool, applications with 89Zr, 64Cu, and 68Ga have greatly increased in
recent years, especially in the clinical setting, while other less
common radionuclides such as 52Mn, 86Y, 66Ga, and 44Sc, but also 18F as in [18F]AlF are emerging promising candidates for the radiolabeling
of antibodies. This review presents a state of the art overview of
the practical aspects of radiolabeling of antibodies, ranging from
fast kinetic affibodies and nanobodies to slow kinetic intact mAbs.
Herein, we focus on the most common approach which consists of first
modification of the antibody with a chelator, and after eventual storage
of the premodified molecule, radiolabeling as a second step. Other
approaches are possible but have been excluded from this review. The
review includes recent and representative examples from the literature
highlighting which radiometal–chelator–antibody combinations
are the most successful for in vivo application.
Collapse
Affiliation(s)
- Marion Chomet
- Amsterdam UMC, Vrije Universiteit Amsterdam, Radiology & Nuclear Medicine, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam 1081 HV, The Netherlands
| | - Guus A M S van Dongen
- Amsterdam UMC, Vrije Universiteit Amsterdam, Radiology & Nuclear Medicine, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam 1081 HV, The Netherlands
| | - Danielle J Vugts
- Amsterdam UMC, Vrije Universiteit Amsterdam, Radiology & Nuclear Medicine, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam 1081 HV, The Netherlands
| |
Collapse
|
17
|
The Role of VEGF Receptors as Molecular Target in Nuclear Medicine for Cancer Diagnosis and Combination Therapy. Cancers (Basel) 2021; 13:cancers13051072. [PMID: 33802353 PMCID: PMC7959315 DOI: 10.3390/cancers13051072] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/13/2021] [Accepted: 02/24/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary The rapid development of diagnostic and therapeutic methods of the cancer treatment causes that these diseases are becoming better known and the fight against them is more and more effective. Substantial contribution in this development has nuclear medicine that enables very early cancer diagnosis and early start of the so-called targeted therapy. This therapeutic concept compared to the currently used chemotherapy, causes much fewer undesirable side effects, due to targeting a specific lesion in the body. This review article discusses the possible applications of radionuclide-labelled tracers (peptides, antibodies or synthetic organic molecules) that can visualise cancer cells through pathological blood vessel system in close tumour microenvironment. Hence, at a very early step of oncological disease, targeted therapy can involve in tumour formation and growth. Abstract One approach to anticancer treatment is targeted anti-angiogenic therapy (AAT) based on prevention of blood vessel formation around the developing cancer cells. It is known that vascular endothelial growth factor (VEGF) and vascular endothelial growth factor receptors (VEGFRs) play a pivotal role in angiogenesis process; hence, application of angiogenesis inhibitors can be an effective approach in anticancer combination therapeutic strategies. Currently, several types of molecules have been utilised in targeted VEGF/VEGFR anticancer therapy, including human VEGF ligands themselves and their derivatives, anti-VEGF or anti-VEGFR monoclonal antibodies, VEGF binding peptides and small molecular inhibitors of VEGFR tyrosine kinases. These molecules labelled with diagnostic or therapeutic radionuclides can become, respectively, diagnostic or therapeutic receptor radiopharmaceuticals. In targeted anti-angiogenic therapy, diagnostic radioagents play a unique role, allowing the determination of the emerging tumour, to monitor the course of treatment, to predict the treatment outcomes and, first of all, to refer patients for AAT. This review provides an overview of design, synthesis and study of radiolabelled VEGF/VEGFR targeting and imaging agents to date. Additionally, we will briefly discuss their physicochemical properties and possible application in combination targeted radionuclide tumour therapy.
Collapse
|
18
|
Molecular Targeting of Epidermal Growth Factor Receptor (EGFR) and Vascular Endothelial Growth Factor Receptor (VEGFR). Molecules 2021; 26:molecules26041076. [PMID: 33670650 PMCID: PMC7922143 DOI: 10.3390/molecules26041076] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/13/2021] [Accepted: 02/16/2021] [Indexed: 12/13/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) and vascular endothelial growth factor receptor (VEGFR) are two extensively studied membrane-bound receptor tyrosine kinase proteins that are frequently overexpressed in many cancers. As a result, these receptor families constitute attractive targets for imaging and therapeutic applications in the detection and treatment of cancer. This review explores the dynamic structure and structure-function relationships of these two growth factor receptors and their significance as it relates to theranostics of cancer, followed by some of the common inhibition modalities frequently employed to target EGFR and VEGFR, such as tyrosine kinase inhibitors (TKIs), antibodies, nanobodies, and peptides. A summary of the recent advances in molecular imaging techniques, including positron emission tomography (PET), single-photon emission computerized tomography (SPECT), computed tomography (CT), magnetic resonance imaging (MRI), and optical imaging (OI), and in particular, near-IR fluorescence imaging using tetrapyrrolic-based fluorophores, concludes this review.
Collapse
|
19
|
Focused ultrasound for opening blood-brain barrier and drug delivery monitored with positron emission tomography. J Control Release 2020; 324:303-316. [DOI: 10.1016/j.jconrel.2020.05.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 12/14/2022]
|
20
|
Abstract
Immuno-positron emission tomography (immunoPET) is a paradigm-shifting molecular imaging modality combining the superior targeting specificity of monoclonal antibody (mAb) and the inherent sensitivity of PET technique. A variety of radionuclides and mAbs have been exploited to develop immunoPET probes, which has been driven by the development and optimization of radiochemistry and conjugation strategies. In addition, tumor-targeting vectors with a short circulation time (e.g., Nanobody) or with an enhanced binding affinity (e.g., bispecific antibody) are being used to design novel immunoPET probes. Accordingly, several immunoPET probes, such as 89Zr-Df-pertuzumab and 89Zr-atezolizumab, have been successfully translated for clinical use. By noninvasively and dynamically revealing the expression of heterogeneous tumor antigens, immunoPET imaging is gradually changing the theranostic landscape of several types of malignancies. ImmunoPET is the method of choice for imaging specific tumor markers, immune cells, immune checkpoints, and inflammatory processes. Furthermore, the integration of immunoPET imaging in antibody drug development is of substantial significance because it provides pivotal information regarding antibody targeting abilities and distribution profiles. Herein, we present the latest immunoPET imaging strategies and their preclinical and clinical applications. We also emphasize current conjugation strategies that can be leveraged to develop next-generation immunoPET probes. Lastly, we discuss practical considerations to tune the development and translation of immunoPET imaging strategies.
Collapse
Affiliation(s)
- Weijun Wei
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Room 7137, Madison, Wisconsin 53705, United States
| | - Zachary T Rosenkrans
- Department of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Jianjun Liu
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Gang Huang
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Quan-Yong Luo
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Room 7137, Madison, Wisconsin 53705, United States
- Department of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- University of Wisconsin Carbone Cancer Center, Madison, Wisconsin 53705, United States
| |
Collapse
|
21
|
Hu K, Shang J, Xie L, Hanyu M, Zhang Y, Yang Z, Xu H, Wang L, Zhang MR. PET Imaging of VEGFR with a Novel 64Cu-Labeled Peptide. ACS OMEGA 2020; 5:8508-8514. [PMID: 32337411 PMCID: PMC7178340 DOI: 10.1021/acsomega.9b03953] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 03/12/2020] [Indexed: 05/11/2023]
Abstract
Vascular endothelial growth factor receptors (VEGFRs) are well recognized as significant biomarkers of tumor angiogenesis. Herein, we have developed a first-of-its-kind peptide-based VEGFR positron emission tomography (PET) tracer. The novel [64Cu]VEGF125-136 peptide possessed satisfactory radio-characteristics and showed good specificity for the visualization of VEGFR in various mouse models, in which the tumor-specific radioactivity uptake was highly correlated to the VEGFR expression level. Moreover, the tracer showed high tumor uptake (ca. 5.89 %ID/g at 20 min postinjection in B16F10 mice) and excellent pharmacokinetics, achieving the maximum imaging quality within 1 h after injection. These features convey [64Cu]VEGF125-136 as a promising, clinically translatable PET tracer for the imaging of tumor angiogenesis.
Collapse
Affiliation(s)
- Kuan Hu
- Department
of Advanced Nuclear Medicine Sciences, National
Institute of Radiological Sciences, National Institutes for Quantum
and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Jingjie Shang
- Center
of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine
and PET/CT-MRI Center, The First Affiliated
Hospital of Jinan University, Guangzhou 510630, China
| | - Lin Xie
- Department
of Advanced Nuclear Medicine Sciences, National
Institute of Radiological Sciences, National Institutes for Quantum
and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Masayuki Hanyu
- Department
of Advanced Nuclear Medicine Sciences, National
Institute of Radiological Sciences, National Institutes for Quantum
and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Yiding Zhang
- Department
of Advanced Nuclear Medicine Sciences, National
Institute of Radiological Sciences, National Institutes for Quantum
and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Zhimin Yang
- Department
of Advanced Nuclear Medicine Sciences, National
Institute of Radiological Sciences, National Institutes for Quantum
and Radiological Science and Technology, Chiba 263-8555, Japan
- Center
of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine
and PET/CT-MRI Center, The First Affiliated
Hospital of Jinan University, Guangzhou 510630, China
| | - Hao Xu
- Center
of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine
and PET/CT-MRI Center, The First Affiliated
Hospital of Jinan University, Guangzhou 510630, China
| | - Lu Wang
- Center
of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine
and PET/CT-MRI Center, The First Affiliated
Hospital of Jinan University, Guangzhou 510630, China
| | - Ming-Rong Zhang
- Department
of Advanced Nuclear Medicine Sciences, National
Institute of Radiological Sciences, National Institutes for Quantum
and Radiological Science and Technology, Chiba 263-8555, Japan
| |
Collapse
|
22
|
Telo S, Calderoni L, Vichi S, Zagni F, Castellucci P, Fanti S. Alternative and New Radiopharmaceutical Agents for Lung Cancer. Curr Radiopharm 2020; 13:185-194. [PMID: 31868150 PMCID: PMC8206190 DOI: 10.2174/1874471013666191223151402] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 01/27/2019] [Accepted: 11/11/2019] [Indexed: 01/06/2023]
Abstract
BACKGROUND FDG PET/CT imaging has an established role in lung cancer (LC) management. Whilst it is a sensitive technique, FDG PET/CT has a limited specificity in the differentiation between LC and benign conditions and is not capable of defining LC heterogeneity since FDG uptake varies between histotypes. OBJECTIVE To get an overview of new radiopharmaceuticals for the study of cancer biology features beyond glucose metabolism in LC. METHODS A comprehensive literature review of PubMed/Medline was performed using a combination of the following keywords: "positron emission tomography", "lung neoplasms", "non-FDG", "radiopharmaceuticals", "tracers". RESULTS Evidences suggest that proliferation markers, such as 18F-Fluorothymidine and 11CMethionine, improve LC staging and are useful in evaluating treatment response and progression free survival. 68Ga-DOTA-peptides are already routinely used in pulmonary neuroendocrine neoplasms (NENs) management and should be firstly performed in suspected NENs. 18F-Fluoromisonidazole and other radiopharmaceuticals show a promising impact on staging, prognosis assessment and therapy response in LC patients, by visualizing hypoxia and perfusion. Radiolabeled RGD-peptides, targeting angiogenesis, may have a role in LC staging, treatment outcome and therapy. PET radiopharmaceuticals tracing a specific oncogene/signal pathway, such as EGFR or ALK, are gaining interest especially for therapeutic implications. Other PET tracers, like 68Ga-PSMA-peptides or radiolabeled FAPIs, need more development in LC, though, they are promising for therapy purposes. CONCLUSION To date, the employment of most of the described tracers is limited to the experimental field, however, research development may offer innovative opportunities to improve LC staging, characterization, stratification and response assessment in an era of increased personalized therapy.
Collapse
Affiliation(s)
- Silvi Telo
- Address correspondence to this author at the Department of Metropolitan Nuclear Medicine, University of Bologna, Bologna, Italy; Tel/Fax: +390512143959; E-mail:
| | | | | | | | | | | |
Collapse
|
23
|
Wei W, Ni D, Ehlerding EB, Luo QY, Cai W. PET Imaging of Receptor Tyrosine Kinases in Cancer. Mol Cancer Ther 2019; 17:1625-1636. [PMID: 30068751 DOI: 10.1158/1535-7163.mct-18-0087] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/19/2018] [Accepted: 06/04/2018] [Indexed: 12/22/2022]
Abstract
Overexpression and/or mutations of the receptor tyrosine kinase (RTK) subfamilies, such as epidermal growth factor receptors (EGFR) and vascular endothelial growth factor receptors (VEGFR), are closely associated with tumor cell growth, differentiation, proliferation, apoptosis, and cellular invasiveness. Monoclonal antibodies (mAb) and tyrosine kinase inhibitors (TKI) specifically inhibiting these RTKs have shown remarkable success in improving patient survival in many cancer types. However, poor response and even drug resistance inevitably occur. In this setting, the ability to detect and visualize RTKs with noninvasive diagnostic tools will greatly refine clinical treatment strategies for cancer patients, facilitate precise response prediction, and improve drug development. Positron emission tomography (PET) agents using targeted radioactively labeled antibodies have been developed to visualize tumor RTKs and are changing clinical decisions for certain cancer types. In the present review, we primarily focus on PET imaging of RTKs using radiolabeled antibodies with an emphasis on the clinical applications of these immunoPET probes. Mol Cancer Ther; 17(8); 1625-36. ©2018 AACR.
Collapse
Affiliation(s)
- Weijun Wei
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Department of Radiology, University of Wisconsin-Madison, Wisconsin
| | - Dalong Ni
- Department of Radiology, University of Wisconsin-Madison, Wisconsin
| | - Emily B Ehlerding
- Department of Medical Physics, University of Wisconsin-Madison, Wisconsin
| | - Quan-Yong Luo
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| | - Weibo Cai
- Department of Radiology, University of Wisconsin-Madison, Wisconsin. .,Department of Medical Physics, University of Wisconsin-Madison, Wisconsin.,University of Wisconsin Carbone Cancer Center, Madison, Wisconsin
| |
Collapse
|
24
|
Li M, Jiang D, Barnhart TE, Cao T, Engle JW, Chen W, Cai W. Immuno-PET imaging of VEGFR-2 expression in prostate cancer with 89Zr-labeled ramucirumab. Am J Cancer Res 2019; 9:2037-2046. [PMID: 31598404 PMCID: PMC6780657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 08/06/2019] [Indexed: 06/10/2023] Open
Abstract
The detection and monitoring of prostate cancer (PrCa) malignancies using most of the conventional strategies is challenging. As an over-expressed biomarker of PrCa, the vascular endothelial growth factor receptor 2 (VEGFR-2) can be delineated by non-invasive imaging to address such issue. Herein, we report the positron emission tomography (PET) of VEGFR-2 expression in a PrCa mice models by composing a novel tracer, [89Zr]zirconium-labeled clinical VEGFR-2 antibody (Ramucirumab), i.e. 89Zr-Df-R. The VEGFR-2 expression levels among three different PrCa cell lines (PC-3, LNCAP and LAPC-4) were confirmed by flow cytometry. The immuno-PET imaging and bio-distribution (Bio-D) study were conducted in subcutaneous PrCa mice models via the 89Zr-Df-R. The regions of interest (ROI) data showed that the uptake of 89Zr-Df-R in the positive PC-3 (9.5±3 %ID/g) tumors are obviously higher than those ones in the negative LNCAP (6.0±1.7 %ID/g) or LAPC-4 (4.3±0.7 %ID/g) tumors at 120 hours post-injection, while the accumulation of 89Zr-Df-R in PC-3 tumors (4.3±1.2 %ID/g)) could be significantly reduced by the blockade of unlabeled Ramucirumab. These quantitative data coincide with the Bio-D data and proves the specificity. Additionally, the immuno-fluorescent staining results confirmed the expression pattern of VEGFR-2 among various PrCa tumors. Finally, the flow cytometry of PC-3 tumor tissue further proved that the binding of 89Zr-Df-R to VEGFR-2 primarily occurs on the PC-3 tumor cells. In summary, the description of the VEGFR-2 expression in PrCa by in-vivo PET with 89Zr-Df-R is feasible and it may shed light on the early detection of foci and dynamic monitoring of anti-VEGFR-2 therapy in PrCa.
Collapse
Affiliation(s)
- Miao Li
- Department of Radiology, The First Affiliated Hospital of Xi’an Jiaotong University277 West Yanta Road, Xi’an 710061, Shaanxi, People’s Republic of China
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison1111 Highland Avenue, Madison 53705, Wisconsin, United States
| | - Dawei Jiang
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison1111 Highland Avenue, Madison 53705, Wisconsin, United States
| | - Todd E Barnhart
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison1111 Highland Avenue, Madison 53705, Wisconsin, United States
| | - Tianye Cao
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison1111 Highland Avenue, Madison 53705, Wisconsin, United States
| | - Jonathan W Engle
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison1111 Highland Avenue, Madison 53705, Wisconsin, United States
| | - Weiyu Chen
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison1111 Highland Avenue, Madison 53705, Wisconsin, United States
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison1111 Highland Avenue, Madison 53705, Wisconsin, United States
| |
Collapse
|
25
|
Mitran B, Güler R, Roche FP, Lindström E, Selvaraju RK, Fleetwood F, Rinne SS, Claesson-Welsh L, Tolmachev V, Ståhl S, Orlova A, Löfblom J. Radionuclide imaging of VEGFR2 in glioma vasculature using biparatopic affibody conjugate: proof-of-principle in a murine model. Theranostics 2018; 8:4462-4476. [PMID: 30214632 PMCID: PMC6134937 DOI: 10.7150/thno.24395] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 04/21/2018] [Indexed: 01/09/2023] Open
Abstract
Vascular endothelial growth factor receptor-2 (VEGFR2) is a key mediator of angiogenesis and therefore a promising therapeutic target in malignancies including glioblastoma multiforme (GBM). Molecular imaging of VEGFR2 expression may enable patient stratification for antiangiogenic therapy. The goal of the current study was to evaluate the capacity of the novel anti-VEGFR2 biparatopic affibody conjugate (ZVEGFR2-Bp2) for in vivo visualization of VEGFR2 expression in GBM. Methods: ZVEGFR2-Bp2 coupled to a NODAGA chelator was generated and radiolabeled with indium-111. The VEGFR2-expressing murine endothelial cell line MS1 was used to evaluate in vitro binding specificity and affinity, cellular processing and targeting specificity in mice. Further tumor targeting was studied in vivo in GL261 glioblastoma orthotopic tumors. Experimental imaging was performed. Results: [111In]In-NODAGA-ZVEGFR2-Bp2 bound specifically to VEGFR2 (KD=33±18 pM). VEGFR2-mediated accumulation was observed in liver, spleen and lungs. The tumor-to-organ ratios 2 h post injection for mice bearing MS1 tumors were approximately 11 for blood, 15 for muscles and 78 for brain. Intracranial GL261 glioblastoma was visualized using SPECT/CT. The activity uptake in tumors was significantly higher than in normal brain tissue. The tumor-to-cerebellum ratios after injection of 4 µg [111In]In-NODAGA-ZVEGFR2-Bp2 were significantly higher than the ratios observed for the 40 µg injected dose and for the non-VEGFR2 binding size-matched conjugate, demonstrating target specificity. Microautoradiography of cryosectioned CNS tissue was in good agreement with the SPECT/CT images. Conclusion: The anti-VEGFR2 affibody conjugate [111In]In-NODAGA-ZVEGFR2-Bp2 specifically targeted VEGFR2 in vivo and visualized its expression in a murine GBM orthotopic model. Tumor-to-blood ratios for [111In]In-NODAGA-ZVEGFR2-Bp2 were higher compared to other VEGFR2 imaging probes. [111In]In-NODAGA-ZVEGFR2-Bp2 appears to be a promising probe for in vivo noninvasive visualization of tumor angiogenesis in glioblastoma.
Collapse
|
26
|
Tegnebratt T, Lu L, Eksborg S, Chireh A, Damberg P, Nikkhou-Aski S, Foukakis T, Rundqvist H, Holmin S, Kuiper RV, Samen E. Treatment response assessment with (R)-[ 11CPAQ PET in the MMTV-PyMT mouse model of breast cancer. EJNMMI Res 2018; 8:25. [PMID: 29616369 PMCID: PMC5882477 DOI: 10.1186/s13550-018-0380-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/23/2018] [Indexed: 02/07/2023] Open
Abstract
Background The goal of the study was to assess the potential of the vascular endothelial growth factor receptor (VEGFR)-2-targeting carbon-11 labeled (R)-N-(4-bromo-2-fluorophenyl)-6-methoxy-7-((1-methyl-3-piperidinyl)methoxy)-4-quinazolineamine ((R)-[11C]PAQ) as a positron emission tomography (PET) imaging biomarker for evaluation of the efficacy of anticancer drugs in preclinical models. Methods MMTV-PyMT mice were treated with vehicle alone (VEH), murine anti-VEGFA antibody (B20-4.1.1), and paclitaxel (PTX) in combination or as single agents. The treatment response was measured with (R)-[11C]PAQ PET as standardized uptake value (SUV)mean, SUVmax relative changes at the baseline (day 0) and follow-up (day 4) time points, and magnetic resonance imaging (MRI)-derived PyMT mammary tumor volume (TV) changes. Expression of Ki67, VEGFR-2, and CD31 in tumor tissue was determined by immunohistochemistry (IHC). Non-parametric statistical tests were used to evaluate the relation between (R)-[11C]PAQ radiotracer uptake and therapy response biomarkers. Results The (R)-[11C]PAQ SUVmax in tumors was significantly reduced after 4 days in the B20-4.1.1/PTX combinational and B20-4.1.1 monotherapy groups (p < 0.0005 and p < 0.003, respectively). No significant change was observed in the PTX monotherapy group. There was a significant difference in the SUVmax change between the VEH group and B20-4.1.1/PTX combinational group, as well as between the VEH group and the B20-4.1.1 monotherapy group (p < 0.05). MRI revealed significant decreases in TV in the B20-4.1.1/PTX treatment group (p < 0.005) but not the other therapy groups. A positive trend was observed between the (R)-[11C]PAQ SUVmax change and TV reduction in the B20-4.1.1/PTX group. Statistical testing showed a significant difference in the blood vessel density between the B20-4.1.1/PTX combinational group and the VEH group (p < 0.05) but no significant difference in the Ki67 positive signal between treatment groups. Conclusions The results of this study are promising. However, additional studies are necessary before (R)-[11C]PAQ can be approved as a predictive radiotracer for cancer therapy response.
Collapse
Affiliation(s)
- T Tegnebratt
- Department of Clinical Neuroscience, Karolinska Institutet, SE-17176, Stockholm, Sweden. .,Department of Neuroradiology, Karolinska Experimental Research and Imaging Center, Karolinska University Hospital, SE-17176, Stockholm, Sweden.
| | - L Lu
- Department of Clinical Neuroscience, Karolinska Institutet, SE-17176, Stockholm, Sweden.,Department of Comparative Medicine, Karolinska Experimental Research and Imaging Center, Karolinska University Hospital, SE-17176, Stockholm, Sweden
| | - S Eksborg
- Department of Women's and Children's Health, Karolinska Institutet, SE-17176, Stockholm, Sweden
| | - A Chireh
- Department of Clinical Neuroscience, Karolinska Institutet, SE-17176, Stockholm, Sweden
| | - P Damberg
- Department of Clinical Neuroscience, Karolinska Institutet, SE-17176, Stockholm, Sweden.,Department of Comparative Medicine, Karolinska Experimental Research and Imaging Center, Karolinska University Hospital, SE-17176, Stockholm, Sweden
| | - S Nikkhou-Aski
- Department of Clinical Neuroscience, Karolinska Institutet, SE-17176, Stockholm, Sweden.,Department of Comparative Medicine, Karolinska Experimental Research and Imaging Center, Karolinska University Hospital, SE-17176, Stockholm, Sweden
| | - T Foukakis
- Department of Oncology-Pathology, Karolinska Institutet, SE-17176, Stockholm, Sweden
| | - H Rundqvist
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-17176, Stockholm, Sweden
| | - S Holmin
- Department of Clinical Neuroscience, Karolinska Institutet, SE-17176, Stockholm, Sweden.,Department of Neuroradiology, Karolinska Experimental Research and Imaging Center, Karolinska University Hospital, SE-17176, Stockholm, Sweden
| | - R V Kuiper
- Core Facility for Morphologic Phenotype Analysis, Laboratory Medicine, Karolinska Institutet, SE-14183, Huddinge, Sweden
| | - E Samen
- Department of Clinical Neuroscience, Karolinska Institutet, SE-17176, Stockholm, Sweden.,Department of Neuroradiology, Karolinska Experimental Research and Imaging Center, Karolinska University Hospital, SE-17176, Stockholm, Sweden
| |
Collapse
|
27
|
Dimastromatteo J, Charles EJ, Laubach VE. Molecular imaging of pulmonary diseases. Respir Res 2018; 19:17. [PMID: 29368614 PMCID: PMC5784614 DOI: 10.1186/s12931-018-0716-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 01/05/2018] [Indexed: 12/11/2022] Open
Abstract
Imaging holds an important role in the diagnosis of lung diseases. Along with clinical tests, noninvasive imaging techniques provide complementary and valuable information that enables a complete differential diagnosis. Various novel molecular imaging tools are currently under investigation aimed toward achieving a better understanding of lung disease physiopathology as well as early detection and accurate diagnosis leading to targeted treatment. Recent research on molecular imaging methods that may permit differentiation of the cellular and molecular components of pulmonary disease and monitoring of immune activation are detailed in this review. The application of molecular imaging to lung disease is currently in its early stage, especially compared to other organs or tissues, but future studies will undoubtedly reveal useful pulmonary imaging probes and imaging modalities.
Collapse
Affiliation(s)
- Julien Dimastromatteo
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA USA
| | - Eric J. Charles
- Department of Surgery, University of Virginia, P.O. Box 801359, Charlottesville, VA 22908 USA
| | - Victor E. Laubach
- Department of Surgery, University of Virginia, P.O. Box 801359, Charlottesville, VA 22908 USA
| |
Collapse
|
28
|
Laffon E, Marthan R. A three-time-point method for assessing kinetic parameters of 64Cu-labeled Ramucirumab trapping in VEGFR-2 positive lung tumors. Phys Med 2017; 43:1-5. [PMID: 29195550 DOI: 10.1016/j.ejmp.2017.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 09/29/2017] [Accepted: 10/02/2017] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVE To describe a three-time-point method for estimating kinetic parameters involved in 64Cu-labeled Ramucirumab (64Cu-NOTA-RamAb) trapping of VEGFR-2 positive lung tumors. MATERIALS AND METHODS Positron emission tomography (microPET) data of tumor-bearing mice for 64Cu-NOTA-RamAb trapping in VEGFR-2 positive HCC4006 tumor were used, involving tissue activity measurements acquired at 3, 24 and 48 h post-injection, without and with administration of RamAb blocking dose. A kinetic model provided an analytical formula describing the tissue time-activity-curve, involving 64Cu-NOTA-RamAb uptake (Ki), release rate constant (kR) and fraction of free tracer in blood and interstitial volume (F). RESULTS Fitting analytical formula outcomes on mean microPET data yielded values of the kinetic parameters: Ki = 0.0314/0.0123 gram of blood per hour per gram of tissue, kR = 0.0387/0.0313 h-1 and F = 0.2075/0.2007 gram of blood per gram of tissue, without/with RamAb blocking dose, respectively (R = 0.99999 for the graph displaying microPET versus theoretical data; P < .01). CONCLUSIONS Three independent kinetic parameters (Ki, kR and F) can be assessed from three data points acquired at early, mid and late imaging, i.e., at 3, 24 and 48 h post-injection, for further characterization of 64Cu-NOTA-RamAb trapping in VEGFR-2 positive lung tumors.
Collapse
Affiliation(s)
- Eric Laffon
- CHU de Bordeaux, Services de Médecine Nucléaire, Exploration Fonctionnelle Respiratoire, F-33604 Pessac, France; Univ Bordeaux, Centre de Recherche Cardio-Thoracique, F-33076 Bordeaux, France; INSERM U 1045, Centre de Recherche Cardio-Thoracique, F-33076 Bordeaux, France.
| | - Roger Marthan
- CHU de Bordeaux, Services de Médecine Nucléaire, Exploration Fonctionnelle Respiratoire, F-33604 Pessac, France; Univ Bordeaux, Centre de Recherche Cardio-Thoracique, F-33076 Bordeaux, France; INSERM U 1045, Centre de Recherche Cardio-Thoracique, F-33076 Bordeaux, France
| |
Collapse
|
29
|
Abstract
F18 Flurodeoxyglucose (FDG) is a nonspecific PET tracer representing tumor energy metabolism, with common false-positive and false-negative findings in clinical practice. Non-small cell lung cancer is highly heterogeneous histologically, biologically, and molecularly. Novel PET tracers designed to characterize a specific aspect of tumor biology or a pathway-specific molecular target have the potential to provide noninvasive key information in tumor heterogeneity for patient stratification and in the assessment of treatment response. Non-FDG PET tracers, including 68Ga-somatostatin analogs, and some PET tracers targeting tumor proliferation, hypoxia, angiogenesis, and pathway-specific targets are briefly reviewed in this article.
Collapse
Affiliation(s)
- Gang Cheng
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA.
| |
Collapse
|
30
|
Chakravarty R, Chakraborty S, Dash A. 64Cu2+ Ions as PET Probe: An Emerging Paradigm in Molecular Imaging of Cancer. Mol Pharm 2016; 13:3601-3612. [DOI: 10.1021/acs.molpharmaceut.6b00582] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Rubel Chakravarty
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| | - Sudipta Chakraborty
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| | - Ashutosh Dash
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| |
Collapse
|
31
|
ImmunoPET for assessing the differential uptake of a CD146-specific monoclonal antibody in lung cancer. Eur J Nucl Med Mol Imaging 2016; 43:2169-2179. [PMID: 27342417 DOI: 10.1007/s00259-016-3442-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 06/08/2016] [Indexed: 12/13/2022]
Abstract
PURPOSE Overexpression of CD146 in solid tumors has been linked to disease progression, invasion, and metastasis. We describe the generation of a 64Cu-labeled CD146-specific antibody and its use for quantitative immunoPET imaging of CD146 expression in six lung cancer models. METHODS The anti-CD146 antibody (YY146) was conjugated to 1,4,7-triazacyclononane-triacetic acid (NOTA) and radiolabeled with 64Cu. CD146 expression was evaluated in six human lung cancer cell lines (A549, NCI-H358, NCI-H522, HCC4006, H23, and NCI-H460) by flow cytometry and quantitative western blot studies. The biodistribution and tumor uptake of 64Cu-NOTA-YY146 was assessed by sequential PET imaging in athymic nude mice bearing subcutaneous lung cancer xenografts. The correlation between CD146 expression and tumor uptake of 64Cu-NOTA-YY146 was evaluated by graphical software while ex vivo biodistribution and immunohistochemistry studies were performed to validate the accuracy of PET data and spatial expression of CD146. RESULTS Flow cytometry and western blot studies showed similar findings with H460 and H23 cells showing high levels of expression of CD146. Small differences in CD146 expression levels were found among A549, H4006, H522, and H358 cells. Tumor uptake of 64Cu-NOTA-YY146 was highest in CD146-expressing H460 and H23 tumors, peaking at 20.1 ± 2.86 and 11.6 ± 2.34 %ID/g at 48 h after injection (n = 4). Tumor uptake was lowest in the H522 model (4.1 ± 0.98 %ID/g at 48 h after injection; n = 4), while H4006, A549 and H358 exhibited similar uptake of 64Cu-NOTA-YY146. A positive correlation was found between tumor uptake of 64Cu-NOTA-YY146 (%ID/g) and relative CD146 expression (r 2 = 0.98, p < 0.01). Ex vivo biodistribution confirmed the accuracy of the PET data. CONCLUSION The strong correlation between tumor uptake of 64Cu-NOTA-YY146 and CD146 expression demonstrates the potential use of this radiotracer for imaging tumors that elicit varying levels of CD146. In the future, this tool may promote enhanced monitoring of therapeutic response and improved patient stratification.
Collapse
|
32
|
Personalizing NSCLC therapy by characterizing tumors using TKI-PET and immuno-PET. Lung Cancer 2016; 107:1-13. [PMID: 27319335 DOI: 10.1016/j.lungcan.2016.05.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/20/2016] [Accepted: 05/29/2016] [Indexed: 12/24/2022]
Abstract
Non-small cell lung cancer (NSCLC) therapy has entered a rapidly advancing era of precision medicine with an ever increasing number of drugs directed against a variety of specific tumor targets. Amongst these new agents, tyrosine kinase inhibitors (TKIs) and monoclonal antibodies (mAbs) are most frequently used. However, as only a sensitive subgroup of patients benefits from targeting drugs, predictive biomarkers are needed. Positron emission tomography (PET) may offer such a biomarker for predicting therapy efficacy. Some of the TKIs and mAbs that are in clinical use can be radioactively labeled and used as tracers. PET can visualize and quantify tumor specific uptake of radiolabeled targeting drugs, allowing for characterization of their pharmacokinetic behavior. In this review, the clinical potential of PET using radiolabeled TKIs (TKI-PET) and mAbs (immuno-PET) in NSCLC is discussed, and an overview is provided of the most relevant preclinical and clinical studies.
Collapse
|