1
|
Chen Y, Qi Y, Wang K. Neoadjuvant chemotherapy for breast cancer: an evaluation of its efficacy and research progress. Front Oncol 2023; 13:1169010. [PMID: 37854685 PMCID: PMC10579937 DOI: 10.3389/fonc.2023.1169010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 09/14/2023] [Indexed: 10/20/2023] Open
Abstract
Neoadjuvant chemotherapy (NAC) for breast cancer is widely used in the clinical setting to improve the chance of surgery, breast conservation and quality of life for patients with advanced breast cancer. A more accurate efficacy evaluation system is important for the decision of surgery timing and chemotherapy regimen implementation. However, current methods, encompassing imaging techniques such as ultrasound and MRI, along with non-imaging approaches like pathological evaluations, often fall short in accurately depicting the therapeutic effects of NAC. Imaging techniques are subjective and only reflect macroscopic morphological changes, while pathological evaluation is the gold standard for efficacy assessment but has the disadvantage of delayed results. In an effort to identify assessment methods that align more closely with real-world clinical demands, this paper provides an in-depth exploration of the principles and clinical applications of various assessment approaches in the neoadjuvant chemotherapy process.
Collapse
Affiliation(s)
- Yushi Chen
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pathology, Basic Medical School, Central South University, Changsha, Hunan, China
| | - Yu Qi
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pathology, Basic Medical School, Central South University, Changsha, Hunan, China
| | - Kuansong Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pathology, Basic Medical School, Central South University, Changsha, Hunan, China
| |
Collapse
|
2
|
Kheirkhah N, Kornecki A, Czarnota GJ, Samani A, Sadeghi-Naini A. Enhanced full-inversion-based ultrasound elastography for evaluating tumor response to neoadjuvant chemotherapy in patients with locally advanced breast cancer. Phys Med 2023; 112:102619. [PMID: 37343438 DOI: 10.1016/j.ejmp.2023.102619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/15/2023] [Accepted: 06/05/2023] [Indexed: 06/23/2023] Open
Abstract
PURPOSE An enhanced ultrasound elastography technique is proposed for early assessment of locally advanced breast cancer (LABC) response to neoadjuvant chemotherapy (NAC). METHODS The proposed elastography technique inputs ultrasound radiofrequency data obtained through tissue quasi-static stimulation and adapts a strain refinement algorithm formulated based on fundamental principles of continuum mechanics, coupled with an iterative inverse finite element method to reconstruct the breast Young's modulus (E) images. The technique was explored for therapy response assessment using data acquired from 25 LABC patients before and at weeks 1, 2, and 4 after the NAC initiation (100 scans). The E ratio of tumor to the surrounding tissue was calculated at different scans and compared to the baseline for each patient. Patients' response to NAC was determined many months later using standard clinical and histopathological criteria. RESULTS Reconstructed E ratio changes obtained as early as one week after the NAC onset demonstrate very good separation between the two cohorts of responders and non-responders to NAC. Statistically significant differences were observed in the E ratio changes between the two patient cohorts at weeks 1 to 4 after treatment (p-value < 0.001; statistical power greater than 97%). A significant difference in axial strain ratio changes was observed only at week 4 (p-value = 0.01; statistical power = 76%). No significant difference was observed in tumor size changes at weeks 1, 2 or 4. CONCLUSION The proposed elastography technique demonstrates a high potential for chemotherapy response monitoring in LABC patients and superior performance compared to strain imaging.
Collapse
Affiliation(s)
- Niusha Kheirkhah
- School of Biomedical Engineering, Western University, London, ON, Canada
| | - Anat Kornecki
- Department of Medical Imaging, Western University, London, ON, Canada
| | - Gregory J Czarnota
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada; Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Abbas Samani
- School of Biomedical Engineering, Western University, London, ON, Canada; Departments of Medical Biophysics, Western University, London, ON, Canada; Department of Electrical and Computer Engineering, Western University, London, ON, Canada; Imaging Research, Robarts Research Institute, Western University, London, ON, Canada
| | - Ali Sadeghi-Naini
- School of Biomedical Engineering, Western University, London, ON, Canada; Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada; Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada; Department of Electrical Engineering and Computer Science, York University, Toronto, ON, Canada.
| |
Collapse
|
3
|
Spink SS, Teng F, Pera V, Peterson HM, Cormier T, Sauer-Budge A, Chargin D, Brookfield S, Eggebrecht AT, Ko N, Roblyer D. High optode-density wearable diffuse optical probe for monitoring paced breathing hemodynamics in breast tissue. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-200339SSR. [PMID: 34080400 PMCID: PMC8170390 DOI: 10.1117/1.jbo.26.6.062708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 05/16/2021] [Indexed: 06/12/2023]
Abstract
SIGNIFICANCE Diffuse optical imaging (DOI) provides in vivo quantification of tissue chromophores such as oxy- and deoxyhemoglobin (HbO2 and HHb, respectively). These parameters have been shown to be useful for predicting neoadjuvant treatment response in breast cancer patients. However, most DOI devices designed for the breast are nonportable, making frequent longitudinal monitoring during treatment a challenge. Furthermore, hemodynamics related to the respiratory cycle are currently unexplored in the breast and may have prognostic value. AIM To design, fabricate, and validate a high optode-density wearable continuous wave diffuse optical probe for the monitoring of breathing hemodynamics in breast tissue. APPROACH The probe has a rigid-flex design with 16 dual-wavelength sources and 16 detectors. Performance was characterized on tissue-simulating phantoms, and validation was performed through flow phantom and cuff occlusion measurements. The breasts of N = 4 healthy volunteers were measured while performing a breathing protocol. RESULTS The probe has 512 unique source-detector (S-D) pairs that span S-D separations of 10 to 54 mm. It exhibited good performance characteristics: μa drift of 0.34%/h, μa precision of 0.063%, and mean SNR ≥ 24 dB up to 41 mm S-D separation. Absorption contrast was detected in flow phantoms at depths exceeding 28 mm. A cuff occlusion measurement confirmed the ability of the probe to track expected hemodynamics in vivo. Breast measurements on healthy volunteers during paced breathing revealed median signal-to-motion artifact ratios ranging from 8.1 to 8.7 dB. Median ΔHbO2 and ΔHHb amplitudes ranged from 0.39 to 0.67 μM and 0.08 to 0.12 μM, respectively. Median oxygen saturations at the respiratory rate ranged from 82% to 87%. CONCLUSIONS A wearable diffuse optical probe has been designed and fabricated for the measurement of breast tissue hemodynamics. This device is capable of quantifying breathing-related hemodynamics in healthy breast tissue.
Collapse
Affiliation(s)
- Samuel S. Spink
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Fei Teng
- Boston University, Department of Electrical and Computer Engineering, Boston, Massachusetts, United States
| | - Vivian Pera
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Hannah M. Peterson
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Tim Cormier
- Boston University, Fraunhofer Center for Manufacturing Innovation, Boston, Massachusetts, United States
| | - Alexis Sauer-Budge
- Boston University, Fraunhofer Center for Manufacturing Innovation, Boston, Massachusetts, United States
| | - David Chargin
- Boston University, Fraunhofer Center for Manufacturing Innovation, Boston, Massachusetts, United States
| | - Sam Brookfield
- Boston University, Fraunhofer Center for Manufacturing Innovation, Boston, Massachusetts, United States
| | - Adam T. Eggebrecht
- Washington University, Department of Radiology, St. Louis, Missouri, United States
| | - Naomi Ko
- Boston Medical Center, Section of Hematology and Oncology, Women’s Health Unit, Boston, Massachusetts, United States
| | - Darren Roblyer
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| |
Collapse
|
4
|
Altoe ML, Kalinsky K, Marone A, Kim HK, Guo H, Hibshoosh H, Tejada M, Crew KD, Accordino MK, Trivedi MS, Hershman DL, Hielscher AH. Changes in Diffuse Optical Tomography Images During Early Stages of Neoadjuvant Chemotherapy Correlate with Tumor Response in Different Breast Cancer Subtypes. Clin Cancer Res 2021; 27:1949-1957. [PMID: 33451976 PMCID: PMC8128376 DOI: 10.1158/1078-0432.ccr-20-1108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 12/16/2020] [Accepted: 01/13/2021] [Indexed: 12/31/2022]
Abstract
PURPOSE This study's primary objective was to evaluate the changes in optically derived parameters acquired with a diffuse optical tomography breast imaging system (DOTBIS) in the tumor volume of patients with breast carcinoma receiving neoadjuvant chemotherapy (NAC). EXPERIMENTAL DESIGN In this analysis of 105 patients with stage II-III breast cancer, normalized mean values of total hemoglobin ([Formula: see text]), oxyhemoglobin ([Formula: see text]), deoxy-hemoglobin concentration ([Formula: see text]), water, and oxygen saturation ([Formula: see text]) percentages were collected at different timepoints during NAC and compared with baseline measurements. This report compared changes in these optical biomarkers measured in patients who did not achieve a pathologic complete response (non-pCR) and those with a pCR. Differences regarding molecular subtypes were included for hormone receptor-positive and HER2-negative, HER2-positive, and triple-negative breast cancer. RESULTS At baseline, [Formula: see text] was higher for pCR tumors (3.97 ± 2.29) compared with non-pCR tumors (3.00 ± 1.72; P = 0.031). At the earliest imaging point after starting therapy, the mean change of [Formula: see text] compared with baseline ([Formula: see text]) was statistically significantly higher in non-pCR (1.23 ± 0.67) than in those with a pCR (0.87 ± 0.61; P < 0.0005), and significantly correlated to residual cancer burden classification (r = 0.448; P < 0.0005). [Formula: see text] combined with HER2 status was proposed as a two-predictor logistic model, with AUC = 0.891; P < 0.0005; and 95% confidence interval, 0.812-0.969. CONCLUSIONS This study demonstrates that DOTBIS measured features change over time according to tumor pCR status and may predict early in the NAC treatment course whether a patient is responding to NAC.
Collapse
Affiliation(s)
- Mirella L Altoe
- Departments of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, New York.
| | - Kevin Kalinsky
- Division of Hematology/Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Alessandro Marone
- Departments of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, New York
| | - Hyun K Kim
- Departments of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, New York
| | - Hua Guo
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| | - Hanina Hibshoosh
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| | - Mariella Tejada
- Division of Hematology/Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Katherine D Crew
- Division of Hematology/Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
- Department of Epidemiology, Columbia University Irving Medical Center, New York, New York
| | - Melissa K Accordino
- Division of Hematology/Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Meghna S Trivedi
- Division of Hematology/Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Dawn L Hershman
- Division of Hematology/Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
- Department of Epidemiology, Columbia University Irving Medical Center, New York, New York
| | - Andreas H Hielscher
- Departments of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, New York.
| |
Collapse
|
5
|
Moghadas-Dastjerdi H, Sha-E-Tallat HR, Sannachi L, Sadeghi-Naini A, Czarnota GJ. A priori prediction of tumour response to neoadjuvant chemotherapy in breast cancer patients using quantitative CT and machine learning. Sci Rep 2020; 10:10936. [PMID: 32616912 PMCID: PMC7331583 DOI: 10.1038/s41598-020-67823-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 06/08/2020] [Indexed: 12/19/2022] Open
Abstract
Response to Neoadjuvant chemotherapy (NAC) has demonstrated a high correlation to survival in locally advanced breast cancer (LABC) patients. An early prediction of responsiveness to NAC could facilitate treatment adjustments on an individual patient basis that would be expected to improve treatment outcomes and patient survival. This study investigated, for the first time, the efficacy of quantitative computed tomography (qCT) parametric imaging to characterize intra-tumour heterogeneity and its application in predicting tumour response to NAC in LABC patients. Textural analyses were performed on CT images acquired from 72 patients before the start of chemotherapy to determine quantitative features of intra-tumour heterogeneity. The best feature subset for response prediction was selected through a sequential feature selection with bootstrap 0.632 + area under the receiver operating characteristic (ROC) curve (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathrm{A}\mathrm{U}\mathrm{C}}_{0.632+}$$\end{document}AUC0.632+) as a performance criterion. Several classifiers were evaluated for response prediction using the selected feature subset. Amongst the applied classifiers an Adaboost decision tree provided the best results with cross-validated \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathrm{A}\mathrm{U}\mathrm{C}}_{0.632+}$$\end{document}AUC0.632+, accuracy, sensitivity and specificity of 0.89, 84%, 80% and 88%, respectively. The promising results obtained in this study demonstrate the potential of the proposed biomarkers to be used as predictors of LABC tumour response to NAC prior to the start of treatment.
Collapse
Affiliation(s)
- Hadi Moghadas-Dastjerdi
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.,Physical Sciences Platform, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Hira Rahman Sha-E-Tallat
- Physical Sciences Platform, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Faculty of Engineering, University of Waterloo, Waterloo, ON, Canada
| | - Lakshmanan Sannachi
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.,Physical Sciences Platform, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Ali Sadeghi-Naini
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.,Physical Sciences Platform, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Department of Electrical Engineering and Computer Science, Lassonde School of Engineering, York University, Toronto, ON, Canada
| | - Gregory J Czarnota
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada. .,Physical Sciences Platform, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada. .,Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, ON, Canada. .,Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
6
|
Method for Quantitative Broadband Diffuse Optical Spectroscopy of Tumor-Like Inclusions. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10041419] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A hybrid reflectance-based diffuse optical imaging (DOI) technique combining discrete wavelength frequency-domain (FD) near-infrared spectroscopy (NIRS) with broadband continuous wave NIRS measurements was developed to quantify the broadband optical properties of deep tumor-like inclusions. This method was developed to more accurately measure the broadband optical properties of human tumors using a compact handheld imaging probe and without requiring a priori spectral constraints. We simulated the reconstruction of absorption and scattering spectra (650–1000 nm) of human breast tumors in a homogeneous background at depths of 0 to 10 mm. The hybrid DOI technique demonstrated enhanced performance in reconstruction of optical absorption with a mean accuracy over all 71 wavelengths of 8.39% versus 32.26% for a 10 mm deep tumor with the topographic DOI method. The new hybrid technique was also tested and validated on two heterogeneous tissue-simulating phantoms with inclusion depths of 2, 7, and 9 mm. The mean optical absorption accuracy over all wavelengths was similarly improved up to 5x for the hybrid DOI method versus topographic DOI for the deepest inclusions.
Collapse
|
7
|
Hayashi M, Yoshizawa N, Ueda Y, Mimura T, Ohmae E, Yoshimoto K, Wada H, Nasu H, Ogura H, Sakahara H. Effect of Source-Detector Distance on the Measurement of Hemoglobin Using Near-Infrared Spectroscopy in Breast Cancer. Technol Cancer Res Treat 2019; 18:1533033819830411. [PMID: 30764728 PMCID: PMC6378435 DOI: 10.1177/1533033819830411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We measured total hemoglobin concentrations in breast tumors by near-infrared time-resolved spectroscopy. Muscles interfere with measurement when the probe is close to the chest wall. Since the target area of measurement depends on the distance between the light source and probe detector, we inferred that this issue could be solved by reducing the source-detector distance. The purpose of this study was to examine the effects of the source-detector distance on the measurement of total hemoglobin concentration in the breast. We examined 26 patients with breast tumors. Total hemoglobin concentration was measured in tumors and the contralateral normal breasts at source-detector distances of 20 and 30 mm. The difference in total hemoglobin concentration between each tumor and the contralateral breast was calculated. The normal breast total hemoglobin concentration was significantly smaller for the source-detector distance of 20 mm than for the source-detector distance of 30 mm. Differences in source-detector distance did not significantly affect tumor total hemoglobin. The difference in total hemoglobin concentration between the tumor and the contralateral breast obtained at the source-detector distance of 20 mm was significantly higher than that obtained at the source-detector distance of 30 mm. From these results, we considered that measurement with a source-detector distance of 20 mm is less affected by the chest wall than with a source-detector distance of 30 mm and that the difference in total hemoglobin concentration between the tumor and the contralateral breast at a source-detector distance of 20 mm can better reflect the net total hemoglobin concentrations of the breast tumors. In conclusion, using a probe with a source-detector distance of 20 mm can more accurately evaluate the total hemoglobin concentration in breast tumors.
Collapse
Affiliation(s)
- Maho Hayashi
- 1 Department of Diagnostic Radiology & Nuclear Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Nobuko Yoshizawa
- 1 Department of Diagnostic Radiology & Nuclear Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Yukio Ueda
- 1 Department of Diagnostic Radiology & Nuclear Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Tetsuya Mimura
- 2 Central Research Laboratory, Hamamatsu Photonics K.K., Hamamatsu, Shizuoka, Japan
| | - Etsuko Ohmae
- 2 Central Research Laboratory, Hamamatsu Photonics K.K., Hamamatsu, Shizuoka, Japan
| | - Kenji Yoshimoto
- 2 Central Research Laboratory, Hamamatsu Photonics K.K., Hamamatsu, Shizuoka, Japan
| | - Hiroko Wada
- 2 Central Research Laboratory, Hamamatsu Photonics K.K., Hamamatsu, Shizuoka, Japan
| | - Hatusko Nasu
- 1 Department of Diagnostic Radiology & Nuclear Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Hiroyuki Ogura
- 3 First Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Harumi Sakahara
- 1 Department of Diagnostic Radiology & Nuclear Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| |
Collapse
|
8
|
Liu YH, Xue LB, Yang YF, Zhao TJ, Bai Y, Zhang BY, Li J. Diffuse optical spectroscopy for monitoring the responses of patients with breast cancer to neoadjuvant chemotherapy: A meta-analysis. Medicine (Baltimore) 2018; 97:e12683. [PMID: 30313063 PMCID: PMC6203577 DOI: 10.1097/md.0000000000012683] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND This study aimed to investigate the potential of diffuse optical spectroscopy (DOT) for monitoring the responses of patients with breast cancer to neoadjuvant chemotherapy (NAC). METHODS We searched PubMed, EMBASE, Cochrane Database of Systematic Reviews, and Web of Science for relevant studies. Data were extracted for pooled analysis, heterogeneity testing, threshold effect testing, sensitivity analysis, publication bias analysis, and subgroup analysis. RESULTS The pooled meta-analysis of the 10 eligible studies that included 422 patients indicated the high performance of DOT for monitoring total patient responses to NAC (OR = 14.78, 95% CI: 8.23-26.54, P < .001), with low significant heterogeneity (I = 7.2%, P = .375). DOT possessed an area under the curve of 0.84 (95% CI: 0.81-0.87) to distinguish total patient responses to NAC. Subgroup analysis showed that the pooled sensitivity of DOT for monitoring pathologic complete response to NAC was 87%, and the pooled specificity was 70%. Meanwhile, the pooled sensitivity of DOT for monitoring pathologic complete and partial responses to NAC was 82%, and the pooled specificity was 82%. Although Begg's funnel plot (P = .049) indicated the presence of publication bias among the included studies, trim-and-fill method verified the stability of the pooled outcomes. CONCLUSION Our meta-analysis of available published data indicated that DOT can be potentially used to predict and monitor patient responses to NAC. A larger study population is needed to fully assess the use of DOT for guiding therapies and predicting responses of individual subjects to NAC.
Collapse
Affiliation(s)
| | | | - Yan Fang Yang
- Anesthesiology Department, Cangzhou Central Hospital, Yunhe Qu, Cangzhou City
| | - Tian Jiao Zhao
- General Surgery, You Fu Hospital, Xinhua Qu, Shijiazhuang City, China
| | | | | | - Jie Li
- Thyroid and Breast Surgery
| |
Collapse
|
9
|
Zhu Q, Tannenbaum S, Kurtzman SH, DeFusco P, Ricci A, Vavadi H, Zhou F, Xu C, Merkulov A, Hegde P, Kane M, Wang L, Sabbath K. Identifying an early treatment window for predicting breast cancer response to neoadjuvant chemotherapy using immunohistopathology and hemoglobin parameters. Breast Cancer Res 2018; 20:56. [PMID: 29898762 PMCID: PMC6001175 DOI: 10.1186/s13058-018-0975-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 04/30/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Breast cancer pathologic complete response (pCR) to neoadjuvant chemotherapy (NAC) varies with tumor subtype. The purpose of this study was to identify an early treatment window for predicting pCR based on tumor subtype, pretreatment total hemoglobin (tHb) level, and early changes in tHb following NAC. METHODS Twenty-two patients (mean age 56 years, range 34-74 years) were assessed using a near-infrared imager coupled with an Ultrasound system prior to treatment, 7 days after the first treatment, at the end of each of the first three cycles, and before their definitive surgery. Pathologic responses were dichotomized by the Miller-Payne system. Tumor vascularity was assessed from tHb; vascularity changes during NAC were assessed from a percentage tHb normalized to the pretreatment level (%tHb). After training the logistic prediction models using the previous study data, we assessed the early treatment window for predicting pathological response according to their tumor subtype (human epidermal growth factor receptor 2 (HER2), estrogen receptor (ER), triple-negative (TN)) based on tHb, and %tHb measured at different cycles and evaluated by the area under the receiver operating characteristic (ROC) curve (AUC). RESULTS In the new study cohort, maximum pretreatment tHb and %tHb changes after cycles 1, 2, and 3 were significantly higher in responder Miller-Payne 4-5 tumors (n = 13) than non-or partial responder Miller-Payne 1-3 tumors (n = 9). However, no significance was found at day 7. The AUC of the predictive power of pretreatment tHb in the cohort was 0.75, which was similar to the performance of the HER2 subtype as a single predictor (AUC of 0.78). A greater predictive power of pretreatment tHb was found within each subtype, with AUCs of 0.88, 0.69, and 0.72, in the HER2, ER, and TN subtypes, respectively. Using pretreatment tHb and cycle 1 %tHb, AUC reached 0.96, 0.91, and 0.90 in HER2, ER, and TN subtypes, respectively, and 0.95 regardless of subtype. Additional cycle 2 %tHb measurements moderately improved prediction for the HER2 subtype but did not improve prediction for the ER and TN subtypes. CONCLUSIONS By combining tumor subtypes with tHb, we predicted the pCR of breast cancer to NAC before treatment. Prediction accuracy can be significantly improved by incorporating cycle 1 and 2 %tHb for the HER2 subtype and cycle 1 %tHb for the ER and TN subtypes. TRIAL REGISTRATION ClinicalTrials.gov, NCT02092636 . Registered in March 2014.
Collapse
Affiliation(s)
- Quing Zhu
- Biomedical Engineering and Radiology, Washington University in St Louis, One Brookings Drive, Mail Box 1097, Whitaker Hall 300D, St. Louis, MO 63130 USA
| | - Susan Tannenbaum
- University of Connecticut Health Center, Farmington, CT 06030 USA
| | | | | | | | | | - Feifei Zhou
- University of Connecticut, Storrs, CT 06269 USA
| | - Chen Xu
- New York City College of Technology, City University of New York (CUNY), New York, USA
| | - Alex Merkulov
- University of Connecticut Health Center, Farmington, CT 06030 USA
| | - Poornima Hegde
- University of Connecticut Health Center, Farmington, CT 06030 USA
| | - Mark Kane
- University of Connecticut Health Center, Farmington, CT 06030 USA
| | - Liqun Wang
- Department of Statistics, University of Manitoba, 186 Dysart Road, Winnipeg, Manitoba, R3T 2N2 Canada
| | | |
Collapse
|
10
|
Yoshizawa N, Ueda Y, Mimura T, Ohmae E, Yoshimoto K, Wada H, Ogura H, Sakahara H. Factors affecting measurement of optic parameters by time-resolved near-infrared spectroscopy in breast cancer. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-6. [PMID: 29488362 DOI: 10.1117/1.jbo.23.2.026010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 02/02/2018] [Indexed: 05/09/2023]
Abstract
The purpose of this study was to evaluate the effects of the thickness and depth of tumors on hemoglobin measurements in breast cancer by optical spectroscopy and to demonstrate tissue oxygen saturation (SO2) and reduced scattering coefficient (μs') in breast tissue and breast cancer in relation to the skin-to-chest wall distance. We examined 53 tumors from 44 patients. Total hemoglobin concentration (tHb), SO2, and μs' were measured by time-resolved spectroscopy (TRS). The skin-to-chest wall distance and the size and depth of tumors were measured by ultrasonography. There was a positive correlation between tHb and tumor thickness, and a negative correlation between tHb and tumor depth. SO2 in breast tissue decreased when the skin-to-chest wall distance decreased, and SO2 in tumors tended to be lower than in breast tissue. In breast tissue, there was a negative correlation between μs' and the skin-to-chest wall distance, and μs' in tumors was higher than in breast tissue. Measurement of tHb in breast cancer by TRS was influenced by tumor thickness and depth. Although SO2 seemed lower and μs' was higher in breast cancer than in breast tissue, the skin-to-chest wall distance may have affected the measurements.
Collapse
Affiliation(s)
- Nobuko Yoshizawa
- Hamamatsu University School of Medicine, Department of Diagnostic Radiology and Nuclear Medicine, Hi, Japan
| | - Yukio Ueda
- Hamamatsu Photonics K.K. Central Research Laboratory, Hamakitaku, Hamamatsu, Japan
| | - Tetsuya Mimura
- Hamamatsu Photonics K.K. Central Research Laboratory, Hamakitaku, Hamamatsu, Japan
| | - Etsuko Ohmae
- Hamamatsu Photonics K.K. Central Research Laboratory, Hamakitaku, Hamamatsu, Japan
| | - Kenji Yoshimoto
- Hamamatsu Photonics K.K. Central Research Laboratory, Hamakitaku, Hamamatsu, Japan
| | - Hiroko Wada
- Hamamatsu Photonics K.K. Central Research Laboratory, Hamakitaku, Hamamatsu, Japan
| | - Hiroyuki Ogura
- Hamamatsu University School of Medicine, Department of Breast Surgery, Higashiku, Hamamatsu, Japan
| | - Harumi Sakahara
- Hamamatsu University School of Medicine, Department of Diagnostic Radiology and Nuclear Medicine, Hi, Japan
| |
Collapse
|
11
|
Moek KL, Giesen D, Kok IC, de Groot DJA, Jalving M, Fehrmann RSN, Lub-de Hooge MN, Brouwers AH, de Vries EGE. Theranostics Using Antibodies and Antibody-Related Therapeutics. J Nucl Med 2017; 58:83S-90S. [PMID: 28864618 DOI: 10.2967/jnumed.116.186940] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 04/13/2017] [Indexed: 12/21/2022] Open
Abstract
In theranostics, radiolabeled compounds are used to determine a treatment strategy by combining therapeutics and diagnostics in the same agent. Monoclonal antibodies (mAbs) and antibody-related therapeutics represent a rapidly expanding group of cancer medicines. Theranostic approaches using these drugs in oncology are particularly interesting because antibodies are designed against specific targets on the tumor cell membrane and immune cells as well as targets in the tumor microenvironment. In addition, these drugs are relatively easy to radiolabel. Noninvasive molecular imaging techniques, such as SPECT and PET, provide information on the whole-body distribution of radiolabeled mAbs and antibody-related therapeutics. Molecular antibody imaging can potentially elucidate drug target expression, tracer uptake in the tumor, tumor saturation, and heterogeneity for these parameters within the tumor. These data can support drug development and may aid in patient stratification and monitoring of the treatment response. Selecting a radionuclide for theranostic purposes generally starts by matching the serum half-life of the mAb or antibody-related therapeutic and the physical half-life of the radionuclide. Furthermore, PET imaging allows better quantification than the SPECT technique. This information has increased interest in theranostics using PET radionuclides with a relatively long physical half-life, such as 89Zr. In this review, we provide an overview of ongoing research on mAbs and antibody-related theranostics in preclinical and clinical oncologic settings. We identified 24 antibodies or antibody-related therapeutics labeled with PET radionuclides for theranostic purposes in patients. For this approach to become integrated in standard care, further standardization with respect to the procedures involved is required.
Collapse
Affiliation(s)
- Kirsten L Moek
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Danique Giesen
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Iris C Kok
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Derk Jan A de Groot
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Mathilde Jalving
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Rudolf S N Fehrmann
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Marjolijn N Lub-de Hooge
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; and
| | - Adrienne H Brouwers
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Elisabeth G E de Vries
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
12
|
Lim EA, Gunther JE, Kim HK, Flexman M, Hibshoosh H, Crew K, Taback B, Campbell J, Kalinsky K, Hielscher A, Hershman DL. Diffuse optical tomography changes correlate with residual cancer burden after neoadjuvant chemotherapy in breast cancer patients. Breast Cancer Res Treat 2017; 162:533-540. [PMID: 28190249 DOI: 10.1007/s10549-017-4150-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Accepted: 02/07/2017] [Indexed: 11/29/2022]
Abstract
PURPOSE Breast cancer (BC) patients who achieve a favorable residual cancer burden (RCB) after neoadjuvant chemotherapy (NACT) have an improved recurrence-free survival. Those who have an unfavorable RCB will have gone through months of ineffective chemotherapy. No ideal method exists to predict a favorable RCB early during NACT. Diffuse optical tomography (DOT) is a novel imaging modality that uses near-infrared light to assess hemoglobin concentrations within breast tumors. We hypothesized that the 2-week percent change in DOT-measured hemoglobin concentrations would associate with RCB. METHODS We conducted an observational study of 40 women with stage II-IIIC BC who received standard NACT. DOT imaging was performed at baseline and 2 weeks after treatment initiation. We evaluated the associations between the RCB index (continuous measure), class (categorical 0, I, II, III), and response (RCB class 0/I = favorable, RCB class II/III = unfavorable) with changes in DOT-measured hemoglobin concentrations. RESULTS The RCB index correlated significantly with the 2-week percent change in oxyhemoglobin [HbO2] (r = 0.5, p = 0.003), deoxyhemoglobin [Hb] (r = 0.37, p = 0.03), and total hemoglobin concentrations [HbT] (r = 0.5, p = 0.003). The RCB class and response significantly associated with the 2-week percent change in [HbO2] (p ≤ 0.01) and [HbT] (p ≤ 0.02). [HbT] 2-week percent change had sensitivity, specificity, positive, and negative predictive values for a favorable RCB response of 86.7, 68.4, 68.4, and 86.7%, respectively. CONCLUSION The 2-week percent change in DOT-measured hemoglobin concentrations was associated with the RCB index, class, and response. DOT may help guide NACT for women with BC.
Collapse
Affiliation(s)
- Emerson A Lim
- Division of Hematology/Oncology, Department of Medicine, Columbia University Medical Center, 161 Fort Washington Avenue, 9th Floor, New York, NY, 10032, USA.
| | - Jacqueline E Gunther
- Department of Biomedical Engineering, Columbia University, 500 West 120th Street, 341 Mudd Bldg, New York, NY, 10027, USA
| | - Hyun K Kim
- Department of Radiology, Columbia University, 650 West 168th Street, Black Building, Rm 1727, New York, NY, 10032, USA
| | - Molly Flexman
- Philips Research Americas, 2 Canal Park, 3rd Floor, Cambridge, MA, 02141, USA
| | - Hanina Hibshoosh
- Department of Pathology and Cell Biology, Columbia University Medical Center, 630 West 168th Street, VC 14-215, New York, NY, 10032, USA
| | - Katherine Crew
- Division of Hematology/Oncology, Department of Medicine, Department of Epidemiology, Columbia University Medical Center, 161 Fort Washington Avenue, 10th Floor, New York, NY, 10032, USA
| | - Bret Taback
- Department of Surgery, Columbia University Medical Center, 161 Fort Washington Avenue, 10th Floor, New York, NY, 10032, USA
| | - Jessica Campbell
- Herbert Irving Comprehensive Cancer Center, 161 Fort Washington Avenue, Mezzanine, New York, NY, 10032, USA
| | - Kevin Kalinsky
- Division of Hematology/Oncology, Department of Medicine, Department of Epidemiology, Columbia University Medical Center, 161 Fort Washington Avenue, 10th Floor, New York, NY, 10032, USA
| | - Andreas Hielscher
- Department of Biomedical Engineering, Columbia University, Engineering Terrace 351, Mail Code 8904, New York, NY, 10027, USA
| | - Dawn L Hershman
- Division of Hematology/Oncology, Department of Medicine, Department of Epidemiology, Columbia University Medical Center, 161 Fort Washington Avenue, 10th Floor, New York, NY, 10032, USA
| |
Collapse
|
13
|
Rauch GM, Adrada BE, Kuerer HM, van la Parra RFD, Leung JWT, Yang WT. Multimodality Imaging for Evaluating Response to Neoadjuvant Chemotherapy in Breast Cancer. AJR Am J Roentgenol 2017; 208:290-299. [DOI: 10.2214/ajr.16.17223] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Affiliation(s)
- Gaiane M. Rauch
- Department of Diagnostic Radiology, Unit 1473, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030-4009
| | - Beatriz Elena Adrada
- Department of Diagnostic Radiology, Unit 1350, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Henry Mark Kuerer
- Department of Breast Surgical Oncology, Unit 1434, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Raquel F. D. van la Parra
- Department of Breast Surgical Oncology, Unit 1434, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jessica W. T. Leung
- Department of Diagnostic Radiology, Unit 1350, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Wei Tse Yang
- Department of Diagnostic Radiology, Unit 1459, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
14
|
Jiang S, Pogue BW. A Comparison of Near-Infrared Diffuse Optical Imaging and 18F-FDG PET/CT for the Early Prediction of Breast Cancer Response to Neoadjuvant Chemotherapy. J Nucl Med 2016; 57:1166-7. [DOI: 10.2967/jnumed.116.174367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 03/18/2016] [Indexed: 11/16/2022] Open
|