1
|
Liu X, Meng N, Zhou Y, Fu F, Yuan J, Wang Z, Yang Y, Xiong Z, Zou C, Wang M. Tri-Compartmental Restriction Spectrum Imaging Based on 18F-FDG PET/MR for Identification of Primary Benign and Malignant Lung Lesions. J Magn Reson Imaging 2025; 61:830-840. [PMID: 38886922 DOI: 10.1002/jmri.29438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Restriction spectrum imaging (RSI), as an advanced quantitative diffusion-weighted magnetic resonance imaging technique, has the potential to distinguish primary benign and malignant lung lesions. OBJECTIVE To explore how well the tri-compartmental RSI performs in distinguishing primary benign from malignant lung lesions compared with diffusion-weighted imaging (DWI), and to further explore whether positron emission tomography/magnetic resonance imaging (PET/MRI) can improve diagnostic efficacy. STUDY TYPE Prospective. POPULATION 137 patients, including 108 malignant and 29 benign lesions (85 males, 52 females; average age = 60.0 ± 10.0 years). FIELD STRENGTH/SEQUENCE T2WI, T1WI, multi-b value DWI, MR-based attenuation correction, and PET imaging on a 3.0 T whole-body PET/MR system. ASSESSMENT The apparent diffusion coefficient (ADC), RSI-derived parameters (restricted diffusionf 1 , hindered diffusionf 2 , and free diffusionf 3 ) and the maximum standardized uptake value (SUVmax) were calculated and analyzed for diagnostic efficacy individually or in combination. STATISTICAL TESTS Student's t-test, Mann-Whitney U test, receiver operating characteristic (ROC) curves, Delong test, Spearman's correlation analysis. P < 0.05 was considered statistically significant. RESULTS Thef 1 , SUVmax were significantly higher, andf 3 , ADC were significantly lower in the malignant group [0.717 ± 0.131, 9.125 (5.753, 13.058), 0.194 ± 0.099, 1.240 (0.972, 1.407)] compared to the benign group [0.504 ± 0.236, 3.390 (1.673, 6.030), 0.398 ± 0.195, 1.485 ± 0.382]. The area under the ROC curve (AUC) values ranked from highest to lowest as follows: AUC (SUVmax) > AUC (f 3 ) > AUC (f 1 ) > AUC (ADC) > AUC (f 2 ) (AUC = 0.819, 0.811, 0.770, 0.745, 0549). The AUC (AUC = 0.900) of the combined model of RSI with PET was significantly higher than that of either single-modality imaging. CONCLUSION RSI-derived parameters (f 1 ,f 3 ) might help to distinguish primary benign and malignant lung lesions and the discriminatory utility off 2 was not observed. The RSI exhibits comparable or potentially enhanced performance compared with DWI, and the combined RSI and PET model might improve diagnostic efficacy. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY Stage 2.
Collapse
Affiliation(s)
- Xue Liu
- Department of Medical Imaging, Zhengzhou University People's Hospital, Zhengzhou, China
- Department of Medical Imaging, Henan Provincial People's Hospital, Zhengzhou, China
| | - Nan Meng
- Department of Medical Imaging, Henan Provincial People's Hospital, Zhengzhou, China
| | - Yihang Zhou
- Department of Medical Imaging, Henan Provincial People's Hospital, Zhengzhou, China
- Department of Medical Imaging, Xinxiang Medical University Henan Provincial People's Hospital, Zhengzhou, China
| | - Fangfang Fu
- Department of Medical Imaging, Henan Provincial People's Hospital, Zhengzhou, China
| | - Jianmin Yuan
- Central Research Institute, United Imaging Healthcare Group, Shanghai, China
| | - Zhe Wang
- Central Research Institute, United Imaging Healthcare Group, Shanghai, China
| | - Yang Yang
- Beijing United Imaging Research Institute of Intelligent Imaging, United Imaging Healthcare Group, Beijing, China
| | - Zhongyan Xiong
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Chao Zou
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Meiyun Wang
- Department of Medical Imaging, Zhengzhou University People's Hospital, Zhengzhou, China
- Department of Medical Imaging, Henan Provincial People's Hospital, Zhengzhou, China
- Laboratory of Brain Science and Brain-Like Intelligence Technology, Biomedical Research Institute, Henan Academy of Sciences, Zhengzhou, China
| |
Collapse
|
2
|
Awali M, El Homsi M, Fraum TJ, Shetty AS, Ponisio MR, Gharzeddine K, Mhlanga J, Mallak N, Behr S, Itani M. PET/MRI: pictorial review of hepatobiliary and pancreatic applications. Abdom Radiol (NY) 2025; 50:875-901. [PMID: 39254711 DOI: 10.1007/s00261-024-04548-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/20/2024] [Accepted: 08/25/2024] [Indexed: 09/11/2024]
Abstract
PET and MRI both play valuable roles in the management of hepatobiliary and pancreatic (HBP) malignancies. Simultaneous PET/MRI combines the excellent soft-tissue resolution and anatomic details from MRI with functional information from PET in a single comprehensive examination. MRI is the main imaging modality in evaluating HCC, playing important roles in screening, characterization, local extent, and evaluating tumor response, whereas 18F-fluorodeoxyglucose (FDG) PET can help evaluate for lymph node involvement and metastatic disease. In cholangiocarcinoma and pancreatic malignancies, both PET and MRI have excellent utility in initial staging as well as assessing treatment response. In all HBP malignancies, FDG-PET/MRI is a unique problem-solving tool in complex cases and diagnostic challenges, especially after locoregional therapy and when differentiating residual or recurrent viable disease from inflammatory and other benign processes. In this manuscript, we review the role of PET/MRI in the diagnosis, staging, assessing treatment response, and characterizing post-treatment processes. With the introduction of multiple new tracers, the value of PET/MRI has not yet been fully realized, and more studies are needed to demonstrate the utility and efficacy of PET/MRI in improving patient care in hepatobiliary and pancreatic oncology.
Collapse
Affiliation(s)
- Mohamed Awali
- Mallinckrodt Institute of Radiology, Washington University in St. Louis School of Medicine, 510 South Kingshighway Blvd, Box 8131, St Louis, MO, 63110, USA
| | - Maria El Homsi
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Tyler J Fraum
- Mallinckrodt Institute of Radiology, Washington University in St. Louis School of Medicine, 510 South Kingshighway Blvd, Box 8131, St Louis, MO, 63110, USA
| | - Anup S Shetty
- Mallinckrodt Institute of Radiology, Washington University in St. Louis School of Medicine, 510 South Kingshighway Blvd, Box 8131, St Louis, MO, 63110, USA
| | - Maria R Ponisio
- Mallinckrodt Institute of Radiology, Washington University in St. Louis School of Medicine, 510 South Kingshighway Blvd, Box 8131, St Louis, MO, 63110, USA
| | - Karem Gharzeddine
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Joyce Mhlanga
- Mallinckrodt Institute of Radiology, Washington University in St. Louis School of Medicine, 510 South Kingshighway Blvd, Box 8131, St Louis, MO, 63110, USA
| | - Nadine Mallak
- Department of Diagnostic Radiology, Oregon Health & Sciences University, 3181 Southwest Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Spencer Behr
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, 505 Parnassus Ave, Room M 372, Box 0628, San Francisco, CA, 94143, USA
| | - Malak Itani
- Mallinckrodt Institute of Radiology, Washington University in St. Louis School of Medicine, 510 South Kingshighway Blvd, Box 8131, St Louis, MO, 63110, USA.
| |
Collapse
|
3
|
Kohan A, Hanneman K, Mirshahvalad SA, Afaq A, Mallak N, Metser U, Veit-Haibach P. Current Applications of PET/MR: Part II: Clinical Applications II. Can Assoc Radiol J 2024; 75:826-837. [PMID: 38836428 DOI: 10.1177/08465371241255904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024] Open
Abstract
Due to the major improvements in the hardware and image reconstruction algorithms, positron emission tomography/magnetic resonance imaging (PET/MR) is now a reliable state-of-the-art hybrid modality in medical practice. Currently, it can provide a broad range of advantages in preclinical and clinical imaging compared to single-modality imaging. In the second part of this review, we discussed the further clinical applications of PET/MR. In the chest, PET/MR has particular potential in the oncology setting, especially when utilizing ultrashort/zero echo time MR sequences. Furthermore, cardiac PET/MR can provide reliable information in evaluating myocardial inflammation, cardiac amyloidosis, myocardial perfusion, myocardial viability, atherosclerotic plaque, and cardiac masses. In gastrointestinal and hepato-pancreato-biliary malignancies, PET/MR is able to precisely detect metastases to the liver, being superior over the other imaging modalities. In genitourinary and gynaecology applications, PET/MR is a comprehensive diagnostic method, especially in prostate, endometrial, and cervical cancers. Its simultaneous acquisition has been shown to outperform other imaging techniques for the detection of pelvic nodal metastases and is also a reliable modality in radiation planning. Lastly, in haematologic malignancies, PET/MR can significantly enhance lymphoma diagnosis, particularly in detecting extra-nodal involvement. It can also comprehensively assess treatment-induced changes. Furthermore, PET/MR may soon become a routine in multiple myeloma management, being a one-stop shop for evaluating bone, bone marrow, and soft tissues.
Collapse
Affiliation(s)
- Andres Kohan
- University Medical Imaging Toronto, Toronto Joint Department Medical Imaging, University Health Network, Sinai Health System, Women's College Hospital, University of Toronto, Toronto, ON, Canada
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - Kate Hanneman
- University Medical Imaging Toronto, Toronto Joint Department Medical Imaging, University Health Network, Sinai Health System, Women's College Hospital, University of Toronto, Toronto, ON, Canada
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - Seyed Ali Mirshahvalad
- University Medical Imaging Toronto, Toronto Joint Department Medical Imaging, University Health Network, Sinai Health System, Women's College Hospital, University of Toronto, Toronto, ON, Canada
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - Asim Afaq
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nadine Mallak
- Department of Diagnostic Radiology, Oregon Health and Science University, Portland, OR, USA
| | - Ur Metser
- University Medical Imaging Toronto, Toronto Joint Department Medical Imaging, University Health Network, Sinai Health System, Women's College Hospital, University of Toronto, Toronto, ON, Canada
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - Patrick Veit-Haibach
- University Medical Imaging Toronto, Toronto Joint Department Medical Imaging, University Health Network, Sinai Health System, Women's College Hospital, University of Toronto, Toronto, ON, Canada
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
4
|
van de Weijer T, van der Meer WL, Moonen RPM, van Nijnatten TJA, Gietema HA, Mitea C, van der Pol JAJ, Wildberger JE, Mottaghy FM. Limited Additional Value of a Chest CT in Whole-Body Staging with PET-MRI: A Retrospective Cohort Study. Cancers (Basel) 2024; 16:2265. [PMID: 38927970 PMCID: PMC11201796 DOI: 10.3390/cancers16122265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/04/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Hybrid PET-MRI systems are being used more frequently. One of the drawbacks of PET-MRI imaging is its inferiority in detecting lung nodules, so it is often combined with a computed tomography (CT) of the chest. However, chest CT often detects additional, indeterminate lung nodules. The objective of this study was to assess the sensitivity of detecting metastatic versus indeterminate nodules with PET-MRI compared to chest CT. A total of 328 patients were included. All patients had a PET/MRI whole-body scan for (re)staging of cancer combined with an unenhanced chest CT performed at our center between 2014 and 2020. Patients had at least a two-year follow-up. Six percent of the patients had lung metastases at initial staging. The sensitivity and specificity of PET-MRI for detecting lung metastases were 85% and 100%, respectively. The incidence of indeterminate lung nodules on chest CT was 30%. The sensitivity of PET-MRI to detect indeterminate lung nodules was poor (23.0%). The average size of the indeterminate lung nodules detected on PET-MRI was 7 ± 4 mm, and the missed indeterminate nodules on PET-MRI were 4 ± 1 mm (p < 0.001). The detection of metastatic lung nodules is fairly good with PET-MRI, whereas the sensitivity of PET-MRI for detecting indeterminate lung nodules is size-dependent. This may be an advantage, limiting unnecessary follow-up of small, indeterminate lung nodules while adequately detecting metastases.
Collapse
Affiliation(s)
- Tineke van de Weijer
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, P. Debeylaan 25, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands; (T.v.d.W.); (W.L.v.d.M.); (R.P.M.M.); (T.J.A.v.N.); (H.A.G.); (J.A.J.v.d.P.); (J.E.W.)
- School of Nutrition and Translational Research in Metabolism (NUTRIM), 6200 MD Maastricht, The Netherlands
| | - Wilhelmina L. van der Meer
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, P. Debeylaan 25, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands; (T.v.d.W.); (W.L.v.d.M.); (R.P.M.M.); (T.J.A.v.N.); (H.A.G.); (J.A.J.v.d.P.); (J.E.W.)
| | - Rik P. M. Moonen
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, P. Debeylaan 25, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands; (T.v.d.W.); (W.L.v.d.M.); (R.P.M.M.); (T.J.A.v.N.); (H.A.G.); (J.A.J.v.d.P.); (J.E.W.)
| | - Thiemo J. A. van Nijnatten
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, P. Debeylaan 25, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands; (T.v.d.W.); (W.L.v.d.M.); (R.P.M.M.); (T.J.A.v.N.); (H.A.G.); (J.A.J.v.d.P.); (J.E.W.)
- School for Oncology and Reproduction (GROW), 6200 MD Maastricht, The Netherlands
| | - Hester A. Gietema
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, P. Debeylaan 25, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands; (T.v.d.W.); (W.L.v.d.M.); (R.P.M.M.); (T.J.A.v.N.); (H.A.G.); (J.A.J.v.d.P.); (J.E.W.)
- School for Oncology and Reproduction (GROW), 6200 MD Maastricht, The Netherlands
| | - Cristina Mitea
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, P. Debeylaan 25, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands; (T.v.d.W.); (W.L.v.d.M.); (R.P.M.M.); (T.J.A.v.N.); (H.A.G.); (J.A.J.v.d.P.); (J.E.W.)
- School for Oncology and Reproduction (GROW), 6200 MD Maastricht, The Netherlands
| | - Jochem A. J. van der Pol
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, P. Debeylaan 25, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands; (T.v.d.W.); (W.L.v.d.M.); (R.P.M.M.); (T.J.A.v.N.); (H.A.G.); (J.A.J.v.d.P.); (J.E.W.)
- School for Cardiovascular Diseases (CARIM), 6202 AZ Maastricht, The Netherlands
| | - Joachim E. Wildberger
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, P. Debeylaan 25, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands; (T.v.d.W.); (W.L.v.d.M.); (R.P.M.M.); (T.J.A.v.N.); (H.A.G.); (J.A.J.v.d.P.); (J.E.W.)
- School for Oncology and Reproduction (GROW), 6200 MD Maastricht, The Netherlands
| | - Felix M. Mottaghy
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, P. Debeylaan 25, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands; (T.v.d.W.); (W.L.v.d.M.); (R.P.M.M.); (T.J.A.v.N.); (H.A.G.); (J.A.J.v.d.P.); (J.E.W.)
- Department of Nuclear Medicine, University Hospital, RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
5
|
Prakken NHJ, Besson FL, Borra RJH, Büther F, Buechel RR, Catana C, Chiti A, Dierckx RAJO, Dweck MR, Erba PA, Glaudemans AWJM, Gormsen LC, Hristova I, Koole M, Kwee TC, Mottaghy FM, Polycarpou I, Prokop M, Stegger L, Tsoumpas C, Slart RHJA. PET/MRI in practice: a clinical centre survey endorsed by the European Association of Nuclear Medicine (EANM) and the EANM Forschungs GmbH (EARL). Eur J Nucl Med Mol Imaging 2023; 50:2927-2934. [PMID: 37378857 DOI: 10.1007/s00259-023-06308-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Affiliation(s)
- Niek H J Prakken
- Medical Imaging Centre, Departments of Nuclear Medicine and Molecular Imaging, Radiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Florent L Besson
- Commissariat À L'énergie Atomique Et Aux Énergies Alternatives (CEA), Centre National de La Recherche Scientifique (CNRS), InsermBioMaps, Orsay, France
- Department of Nuclear Medicine-Molecular Imaging, Hôpitaux Universitaires Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France
- School of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Ronald J H Borra
- Medical Imaging Centre, Departments of Nuclear Medicine and Molecular Imaging, Radiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Florian Büther
- Department of Nuclear Medicine, University Hospital Münster, Munster, Germany
| | - Ronny R Buechel
- Department of Nuclear Medicine, Cardiac Imaging, University Hospital Zurich, Zurich, Switzerland
| | - Ciprian Catana
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and , Harvard Medical School, Boston, MA, USA
| | - Arturo Chiti
- Department of Nuclear Medicine, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Rudi A J O Dierckx
- Medical Imaging Centre, Departments of Nuclear Medicine and Molecular Imaging, Radiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Marc R Dweck
- British Heart Foundation Centre for Cardiovascular Science, Edinburgh Heart Centre, University of Edinburgh, Chancellors Building, Little France Crescent, Edinburgh, UK
| | - Paola A Erba
- Medical Imaging Centre, Departments of Nuclear Medicine and Molecular Imaging, Radiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Medicine and Surgery, University of Milan Bicocca, and Nuclear Medicine Unit ASST Ospedale Papa Giovanni XXIII, Bergamo, Italy
| | - Andor W J M Glaudemans
- Medical Imaging Centre, Departments of Nuclear Medicine and Molecular Imaging, Radiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Lars C Gormsen
- Department of Nuclear Medicine & PET Centre, Aarhus University Hospital, Aarhus N, Denmark
| | - Ivalina Hristova
- European Association of Nuclear Medicine Research Ltd. (EARL), Vienna, Austria
| | - Michel Koole
- Department of Imaging and Pathology, Nuclear Medicine and Molecular Imaging, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Thomas C Kwee
- Medical Imaging Centre, Departments of Nuclear Medicine and Molecular Imaging, Radiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Felix M Mottaghy
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, MUMC+), Maastricht, The Netherlands
| | - Irene Polycarpou
- Department of Health Sciences, European University Cyprus, Nicosia, Cyprus
| | - Mathias Prokop
- Medical Imaging Centre, Departments of Nuclear Medicine and Molecular Imaging, Radiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Lars Stegger
- Department of Nuclear Medicine, University Hospital Münster, Munster, Germany
| | - Charalampos Tsoumpas
- Medical Imaging Centre, Departments of Nuclear Medicine and Molecular Imaging, Radiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Riemer H J A Slart
- Medical Imaging Centre, Departments of Nuclear Medicine and Molecular Imaging, Radiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
- Biomedical Photonic Imaging Group, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands.
| |
Collapse
|
6
|
Clinical value of fluorine-18-fluorodeoxyglucose PET/MRI for liver metastasis in colorectal cancer: a prospective study. Nucl Med Commun 2023; 44:150-160. [PMID: 36630219 DOI: 10.1097/mnm.0000000000001651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
PURPOSE To evaluate the diagnostic performance of liver 18F-FDG PET/MRI in addition to whole-body PET/CT and to compare it with MRI in the detection and clinical management of liver metastasis in patients with colorectal cancer (CRC). MATERIAL AND METHODS Seventy-eight patients with CRC who underwent whole-body 18F-FDG PET/CT followed by liver PET/MRI were prospectively included. Histopathological confirmation and/or at least 3 months of clinical follow-up after PET/MRI were accepted as gold standard. Lesion and patient-based analyses were performed to evaluate the diagnostics performances of PET/CT, PET/MRI and MRI. In addition, changes of clinical management were evaluated. RESULTS On lesion-based analysis, for PET/CT, PET/MRI and MRI; sensitivity (Se): 55.6%, 97.2% and 100%; specificity (Sp): 98.5%, 100% and 80.5%; and accuracy (Acc): 70.7%, 98.2% and 93.1% were calculated, respectively. Se and Acc of PET/MRI and MRI were significantly superior than PET/CT (P < 0.001). Se and Acc of PET/MRI and MRI were comparable; however, Sp of PET/MRI was significantly better than MRI (P < 0.001). On patient-based analysis, Se: 75.6%, 100% and 100%; Sp: 97.3%, 100% and 86.5%; and Acc: 85.9%, 100% and 93.5% were calculated, respectively. Se and Acc of PET/MRI were significantly superior than PET/CT (P < 0.001). Also, Se of MRI was significantly superior than PET/CT (P < 0.001). Se of PET/MRI and MRI were comparable, but Sp and Acc of PET/MRI were significantly better than MRI. The additional information obtained from liver PET/MRI changed treatment strategy in 14/78 (18%) patients compared to PET/CT or alone liver MRI. CONCLUSION Diagnostic performances of PET/MRI and MRI for detection of CRC liver metastasis is superior to PET/CT. PET/MRI especially helps in the accurate detection of liver metastases that are suspicious on MRI and has the potential to change the clinical management of especially oligometastatic patients by identifying uncertain liver lesions.
Collapse
|
7
|
Mistry V, Scott JR, Wang TY, Mollee P, Miles KA, Law WP, Hapgood G. Diagnostic performance of prospective same-day 18F-FDG PET/MRI and 18F-FDG PET/CT in the staging and response assessment of lymphoma. Cancer Imaging 2023; 23:11. [PMID: 36694244 PMCID: PMC9872391 DOI: 10.1186/s40644-023-00520-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 01/03/2023] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Accurate staging and response assessment are essential for prognosis and to guide treatment in patients with lymphoma. The aim of this study was to compare the diagnostic performance of FDG PET/MRI versus FDG PET/CT in adult patients with newly diagnosed Hodgkin and Non- Hodgkin lymphoma. METHODS In this single centre study, 50 patients were prospectively recruited. FDG PET/MRI was performed after staging FDG PET/CT using a single injection of 18F-FDG. Patients were invited to complete same-day FDG PET/MRI with FDG PET/CT at interim and end of treatment response assessments. Performance was assessed using PET/CT as the reference standard for disease site identification, staging, response assessment with Deauville score and concordance in metabolic activity. RESULTS Staging assessment showed perfect agreement (κ = 1.0, P = 0) between PET/MRI and PET/CT using Ann Arbor staging. There was excellent intermodality correlation with disease site identification at staging (κ = 0.976, P < 0.001) with FDG PET/MRI sensitivity of 96% (95% CI, 94-98%) and specificity of 100% (95% CI, 99-100%). There was good correlation of disease site identification at interim assessment (κ = 0.819, P < 0.001) and excellent correlation at end-of-treatment assessment (κ = 1.0, P < 0.001). Intermodality agreement for Deauville scores was good at interim assessment (κ = 0.808, P < 0.001) and excellent at end-of-treatment assessment (κ = 1.0, P = 0). There was good-excellent concordance in SUV max and mean between modalities across timepoints. Minimum calculated radiation patient effective dose saving was 54% between the two modalities per scan. CONCLUSION With high concordance in disease site identification, staging and response assessment, PET/MR is a potentially viable alternative to PET/CT in lymphoma that minimises radiation exposure.
Collapse
Affiliation(s)
- Vijay Mistry
- grid.412744.00000 0004 0380 2017Department of Medical Imaging, Princess Alexandra Hospital, Brisbane, Australia
| | - Justin R. Scott
- grid.1003.20000 0000 9320 7537QCIF Bioinformatics, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Tzu-Yang Wang
- grid.412744.00000 0004 0380 2017Department of Haematology, Princess Alexandra Hospital, Brisbane, Australia
| | - Peter Mollee
- grid.412744.00000 0004 0380 2017Department of Haematology, Princess Alexandra Hospital, Brisbane, Australia ,grid.412744.00000 0004 0380 2017Translational Research Institute, Princess Alexandra Hospital, Brisbane, Australia
| | - Kenneth A. Miles
- grid.412744.00000 0004 0380 2017Department of Medical Imaging, Princess Alexandra Hospital, Brisbane, Australia ,grid.83440.3b0000000121901201Institute of Nuclear Medicine, University College London, University College Hospital, London, UK
| | - W. Phillip Law
- grid.412744.00000 0004 0380 2017Department of Medical Imaging, Princess Alexandra Hospital, Brisbane, Australia ,grid.412744.00000 0004 0380 2017Translational Research Institute, Princess Alexandra Hospital, Brisbane, Australia ,grid.1003.20000 0000 9320 7537School of Medicine, University of Queensland, Brisbane, Australia
| | - Greg Hapgood
- grid.412744.00000 0004 0380 2017Department of Haematology, Princess Alexandra Hospital, Brisbane, Australia ,grid.412744.00000 0004 0380 2017Translational Research Institute, Princess Alexandra Hospital, Brisbane, Australia
| |
Collapse
|
8
|
Consistency and prognostic value of preoperative staging and postoperative pathological staging using 18F-FDG PET/MRI in patients with non-small cell lung cancer. Ann Nucl Med 2022; 36:1059-1072. [PMID: 36264439 DOI: 10.1007/s12149-022-01795-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 10/05/2022] [Indexed: 11/01/2022]
Abstract
OBJECTIVE In recent years, positron emission tomography/magnetic resonance imaging (PET/MRI) has been clinically used as a method to diagnose non-small cell lung cancer (NSCLC). This study aimed to evaluate the concordance of staging and prognostic ability of NSCLC patients using thin-slice computed tomography (CT) and 18F-fluorodeoxyglucose (FDG) PET/MRI. METHODS This retrospective study was performed on consecutive NSCLC patients who underwent both diagnostic CT and 18F-FDG PET/MRI before surgery between November 2015 and May 2019. The cTNM staging yielded from PET/MRI was compared with CT and pathological staging, and concordance was investigated, defining pathological findings as reference. To assess the prognostic value of disease-free survival (DFS) and overall survival (OS), we dichotomized the typical prognostic factors and TNM classification staging (Stage I vs. Stage II or higher). Kaplan-Meier curves derived by the log-rank test were generated, and univariate and multivariate analyses were performed to identify the factors associated with DFS and OS. RESULTS A total of 82 subjects were included; PET/MRI staging was more consistent (59 of 82) with pathological staging than with CT staging. There was a total of 21 cases of CT and 11 cases of PET/MRI that were judged as cStage I, but were actually pStage II or pStage III. CT tended to judge pN1 or pN2 as cN0 compared to PET/MRI. There was a significant difference between NSCLC patients with Stage I and Stage II or higher by PET/MRI staging as well as prognosis prediction of DFS by pathological staging (P < 0.001). In univariate analysis, PET/MRI, CT, and pathological staging (Stage I or lower vs. Stage II or higher) all showed significant differences as prognostic factors of recurrence or metastases. In multivariate analysis, pathological staging was the only independent factor for recurrence (P = 0.009), and preoperative PET/MRI staging was a predictor of patient survival (P = 0.013). CONCLUSIONS In NSCLC, pathologic staging was better at predicting recurrence, and preoperative PET/MRI staging was better at predicting survival. Preoperative staging by PET/MRI was superior to CT in diagnosing hilar and mediastinal lymph-node metastases, which contributed to the high concordance with pathologic staging.
Collapse
|
9
|
Chodyla M, Barbato F, Dirksen U, Kirchner J, Schaarschmidt BM, Schweiger B, Forsting M, Herrmann K, Umutlu L, Grueneisen J. Utility of Integrated PET/MRI for the Primary Diagnostic Work-Up of Patients with Ewing Sarcoma: Preliminary Results. Diagnostics (Basel) 2022; 12:diagnostics12102278. [PMID: 36291967 PMCID: PMC9600118 DOI: 10.3390/diagnostics12102278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/23/2022] Open
Abstract
Background: This study was conducted to evaluate the clinical applicability of integrated PET/MRI for staging and monitoring the effectiveness of neoadjuvant chemotherapy in Ewing sarcoma patients. Methods: A total of 11 juvenile patients with confirmed Ewing sarcoma, scheduled for induction polychemotherapy, were prospectively enrolled for a PET/MR examination before, during and after the end of treatment. Two experienced physicians analysed the imaging datasets. They were asked to perform a whole-body staging in all three examinations and to define treatment response according to the RECIST1.1 and PERCIST criteria for each patient. Results: In eight patients lymph node and/or distant metastases were detected at initial diagnosis. According to the reference standard, three patients achieved complete response, six patients partial response, and one patient showed stable disease while another patient showed progressive disease. RECIST1.1 categorized the response to treatment in 5/11 patients correctly and showed a tendency to underestimate the response to treatment in the remaining six patients. PERCIST defined response to treatment in 9/11 patients correctly and misclassified two patients with a PR as CR. Conclusion: PET/MRI may serve as a valuable imaging tool for primary staging and response assessment of juvenile patients with Ewing sarcoma to induction chemotherapy, accompanied by a reasonable radiation dose for the patient.
Collapse
Affiliation(s)
- Michal Chodyla
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, D-45147 Essen, Germany
| | - Francesco Barbato
- Clinic of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, D-45147 Essen, Germany
| | - Uta Dirksen
- Clinic for Pediatrics III, University Hospital Essen, University of Duisburg-Essen, D-45147 Essen, Germany
| | - Julian Kirchner
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University of Dusseldorf, D-40225 Dusseldorf, Germany
| | - Benedikt M. Schaarschmidt
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, D-45147 Essen, Germany
| | - Bernd Schweiger
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, D-45147 Essen, Germany
| | - Michael Forsting
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, D-45147 Essen, Germany
| | - Ken Herrmann
- Clinic of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, D-45147 Essen, Germany
| | - Lale Umutlu
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, D-45147 Essen, Germany
| | - Johannes Grueneisen
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, D-45147 Essen, Germany
- Correspondence: ; Tel.: +49-(0)-201-723-1501
| |
Collapse
|
10
|
Zhang A, Meng X, Yao Y, Zhou X, Yan S, Fei W, Zhou N, Zhang Y, Kong H, Li N. Predictive Value of 18 F-FDG PET/MRI for Pleural Invasion in Solid and Subsolid Lung Adenocarcinomas Smaller Than 3 cm. J Magn Reson Imaging 2022; 57:1367-1375. [PMID: 36066210 DOI: 10.1002/jmri.28422] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Positron emission tomography (PET)/MRI combines the characteristics of metabolism imaging and high soft tissue resolution, and could provide high diagnostic efficacy for assessment of pleural invasion (PI) of lung cancer. PURPOSE To investigate the application of 18 F-fluorodeoxyglucose (FDG) PET/MRI for predicting PI of lung cancer with the maximum diameter ≤3 cm. STUDY TYPE Prospective. POPULATION A total of 44 patients with non-small cell lung cancer (NSCLC), age from 39 to 79 years old, including 19 (56.82%) females. FIELD STRENGTH/SEQUENCE A 3-T, hybrid PET/MRI including axial fast spin echo respiratory-triggered T2 fat-suppressed imaging (T2FS) and echo planar imaging diffusion-weighted imaging (DWI). ASSESSMENT The maximum standardized uptake value (SUVmax) of all lesions was measured on PET images. Localized effusion outside the contact between the nodules and the pleura on T2FS and signal at the contact between the nodules and the pleura on DWI were evaluated by experienced physicians through visual assessment of the MRI sequences. STATISTICAL TESTS Three models (models 1-3) were developed, incorporating CT, CT and PET, PET and MRI features, and Lasso regression was used in feature selection. The receiver operating characteristic (ROC) curve for PI diagnosis was visualized for each model, and the area under the curve (AUC) was calculated. The DeLong test was used to compare the different AUCs. A P value < 0.05 was considered statistically significant. RESULTS The AUC of models 1-3 was 0.762, 0.829, and 0.915, respectively. The DeLong test showed a statistically significant difference between the AUCs of model 1 vs. model 3, while the differences between the AUCs of model 1 vs. model 2 (P = 0.253) and model 2 vs. model 3 (P = 0.075) were not statistically significant. DATA CONCLUSION 18 F-FDG PET/MRI might show high predictive value for lung adenocarcinoma smaller than 3 cm with PI. EVIDENCE LEVEL 1 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Annan Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Haidian, Beijing, China
| | - Xiangxi Meng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Haidian, Beijing, China
| | - Yuan Yao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Haidian, Beijing, China
| | - Xin Zhou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Haidian, Beijing, China
| | - Shuo Yan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiology, Peking University Cancer Hospital & Institute, Haidian, Beijing, China
| | - Wang Fei
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Haidian, Beijing, China
| | - Nina Zhou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Haidian, Beijing, China
| | - Yan Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Haidian, Beijing, China
| | - Hanjing Kong
- Beijing United Imaging Research Institute of Intelligent Imaging, UIH Group, Beijing, China
| | - Nan Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Haidian, Beijing, China
| |
Collapse
|
11
|
PET/MR imaging in gynecologic cancer: tips for differentiating normal gynecologic anatomy and benign pathology versus cancer. Abdom Radiol (NY) 2022; 47:3189-3204. [PMID: 34687323 DOI: 10.1007/s00261-021-03264-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 01/18/2023]
Abstract
Positron emission tomography/magnetic resonance imaging (PET/MR) is used in the pre-treatment and surveillance settings to evaluate women with gynecologic malignancies, including uterine, cervical, vaginal and vulvar cancers. PET/MR combines the excellent spatial and contrast resolution of MR imaging for gynecologic tissues, with the functional metabolic information of PET, to aid in a more accurate assessment of local disease extent and distant metastatic disease. In this review, the optimal protocol and utility of whole-body PET/MR imaging in patients with gynecologic malignancies will be discussed, with an emphasis on the advantages of PET/MR over PET/CT and how to differentiate normal or benign gynecologic tissues from cancer in the pelvis.
Collapse
|
12
|
Maheshwari E, Nougaret S, Stein EB, Rauch GM, Hwang KP, Stafford RJ, Klopp AH, Soliman PT, Maturen KE, Rockall AG, Lee SI, Sadowski EA, Venkatesan AM. Update on MRI in Evaluation and Treatment of Endometrial Cancer. Radiographics 2022; 42:2112-2130. [PMID: 36018785 DOI: 10.1148/rg.220070] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Endometrial cancer is the second most common gynecologic cancer worldwide and the most common gynecologic cancer in the United States, with an increasing incidence in high-income countries. Although the International Federation of Gynecology and Obstetrics (FIGO) staging system for endometrial cancer is a surgical staging system, contemporary published evidence-based data and expert opinions recommend MRI for treatment planning as it provides critical diagnostic information on tumor size and depth, extent of myometrial and cervical invasion, extrauterine extent, and lymph node status, all of which are essential in choosing the most appropriate therapy. Multiparametric MRI using a combination of T2-weighted sequences, diffusion-weighted imaging, and multiphase contrast-enhanced imaging is the mainstay for imaging assessment of endometrial cancer. Identification of important prognostic factors at MRI improves both treatment selection and posttreatment follow-up. MRI also plays a crucial role for fertility-preserving strategies and in patients who are not surgical candidates by helping guide therapy and identify procedural complications. This review is a product of the Society of Abdominal Radiology Uterine and Ovarian Cancer Disease-Focused Panel and reflects a multidisciplinary international collaborative effort to summarize updated information highlighting the role of MRI for endometrial cancer depiction and delineation, treatment planning, and follow-up. The article includes information regarding dedicated MRI protocols, tips for MRI reporting, imaging pitfalls, and strategies for image quality optimization. The roles of MRI-guided radiation therapy, hybrid PET/MRI, and advanced MRI techniques that are applicable to endometrial cancer imaging are also discussed. Online supplemental material is available for this article. ©RSNA, 2022.
Collapse
Affiliation(s)
- Ekta Maheshwari
- From the Department of Radiology, University of Pittsburgh Medical Center, 200 Lothrop St, Pittsburgh, PA 15213 (E.M.); Department of Abdominal Imaging, Montpellier Cancer Research Institute (IRCM), Montpellier, France (S.N.); Department of Radiology, University of Michigan, Ann Arbor, Mich (E.B.S., K.E.M.); Department of Abdominal Imaging, Division of Diagnostic Imaging (G.M.R., A.M.V.), Department of Imaging Physics (K.P.H., R.J.S.), Department of Radiation Oncology (A.H.K.), and Department of Gynecologic Oncology and Reproductive Medicine (P.T.S.), University of Texas MD Anderson Cancer Center, Houston, Tex; Department of Radiology, Imperial College, London, United Kingdom (A.G.R.); Department of Diagnostic Radiology, Massachusetts General Hospital, Boston, Mass (S.I.L.); and Department of Radiology, University of Wisconsin-Madison, Madison, Wis (E.A.S.)
| | - Stephanie Nougaret
- From the Department of Radiology, University of Pittsburgh Medical Center, 200 Lothrop St, Pittsburgh, PA 15213 (E.M.); Department of Abdominal Imaging, Montpellier Cancer Research Institute (IRCM), Montpellier, France (S.N.); Department of Radiology, University of Michigan, Ann Arbor, Mich (E.B.S., K.E.M.); Department of Abdominal Imaging, Division of Diagnostic Imaging (G.M.R., A.M.V.), Department of Imaging Physics (K.P.H., R.J.S.), Department of Radiation Oncology (A.H.K.), and Department of Gynecologic Oncology and Reproductive Medicine (P.T.S.), University of Texas MD Anderson Cancer Center, Houston, Tex; Department of Radiology, Imperial College, London, United Kingdom (A.G.R.); Department of Diagnostic Radiology, Massachusetts General Hospital, Boston, Mass (S.I.L.); and Department of Radiology, University of Wisconsin-Madison, Madison, Wis (E.A.S.)
| | - Erica B Stein
- From the Department of Radiology, University of Pittsburgh Medical Center, 200 Lothrop St, Pittsburgh, PA 15213 (E.M.); Department of Abdominal Imaging, Montpellier Cancer Research Institute (IRCM), Montpellier, France (S.N.); Department of Radiology, University of Michigan, Ann Arbor, Mich (E.B.S., K.E.M.); Department of Abdominal Imaging, Division of Diagnostic Imaging (G.M.R., A.M.V.), Department of Imaging Physics (K.P.H., R.J.S.), Department of Radiation Oncology (A.H.K.), and Department of Gynecologic Oncology and Reproductive Medicine (P.T.S.), University of Texas MD Anderson Cancer Center, Houston, Tex; Department of Radiology, Imperial College, London, United Kingdom (A.G.R.); Department of Diagnostic Radiology, Massachusetts General Hospital, Boston, Mass (S.I.L.); and Department of Radiology, University of Wisconsin-Madison, Madison, Wis (E.A.S.)
| | - Gaiane M Rauch
- From the Department of Radiology, University of Pittsburgh Medical Center, 200 Lothrop St, Pittsburgh, PA 15213 (E.M.); Department of Abdominal Imaging, Montpellier Cancer Research Institute (IRCM), Montpellier, France (S.N.); Department of Radiology, University of Michigan, Ann Arbor, Mich (E.B.S., K.E.M.); Department of Abdominal Imaging, Division of Diagnostic Imaging (G.M.R., A.M.V.), Department of Imaging Physics (K.P.H., R.J.S.), Department of Radiation Oncology (A.H.K.), and Department of Gynecologic Oncology and Reproductive Medicine (P.T.S.), University of Texas MD Anderson Cancer Center, Houston, Tex; Department of Radiology, Imperial College, London, United Kingdom (A.G.R.); Department of Diagnostic Radiology, Massachusetts General Hospital, Boston, Mass (S.I.L.); and Department of Radiology, University of Wisconsin-Madison, Madison, Wis (E.A.S.)
| | - Ken-Pin Hwang
- From the Department of Radiology, University of Pittsburgh Medical Center, 200 Lothrop St, Pittsburgh, PA 15213 (E.M.); Department of Abdominal Imaging, Montpellier Cancer Research Institute (IRCM), Montpellier, France (S.N.); Department of Radiology, University of Michigan, Ann Arbor, Mich (E.B.S., K.E.M.); Department of Abdominal Imaging, Division of Diagnostic Imaging (G.M.R., A.M.V.), Department of Imaging Physics (K.P.H., R.J.S.), Department of Radiation Oncology (A.H.K.), and Department of Gynecologic Oncology and Reproductive Medicine (P.T.S.), University of Texas MD Anderson Cancer Center, Houston, Tex; Department of Radiology, Imperial College, London, United Kingdom (A.G.R.); Department of Diagnostic Radiology, Massachusetts General Hospital, Boston, Mass (S.I.L.); and Department of Radiology, University of Wisconsin-Madison, Madison, Wis (E.A.S.)
| | - R Jason Stafford
- From the Department of Radiology, University of Pittsburgh Medical Center, 200 Lothrop St, Pittsburgh, PA 15213 (E.M.); Department of Abdominal Imaging, Montpellier Cancer Research Institute (IRCM), Montpellier, France (S.N.); Department of Radiology, University of Michigan, Ann Arbor, Mich (E.B.S., K.E.M.); Department of Abdominal Imaging, Division of Diagnostic Imaging (G.M.R., A.M.V.), Department of Imaging Physics (K.P.H., R.J.S.), Department of Radiation Oncology (A.H.K.), and Department of Gynecologic Oncology and Reproductive Medicine (P.T.S.), University of Texas MD Anderson Cancer Center, Houston, Tex; Department of Radiology, Imperial College, London, United Kingdom (A.G.R.); Department of Diagnostic Radiology, Massachusetts General Hospital, Boston, Mass (S.I.L.); and Department of Radiology, University of Wisconsin-Madison, Madison, Wis (E.A.S.)
| | - Ann H Klopp
- From the Department of Radiology, University of Pittsburgh Medical Center, 200 Lothrop St, Pittsburgh, PA 15213 (E.M.); Department of Abdominal Imaging, Montpellier Cancer Research Institute (IRCM), Montpellier, France (S.N.); Department of Radiology, University of Michigan, Ann Arbor, Mich (E.B.S., K.E.M.); Department of Abdominal Imaging, Division of Diagnostic Imaging (G.M.R., A.M.V.), Department of Imaging Physics (K.P.H., R.J.S.), Department of Radiation Oncology (A.H.K.), and Department of Gynecologic Oncology and Reproductive Medicine (P.T.S.), University of Texas MD Anderson Cancer Center, Houston, Tex; Department of Radiology, Imperial College, London, United Kingdom (A.G.R.); Department of Diagnostic Radiology, Massachusetts General Hospital, Boston, Mass (S.I.L.); and Department of Radiology, University of Wisconsin-Madison, Madison, Wis (E.A.S.)
| | - Pamela T Soliman
- From the Department of Radiology, University of Pittsburgh Medical Center, 200 Lothrop St, Pittsburgh, PA 15213 (E.M.); Department of Abdominal Imaging, Montpellier Cancer Research Institute (IRCM), Montpellier, France (S.N.); Department of Radiology, University of Michigan, Ann Arbor, Mich (E.B.S., K.E.M.); Department of Abdominal Imaging, Division of Diagnostic Imaging (G.M.R., A.M.V.), Department of Imaging Physics (K.P.H., R.J.S.), Department of Radiation Oncology (A.H.K.), and Department of Gynecologic Oncology and Reproductive Medicine (P.T.S.), University of Texas MD Anderson Cancer Center, Houston, Tex; Department of Radiology, Imperial College, London, United Kingdom (A.G.R.); Department of Diagnostic Radiology, Massachusetts General Hospital, Boston, Mass (S.I.L.); and Department of Radiology, University of Wisconsin-Madison, Madison, Wis (E.A.S.)
| | - Katherine E Maturen
- From the Department of Radiology, University of Pittsburgh Medical Center, 200 Lothrop St, Pittsburgh, PA 15213 (E.M.); Department of Abdominal Imaging, Montpellier Cancer Research Institute (IRCM), Montpellier, France (S.N.); Department of Radiology, University of Michigan, Ann Arbor, Mich (E.B.S., K.E.M.); Department of Abdominal Imaging, Division of Diagnostic Imaging (G.M.R., A.M.V.), Department of Imaging Physics (K.P.H., R.J.S.), Department of Radiation Oncology (A.H.K.), and Department of Gynecologic Oncology and Reproductive Medicine (P.T.S.), University of Texas MD Anderson Cancer Center, Houston, Tex; Department of Radiology, Imperial College, London, United Kingdom (A.G.R.); Department of Diagnostic Radiology, Massachusetts General Hospital, Boston, Mass (S.I.L.); and Department of Radiology, University of Wisconsin-Madison, Madison, Wis (E.A.S.)
| | - Andrea G Rockall
- From the Department of Radiology, University of Pittsburgh Medical Center, 200 Lothrop St, Pittsburgh, PA 15213 (E.M.); Department of Abdominal Imaging, Montpellier Cancer Research Institute (IRCM), Montpellier, France (S.N.); Department of Radiology, University of Michigan, Ann Arbor, Mich (E.B.S., K.E.M.); Department of Abdominal Imaging, Division of Diagnostic Imaging (G.M.R., A.M.V.), Department of Imaging Physics (K.P.H., R.J.S.), Department of Radiation Oncology (A.H.K.), and Department of Gynecologic Oncology and Reproductive Medicine (P.T.S.), University of Texas MD Anderson Cancer Center, Houston, Tex; Department of Radiology, Imperial College, London, United Kingdom (A.G.R.); Department of Diagnostic Radiology, Massachusetts General Hospital, Boston, Mass (S.I.L.); and Department of Radiology, University of Wisconsin-Madison, Madison, Wis (E.A.S.)
| | - Susanna I Lee
- From the Department of Radiology, University of Pittsburgh Medical Center, 200 Lothrop St, Pittsburgh, PA 15213 (E.M.); Department of Abdominal Imaging, Montpellier Cancer Research Institute (IRCM), Montpellier, France (S.N.); Department of Radiology, University of Michigan, Ann Arbor, Mich (E.B.S., K.E.M.); Department of Abdominal Imaging, Division of Diagnostic Imaging (G.M.R., A.M.V.), Department of Imaging Physics (K.P.H., R.J.S.), Department of Radiation Oncology (A.H.K.), and Department of Gynecologic Oncology and Reproductive Medicine (P.T.S.), University of Texas MD Anderson Cancer Center, Houston, Tex; Department of Radiology, Imperial College, London, United Kingdom (A.G.R.); Department of Diagnostic Radiology, Massachusetts General Hospital, Boston, Mass (S.I.L.); and Department of Radiology, University of Wisconsin-Madison, Madison, Wis (E.A.S.)
| | - Elizabeth A Sadowski
- From the Department of Radiology, University of Pittsburgh Medical Center, 200 Lothrop St, Pittsburgh, PA 15213 (E.M.); Department of Abdominal Imaging, Montpellier Cancer Research Institute (IRCM), Montpellier, France (S.N.); Department of Radiology, University of Michigan, Ann Arbor, Mich (E.B.S., K.E.M.); Department of Abdominal Imaging, Division of Diagnostic Imaging (G.M.R., A.M.V.), Department of Imaging Physics (K.P.H., R.J.S.), Department of Radiation Oncology (A.H.K.), and Department of Gynecologic Oncology and Reproductive Medicine (P.T.S.), University of Texas MD Anderson Cancer Center, Houston, Tex; Department of Radiology, Imperial College, London, United Kingdom (A.G.R.); Department of Diagnostic Radiology, Massachusetts General Hospital, Boston, Mass (S.I.L.); and Department of Radiology, University of Wisconsin-Madison, Madison, Wis (E.A.S.)
| | - Aradhana M Venkatesan
- From the Department of Radiology, University of Pittsburgh Medical Center, 200 Lothrop St, Pittsburgh, PA 15213 (E.M.); Department of Abdominal Imaging, Montpellier Cancer Research Institute (IRCM), Montpellier, France (S.N.); Department of Radiology, University of Michigan, Ann Arbor, Mich (E.B.S., K.E.M.); Department of Abdominal Imaging, Division of Diagnostic Imaging (G.M.R., A.M.V.), Department of Imaging Physics (K.P.H., R.J.S.), Department of Radiation Oncology (A.H.K.), and Department of Gynecologic Oncology and Reproductive Medicine (P.T.S.), University of Texas MD Anderson Cancer Center, Houston, Tex; Department of Radiology, Imperial College, London, United Kingdom (A.G.R.); Department of Diagnostic Radiology, Massachusetts General Hospital, Boston, Mass (S.I.L.); and Department of Radiology, University of Wisconsin-Madison, Madison, Wis (E.A.S.)
| |
Collapse
|
13
|
Detection of distant metastases and distant second primary cancers in head and neck squamous cell carcinoma: comparison of [ 18F]FDG PET/MRI and [ 18F]FDG PET/CT. Insights Imaging 2022; 13:121. [PMID: 35900620 PMCID: PMC9334511 DOI: 10.1186/s13244-022-01261-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 07/04/2022] [Indexed: 11/10/2022] Open
Abstract
PURPOSE This prospective study aimed to compare the diagnostic performance of [18]FDG PET/MRI and PET/CT for the detection of distant metastases and distant second primary cancers in patients with head and neck squamous cell carcinoma (HNSCC). METHODS A total of 103 [18F]FDG PET/MRI examinations immediately followed by PET/CT were obtained in 82 consecutive patients for staging of primary HNSCC (n = 38), suspected loco-regional recurrence/follow-up (n = 41) or unknown primary HNSCC (n = 3). Histology and follow-up > 2 years formed the standard of reference. Blinded readers evaluated the anonymized PET/MRI and PET/CT examinations separately using a 5-point Likert score. Statistical analysis included: receiver operating characteristic (ROC) analysis, jackknife alternative free-response ROC (JAFROC) and region-of-interest (ROI)-based ROC to account for data clustering and sensitivity/specificity/accuracy comparisons for a score ≥ 3. RESULTS Distant metastases and distant second primary cancers were present in 23/103 (22%) examinations in 16/82 (19.5%) patients, and they were more common in the post-treatment group (11/41, 27%) than in the primary HNSCC group (3/38, 8%), p = 0.039. The area under the curve (AUC) per patient/examination/lesion was 0.947 [0.927-1]/0.965 [0.917-1]/0.957 [0.928-0.987] for PET/MRI and 0.975 [0.950-1]/0.968 [0.920-1]/0.944 [0.910-0.979] for PET/CT, respectively (p > 0.05). The diagnostic performance of PET/MRI and PET/CT was similar according to JAFROC (p = 0.919) and ROI-based ROC analysis (p = 0.574). Sensitivity/specificity/accuracy for PET/MRI and PET/CT for a score ≥ 3 was 94%/88%/89% and 94%/91%/91% per patient, 96%/90%/91% and 96%/93%/93% per examination and 95%/85%/90% and 90%/86%/88% per lesion, respectively, p > 0.05. CONCLUSIONS In HNSCC patients, PET/MRI and PET/CT had a high and similar diagnostic performance for detecting distant metastases and distant second primary cancers.
Collapse
|
14
|
Bruckmann NM, Kirchner J, Morawitz J, Umutlu L, Fendler WP, Herrmann K, Bittner AK, Hoffmann O, Fehm T, Lindemann ME, Buchbender C, Antoch G, Sawicki LM. Free-breathing 3D Stack of Stars GRE (StarVIBE) sequence for detecting pulmonary nodules in 18F-FDG PET/MRI. EJNMMI Phys 2022; 9:11. [PMID: 35129774 PMCID: PMC8821742 DOI: 10.1186/s40658-022-00439-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 01/24/2022] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The free-breathing T1-weighted 3D Stack of Stars GRE (StarVIBE) MR sequence potentially reduces artifacts in chest MRI. The purpose of this study was to evaluate StarVIBE for the detection of pulmonary nodules in 18F-FDG PET/MRI. MATERIAL AND METHODS In this retrospective analysis, conducted on a prospective clinical trial cohort, 88 consecutive women with newly diagnosed breast cancer underwent both contrast-enhanced whole-body 18F-FDG PET/MRI and computed tomography (CT). Patients' chests were examined on CT as well as on StarVIBE and conventional T1-weighted VIBE and T2-weighted HASTE MR sequences, with CT serving as the reference standard. Presence, size, and location of all detectable lung nodules were assessed. Wilcoxon test was applied to compare nodule features and Pearson's, and Spearman's correlation coefficients were calculated. RESULTS Out of 65 lung nodules detected in 36 patients with CT (3.7 ± 1.4 mm), StarVIBE was able to detect 31 (47.7%), VIBE 26 (40%) and HASTE 11 (16.8%), respectively. Overall, CT showed a significantly higher detectability than all MRI sequences combined (65 vs. 36, difference 44.6%, p < 0.001). The VIBE showed a significantly better detection rate than the HASTE (23.1%, p = 0.001). Detection rates between StarVIBE and VIBE did not significantly differ (7.7%, p = 0.27), but the StarVIBE showed a significant advantage detecting centrally located pulmonary nodules (66.7% vs. 16.7%, p = 0.031). There was a strong correlation in nodule size between CT and MRI sequences (HASTE: ρ = 0.80, p = 0.003; VIBE: ρ = 0.77, p < 0.001; StarVIBE: ρ = 0.78, p < 0.001). Mean image quality was rated as good to excellent for CT and MRI sequences. CONCLUSION The overall lung nodule detection rate of StarVIBE was slightly, but not significantly, higher than conventional T1w VIBE and significantly higher than T2w HASTE. Detectability of centrally located nodules is better with StarVIBE than with VIBE. Nevertheless, all MRI analyses demonstrated considerably lower detection rates for small lung nodules, when compared to CT.
Collapse
Affiliation(s)
- Nils Martin Bruckmann
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Julian Kirchner
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, Moorenstrasse 5, 40225, Düsseldorf, Germany.
| | - Janna Morawitz
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Lale Umutlu
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Wolfgang P Fendler
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen and German Cancer Consortium (DKTK), Essen, Germany
| | - Ken Herrmann
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen and German Cancer Consortium (DKTK), Essen, Germany
| | - Ann-Kathrin Bittner
- Department Gynecology and Obstetrics, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Oliver Hoffmann
- Department Gynecology and Obstetrics, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Tanja Fehm
- Department of Gynecology, Medical Faculty, University Dusseldorf, 40225, Düsseldorf, Germany
| | - Maike E Lindemann
- High-Field and Hybrid MR Imaging, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Christian Buchbender
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Gerald Antoch
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Lino M Sawicki
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, Moorenstrasse 5, 40225, Düsseldorf, Germany
| |
Collapse
|
15
|
Madore B, Belsley G, Cheng CC, Preiswerk F, Foley Kijewski M, Wu PH, Martell LB, Pluim JPW, Di Carli M, Moore SC. Ultrasound-based sensors for respiratory motion assessment in multimodality PET imaging. Phys Med Biol 2021; 67. [PMID: 34891142 DOI: 10.1088/1361-6560/ac4213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 12/10/2021] [Indexed: 11/11/2022]
Abstract
Breathing motion can displace internal organs by up to several cm; as such, it is a primary factor limiting image quality in medical imaging. Motion can also complicate matters when trying to fuse images from different modalities, acquired at different locations and/or on different days. Currently available devices for monitoring breathing motion often do so indirectly, by detecting changes in the outline of the torso rather than the internal motion itself, and these devices are often fixed to floors, ceilings or walls, and thus cannot accompany patients from one location to another. We have developed small ultrasound-based sensors, referred to as 'organ configuration motion' (OCM) sensors, that attach to the skin and provide rich motion-sensitive information. In the present work we tested the ability of OCM sensors to enable respiratory gating during in vivo PET imaging. A motion phantom involving an FDG solution was assembled, and two cancer patients scheduled for a clinical PET/CT exam were recruited for this study. OCM signals were used to help reconstruct phantom and in vivo data into time series of motion-resolved images. As expected, the motion-resolved images captured the underlying motion. In Patient #1, a single large lesion proved to be mostly stationary through the breathing cycle. However, in Patient #2, several small lesions were mobile during breathing, and our proposed new approach captured their breathing-related displacements. In summary, a relatively inexpensive hardware solution was developed here for respiration monitoring. Because the proposed sensors attach to the skin, as opposed to walls or ceilings, they can accompany patients from one procedure to the next, potentially allowing data gathered in different places and at different times to be combined and compared in ways that account for breathing motion.
Collapse
Affiliation(s)
- Bruno Madore
- Harvard Medical School, Department of Radiology, Brigham and Women's Hospital, 75 Francis Street, Boston, Massachusetts, 02115, UNITED STATES
| | - Gabriela Belsley
- Oxford Centre for Clinical Magnetic Resonance Research, Radcliffe Department of Medicine, University of Oxford, Oxford, Oxford, OX3 9DU, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Cheng-Chieh Cheng
- Computer Science and Engineering, National Sun Yat-sen University, 70 Lianhai Road, Kaohsiung, 804, TAIWAN
| | - Frank Preiswerk
- Amazon Robotics, Westborough, MA, USA, Amazon Robotics, 50 Otis St, Westborough, Massachusetts, 01581, UNITED STATES
| | - Marie Foley Kijewski
- Harvard Medical School, Department of Radiology, Brigham and Women's Hospital, 75 Francis Street, Boston, Massachusetts, 02115, UNITED STATES
| | - Pei-Hsin Wu
- Electrical Engineering, National Sun Yat-sen University, 70 Lianhai Road, Kaohsiung, 804, TAIWAN
| | - Laurel B Martell
- Department of Radiology, Brigham and Women's Hospital, 75 Francis Street, Boston, Massachusetts, 02115, UNITED STATES
| | - Josien P W Pluim
- Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, Eindhoven, PO Box 513, NETHERLANDS
| | - Marcelo Di Carli
- Harvard Medical School, Department of Radiology, Brigham and Women's Hospital, 75 Francis Street, Boston, Massachusetts, 02115, UNITED STATES
| | - Stephen C Moore
- Department of Radiology, University of Pennsylvania Perelman School of Medicine, 3400 Civic Center Blvd, Philadelphia, Pennsylvania, 19104, UNITED STATES
| |
Collapse
|
16
|
Bruckmann NM, Kirchner J, Morawitz J, Umutlu L, Herrmann K, Bittner AK, Hoffmann O, Mohrmann S, Ingenwerth M, Schaarschmidt BM, Li Y, Stang A, Antoch G, Sawicki LM, Buchbender C. Prospective comparison of CT and 18F-FDG PET/MRI in N and M staging of primary breast cancer patients: Initial results. PLoS One 2021; 16:e0260804. [PMID: 34855886 PMCID: PMC8638872 DOI: 10.1371/journal.pone.0260804] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/18/2021] [Indexed: 01/10/2023] Open
Abstract
Objectives To compare the diagnostic accuracy of contrast-enhanced thoraco-abdominal computed tomography and whole-body 18F-FDG PET/MRI in N and M staging in newly diagnosed, histopathological proven breast cancer. Material and methods A total of 80 consecutive women with newly diagnosed and histopathologically confirmed breast cancer were enrolled in this prospective study. Following inclusion criteria had to be fulfilled: (1) newly diagnosed, treatment-naive T2-tumor or higher T-stage or (2) newly diagnosed, treatment-naive triple-negative tumor of every size or (3) newly diagnosed, treatment-naive tumor with molecular high risk (T1c, Ki67 >14%, HER2neu over-expression, G3). All patients underwent a thoraco-abdominal ceCT and a whole-body 18F-FDG PET/MRI. All datasets were evaluated by two experienced radiologists in hybrid imaging regarding suspect lesion count, localization, categorization and diagnostic confidence. Images were interpreted in random order with a reading gap of at least 4 weeks to avoid recognition bias. Histopathological results as well as follow-up imaging served as reference standard. Differences in staging accuracy were assessed using Mc Nemars chi2 test. Results CT rated the N stage correctly in 64 of 80 (80%, 95% CI:70.0–87.3) patients with a sensitivity of 61.5% (CI:45.9–75.1), a specificity of 97.6% (CI:87.4–99.6), a PPV of 96% (CI:80.5–99.3), and a NPV of 72.7% (CI:59.8–82.7). Compared to this, 18F-FDG PET/MRI determined the N stage correctly in 71 of 80 (88.75%, CI:80.0–94.0) patients with a sensitivity of 82.1% (CI:67.3–91.0), a specificity of 95.1% (CI:83.9–98.7), a PPV of 94.1% (CI:80.9–98.4) and a NPV of 84.8% (CI:71.8–92.4). Differences in sensitivities were statistically significant (difference 20.6%, CI:-0.02–40.9; p = 0.008). Distant metastases were present in 7/80 patients (8.75%). 18 F-FDG PET/MRI detected all of the histopathological proven metastases without any false-positive findings, while 3 patients with bone metastases were missed in CT (sensitivity 57.1%, specificity 95.9%). Additionally, CT presented false-positive findings in 3 patients. Conclusion 18F-FDG PET/MRI has a high diagnostic potential and outperforms CT in assessing the N and M stage in patients with primary breast cancer.
Collapse
Affiliation(s)
- Nils Martin Bruckmann
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, Dusseldorf, Germany
| | - Julian Kirchner
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, Dusseldorf, Germany
- * E-mail:
| | - Janna Morawitz
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, Dusseldorf, Germany
| | - Lale Umutlu
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ken Herrmann
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ann-Kathrin Bittner
- Department Gynecology and Obstetrics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Oliver Hoffmann
- Department Gynecology and Obstetrics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Svjetlana Mohrmann
- Department of Gynecology, Medical Faculty, University Dusseldorf, Dusseldorf, Germany
| | - Marc Ingenwerth
- Institute of Pathology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen and the German Cancer Consortium (DKTK), Essen, Germany
| | - Benedikt M. Schaarschmidt
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Yan Li
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Andreas Stang
- Institute of Medical Informatics, Biometry and Epidemiology, University Hospital of Essen, Essen, Germany
| | - Gerald Antoch
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, Dusseldorf, Germany
| | - Lino M. Sawicki
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, Dusseldorf, Germany
| | - Christian Buchbender
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, Dusseldorf, Germany
| |
Collapse
|
17
|
Galgano SJ, Calderone CE, Xie C, Smith EN, Porter KK, McConathy JE. Applications of PET/MRI in Abdominopelvic Oncology. Radiographics 2021; 41:1750-1765. [PMID: 34597228 DOI: 10.1148/rg.2021210035] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
With PET/MRI, the strengths of PET and MRI are combined to allow simultaneous image acquisition and near-perfect image coregistration. MRI is increasingly being used for staging and restaging of abdominopelvic oncologic lesions, including prostate, hepatobiliary, pancreatic, neuroendocrine, cervical, and rectal cancers. Fluorine 18-fluorodeoxyglucose PET/CT has long been considered a cornerstone of oncologic imaging, and the development of multiple targeted radiotracers has led to increased research on and use of these agents in clinical practice. Thus, simultaneously performed PET/MRI enables the acquisition of complementary imaging information, with distinct advantages over PET/CT and MR image acquisitions. The authors provide an overview of PET/MRI, including descriptions of the major differences between PET/MRI and PET/CT, as well as case examples and treatment protocols for patients with commonly encountered malignancies in the abdomen and pelvis. Online supplemental material is available for this article. ©RSNA, 2021.
Collapse
Affiliation(s)
- Samuel J Galgano
- From the Department of Radiology, University of Alabama at Birmingham, 619 19th St S, JT N325, Birmingham, AL 35249
| | - Carli E Calderone
- From the Department of Radiology, University of Alabama at Birmingham, 619 19th St S, JT N325, Birmingham, AL 35249
| | - Charlies Xie
- From the Department of Radiology, University of Alabama at Birmingham, 619 19th St S, JT N325, Birmingham, AL 35249
| | - Elainea N Smith
- From the Department of Radiology, University of Alabama at Birmingham, 619 19th St S, JT N325, Birmingham, AL 35249
| | - Kristin K Porter
- From the Department of Radiology, University of Alabama at Birmingham, 619 19th St S, JT N325, Birmingham, AL 35249
| | - Jonathan E McConathy
- From the Department of Radiology, University of Alabama at Birmingham, 619 19th St S, JT N325, Birmingham, AL 35249
| |
Collapse
|
18
|
|
19
|
Abstract
Imaging plays an integral role in the clinical care of patients with breast cancer. This review article focuses on the use of PET imaging for breast cancer, highlighting the clinical indications and limitations of 2-deoxy-2-[18F]fluoro-d-glucose (FDG) PET/CT, the potential use of PET/MRI, and 16α-[18F]fluoroestradiol (FES), a newly approved radiopharmaceutical for estrogen receptor imaging.
Collapse
Affiliation(s)
- Amy M Fowler
- Breast Imaging and Intervention Section, Department of Radiology, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, Madison, WI 53792-3252, USA; Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, 1111 Highland Avenue, Madison, WI 53705, USA; University of Wisconsin Carbone Cancer Center, 600 Highland Avenue, Madison, WI 53792, USA.
| | - Steve Y Cho
- University of Wisconsin Carbone Cancer Center, 600 Highland Avenue, Madison, WI 53792, USA; Nuclear Medicine and Molecular Imaging Section, Department of Radiology, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, Madison, WI 53792-3252, USA
| |
Collapse
|
20
|
Biondetti P, Vangel MG, Lahoud RM, Furtado FS, Rosen BR, Groshar D, Canamaque LG, Umutlu L, Zhang EW, Mahmood U, Digumarthy SR, Shepard JAO, Catalano OA. PET/MRI assessment of lung nodules in primary abdominal malignancies: sensitivity and outcome analysis. Eur J Nucl Med Mol Imaging 2021; 48:1976-1986. [PMID: 33415433 DOI: 10.1007/s00259-020-05113-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/08/2020] [Indexed: 12/19/2022]
Abstract
PURPOSE To evaluate PET/MR lung nodule detection compared to PET/CT or CT, to determine growth of nodules missed by PET/MR, and to investigate the impact of missed nodules on clinical management in primary abdominal malignancies. METHODS This retrospective IRB-approved study included [18F]-FDG PET/MR in 126 patients. All had standard of care chest imaging (SCI) with diagnostic chest CT or PET/CT within 6 weeks of PET/MR that served as standard of reference. Two radiologists assessed lung nodules (size, location, consistency, position, and [18F]-FDG avidity) on SCI and PET/MR. A side-by-side analysis of nodules on SCI and PET/MR was performed. The nodules missed on PET/MR were assessed on follow-up SCI to ascertain their growth (≥ 2 mm); their impact on management was also investigated. RESULTS A total of 505 nodules (mean 4 mm, range 1-23 mm) were detected by SCI in 89/126 patients (66M:60F, mean age 60 years). PET/MR detected 61 nodules for a sensitivity of 28.1% for patient and 12.1% for nodule, with higher sensitivity for > 7 mm nodules (< 30% and > 70% respectively, p < 0.05). 75/337 (22.3%) of the nodules missed on PET/MR (follow-up mean 736 days) demonstrated growth. In patients positive for nodules at SCI and negative at PET/MR, missed nodules did not influence patients' management. CONCLUSIONS Sensitivity of lung nodule detection on PET/MR is affected by nodule size and is lower than SCI. 22.3% of missed nodules increased on follow-up likely representing metastases. Although this did not impact clinical management in study group with primary abdominal malignancy, largely composed of extra-thoracic advanced stage cancers, with possible different implications in patients without extra-thoracic spread.
Collapse
Affiliation(s)
- Pierpaolo Biondetti
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, White 270, Boston, MA, 02114, USA
| | - Mark G Vangel
- Biostatistics Center, Massachusetts General Hospital, Harvard Medical School, 60 Staniford St, Boston, MA, USA
| | - Rita M Lahoud
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, White 270, Boston, MA, 02114, USA
| | - Felipe S Furtado
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, White 270, Boston, MA, 02114, USA
| | - Bruce R Rosen
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, White 270, Boston, MA, 02114, USA
- Athinoula A Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - David Groshar
- Department of Nuclear Medicine, Assuta Medical Centers, Tel Aviv, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Lina G Canamaque
- Department of Nuclear Medicine. Grupo HM Hospitales, Madrid, Spain
| | - Lale Umutlu
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Eric W Zhang
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, White 270, Boston, MA, 02114, USA
| | - Umar Mahmood
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, White 270, Boston, MA, 02114, USA
- Athinoula A Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Subba R Digumarthy
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, White 270, Boston, MA, 02114, USA
| | - Jo-Anne O Shepard
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, White 270, Boston, MA, 02114, USA
| | - Onofrio A Catalano
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, White 270, Boston, MA, 02114, USA.
- Athinoula A Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
21
|
Abstract
OBJECTIVE. The purpose of this article is to review the clinical manifestations, endocrine tumors types, and multimodality diagnostic tools available to physicians involved in the management of patients with multiple endocrine neoplasia (MEN) syndrome, in addition to discussing relevant imaging findings and appropriate imaging follow-up. CONCLUSION. Thorough knowledge of the spectrum of tumors associated with MEN gene mutations aids in the screening, diagnostic workup, and posttreatment monitoring of patients with MEN-related gene mutations.
Collapse
|
22
|
Steiner A, Narva S, Rinta-Kiikka I, Hietanen S, Hynninen J, Virtanen J. Diagnostic efficiency of whole-body 18F-FDG PET/MRI, MRI alone, and SUV and ADC values in staging of primary uterine cervical cancer. Cancer Imaging 2021; 21:16. [PMID: 33482909 PMCID: PMC7821517 DOI: 10.1186/s40644-020-00372-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 12/11/2020] [Indexed: 11/10/2022] Open
Abstract
Background The use of PET/MRI for gynecological cancers is emerging. The purpose of this study was to assess the additional diagnostic value of PET over MRI alone in local and whole-body staging of cervical cancer, and to evaluate the benefit of standardized uptake value (SUV) and apparent diffusion coefficient (ADC) in staging. Methods Patients with histopathologically-proven cervical cancer and whole-body 18F-FDG PET/MRI obtained before definitive treatment were retrospectively registered. Local tumor spread, nodal involvement, and distant metastases were evaluated using PET/MRI or MRI dataset alone. Histopathology or clinical consensus with follow-up imaging were used as reference standard. Tumor SUVmax and ADC were measured and SUVmax/ADC ratio calculated. Area under the curve (AUC) was determined to predict diagnostic performance and Mann-Whitney U test was applied for group comparisons. Results In total, 33 patients who underwent surgery (n = 23) or first-line chemoradiation (n = 10) were included. PET/MRI resulted in higher AUC compared with MRI alone in detecting parametrial (0.89 versus 0.73), vaginal (0.85 versus 0.74), and deep cervical stromal invasion (0.96 versus 0.74), respectively. PET/MRI had higher diagnostic confidence than MRI in identifying patients with radical cone biopsy and no residual at hysterectomy (sensitivity 89% versus 44%). PET/MRI and MRI showed equal AUC for pelvic nodal staging (both 0.73), whereas AUC for distant metastases was higher using PET/MRI (0.80 versus 0.67). Tumor SUVmax/ADC ratio, but not SUVmax or ADC alone, was significantly higher in the presence of metastatic pelvic lymph nodes (P < 0.05). Conclusions PET/MRI shows higher accuracy than MRI alone for determining local tumor spread and distant metastasis emphasizing the added value of PET over MRI alone in staging of cervical cancer. Tumor SUVmax/ADC ratio may predict pelvic nodal involvement. Supplementary Information The online version contains supplementary material available at 10.1186/s40644-020-00372-5.
Collapse
Affiliation(s)
- Aida Steiner
- Department of Radiology, Turku University Hospital and University of Turku, PO Box 52, 20521, Turku, Finland. .,Department of Radiology, Brigham and Women's Hospital, 75 Francis St, Boston, MA, 02115, USA.
| | - Sara Narva
- Department of Obstetrics and Gynecology, Turku University Hospital, PO Box 52, 20521, Turku, Finland
| | - Irina Rinta-Kiikka
- Department of Radiology, Tampere University Hospital, PO Box 2000, 33521, Tampere, Finland
| | - Sakari Hietanen
- Department of Obstetrics and Gynecology, Turku University Hospital, PO Box 52, 20521, Turku, Finland
| | - Johanna Hynninen
- Department of Obstetrics and Gynecology, Turku University Hospital, PO Box 52, 20521, Turku, Finland
| | - Johanna Virtanen
- Department of Radiology, Turku University Hospital and University of Turku, PO Box 52, 20521, Turku, Finland
| |
Collapse
|
23
|
Abstract
Attenuation correction has been one of the main methodological challenges in the integrated positron emission tomography and magnetic resonance imaging (PET/MRI) field. As standard transmission or computed tomography approaches are not available in integrated PET/MRI scanners, MR-based attenuation correction approaches had to be developed. Aspects that have to be considered for implementing accurate methods include the need to account for attenuation in bone tissue, normal and pathological lung and the MR hardware present in the PET field-of-view, to reduce the impact of subject motion, to minimize truncation and susceptibility artifacts, and to address issues related to the data acquisition and processing both on the PET and MRI sides. The standard MR-based attenuation correction techniques implemented by the PET/MRI equipment manufacturers and their impact on clinical and research PET data interpretation and quantification are first discussed. Next, the more advanced methods, including the latest generation deep learning-based approaches that have been proposed for further minimizing the attenuation correction related bias are described. Finally, a future perspective focused on the needed developments in the field is given.
Collapse
Affiliation(s)
- Ciprian Catana
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States of America
| |
Collapse
|
24
|
Bruckmann NM, Sawicki LM, Kirchner J, Martin O, Umutlu L, Herrmann K, Fendler W, Bittner AK, Hoffmann O, Mohrmann S, Dietzel F, Ingenwerth M, Schaarschmidt BM, Li Y, Kowall B, Stang A, Antoch G, Buchbender C. Prospective evaluation of whole-body MRI and 18F-FDG PET/MRI in N and M staging of primary breast cancer patients. Eur J Nucl Med Mol Imaging 2020; 47:2816-2825. [PMID: 32333068 PMCID: PMC7567721 DOI: 10.1007/s00259-020-04801-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 03/30/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVES To evaluate and compare the diagnostic potential of whole-body MRI and whole-body 18F-FDG PET/MRI for N and M staging in newly diagnosed, histopathologically proven breast cancer. MATERIAL AND METHODS A total of 104 patients (age 53.4 ± 12.5) with newly diagnosed, histopathologically proven breast cancer were enrolled in this study prospectively. All patients underwent a whole-body 18F-FDG PET/MRI. MRI and 18F-FDG PET/MRI datasets were evaluated separately regarding lesion count, lesion localization, and lesion characterization (malignant/benign) as well as the diagnostic confidence (5-point ordinal scale, 1-5). The N and M stages were assessed according to the eighth edition of the American Joint Committee on Cancer staging manual in MRI datasets alone and in 18F-FDG PET/MRI datasets, respectively. In the majority of lesions histopathology served as the reference standard. The remaining lesions were followed-up by imaging and clinical examination. Separately for nodal-positive and nodal-negative women, a McNemar chi2 test was performed to compare sensitivity and specificity of the N and M stages between 18F-FDG PET/MRI and MRI. Differences in diagnostic confidence scores were assessed by Wilcoxon signed rank test. RESULTS MRI determined the N stage correctly in 78 of 104 (75%) patients with a sensitivity of 62.3% (95% CI: 0.48-0.75), a specificity of 88.2% (95% CI: 0.76-0.96), a PPV (positive predictive value) of 84.6% % (95% CI: 69.5-0.94), and a NPV (negative predictive value) of 69.2% (95% CI: 0.57-0.8). Corresponding results for 18F-FDG PET/MRI were 87/104 (83.7%), 75.5% (95% CI: 0.62-0.86), 92.2% (0.81-0.98), 90% (0.78-0.97), and 78.3% (0.66-0.88), showing a significantly better sensitivity of 18F-FDG PET/MRI determining malignant lymph nodes (p = 0.008). The M stage was identified correctly in MRI and 18F-FDG PET/MRI in 100 of 104 patients (96.2%). Both modalities correctly staged all 7 patients with distant metastases, leading to false-positive findings in 4 patients in each modality (3.8%). In a lesion-based analysis, 18F-FDG PET/MRI showed a significantly better performance in correctly determining malignant lesions (85.8% vs. 67.1%, difference 18.7% (95% CI: 0.13-0.26), p < 0.0001) and offered a superior diagnostic confidence compared with MRI alone (4.1 ± 0.7 vs. 3.4 ± 0.7, p < 0.0001). CONCLUSION 18F-FDG PET/MRI has a better diagnostic accuracy for N staging in primary breast cancer patients and provides a significantly higher diagnostic confidence in lesion characterization than MRI alone. But both modalities bear the risk to overestimate the M stage.
Collapse
Affiliation(s)
- Nils Martin Bruckmann
- Medical Faculty, Department of Diagnostic and Interventional Radiology, University Dusseldorf, Dusseldorf, Germany
| | - Lino M Sawicki
- Medical Faculty, Department of Diagnostic and Interventional Radiology, University Dusseldorf, Dusseldorf, Germany
| | - Julian Kirchner
- Medical Faculty, Department of Diagnostic and Interventional Radiology, University Dusseldorf, Dusseldorf, Germany.
| | - Ole Martin
- Medical Faculty, Department of Diagnostic and Interventional Radiology, University Dusseldorf, Dusseldorf, Germany
| | - Lale Umutlu
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ken Herrmann
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Wolfgang Fendler
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ann-Kathrin Bittner
- Department Gynecology and Obstetrics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Oliver Hoffmann
- Department Gynecology and Obstetrics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Svjetlana Mohrmann
- Department of Gynecology, Medical Faculty, University Dusseldorf, Dusseldorf, Germany
| | - Frederic Dietzel
- Medical Faculty, Department of Diagnostic and Interventional Radiology, University Dusseldorf, Dusseldorf, Germany
| | - Marc Ingenwerth
- Institute of Pathology, University Hospital Essen, West German Cancer Center, University Duisburg-Essen and the German Cancer Consortium (DKTK), Essen, Germany
| | - Benedikt M Schaarschmidt
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Yan Li
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Bernd Kowall
- Institute of Medical Informatics, Biometry and Epidemiology, University Hospital of Essen, Essen, Germany
| | - Andreas Stang
- Institute of Medical Informatics, Biometry and Epidemiology, University Hospital of Essen, Essen, Germany
| | - Gerald Antoch
- Medical Faculty, Department of Diagnostic and Interventional Radiology, University Dusseldorf, Dusseldorf, Germany
| | - Christian Buchbender
- Medical Faculty, Department of Diagnostic and Interventional Radiology, University Dusseldorf, Dusseldorf, Germany
| |
Collapse
|
25
|
Nguyen NC, Beriwal S, Moon CH, D'Ardenne N, Mountz JM, Furlan A, Muthukrishnan A, Rangaswamy B. Diagnostic Value of FDG PET/MRI in Females With Pelvic Malignancy-A Systematic Review of the Literature. Front Oncol 2020; 10:519440. [PMID: 33123460 PMCID: PMC7571667 DOI: 10.3389/fonc.2020.519440] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 08/28/2020] [Indexed: 11/13/2022] Open
Abstract
Hybrid imaging with F-18 fludeoxyglucose positron emission tomography/magnetic resonance imaging (FDG PET/MRI) has increasing clinical applications supplementing conventional ultrasound, CT, and MRI imaging as well as hybrid PET/CT imaging in assessing cervical, endometrial, and ovarian cancer. This article summarizes the existing literature and discusses the emerging role of hybrid PET/MRI in gynecologic malignancies. Thus, far, the published literature on the applications of FDG PET/MRI shows that it can have a significant impact on patient management by improving the staging of the cancers compared with PET/CT, influencing clinical decision and treatment strategy. For disease restaging, current literature indicates that PET/MRI performs equivalently to PET/CT. There appears to be a mild-moderate inverse correlation between standard-uptake-value (SUV) and apparent-diffusion-coefficient (ADC) values, which could be used to predict tumor grading and risk stratification. It remains to be seen as to whether multi-parametric PET/MRI imaging could prove valuable for prognostication and outcome. PET/MRI provides the opportunity for reduced radiation exposure, which is particularly relevant for a young female in need of multiple scans for treatment monitoring and follow-up. Fast acquisition protocols and optimized methods for attenuation correction are still evolving. Major limitations of PET/MRI remains such as suboptimal detection of small pulmonary nodules and lack of utility for radiation treatment planning, which pose an impediment in making PET/MRI a viable one-stop-shop imaging option to compete with PET/CT.
Collapse
Affiliation(s)
- Nghi Co Nguyen
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Sushil Beriwal
- Department of Radiation Oncology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Chan-Hong Moon
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Nicholas D'Ardenne
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, United States
| | - James M Mountz
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Alessandro Furlan
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ashok Muthukrishnan
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, United States
| | | |
Collapse
|
26
|
de Mooij CM, Sunen I, Mitea C, Lalji UC, Vanwetswinkel S, Smidt ML, van Nijnatten TJ. Diagnostic performance of PET/computed tomography versus PET/MRI and diffusion-weighted imaging in the N- and M-staging of breast cancer patients. Nucl Med Commun 2020; 41:995-1004. [PMID: 32769814 PMCID: PMC7497599 DOI: 10.1097/mnm.0000000000001254] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 06/22/2020] [Indexed: 01/01/2023]
Abstract
OBJECTIVE To provide a systematic review regarding the diagnostic performance of 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography/magnetic resonance imaging (PET/MRI) and diffusion-weighted imaging (DWI) compared to 18F-FDG PET/computed tomography (CT) focused on nodal and distant staging in breast cancer patients. METHODS The PubMed and Embase databases were searched for relevant publications until April 2020. Two independent reviewers searched for eligible articles based on predefined in- and exclusion criteria, assessed quality and extracted data. RESULTS Eleven eligible studies were selected from 561 publications identified by the search. In seven studies, PET/CT was compared with PET/MRI, and in five, PET/CT with DWI. Significantly higher sensitivity for PET/MRI compared to PET/CT in a lesion-based analysis was reported for all lesions together (77% versus 89%) in one study, osseous metastases (69-99% versus 92-98%) in two studies and hepatic metastases (70-75% versus 80-100%) in one study. Moreover, PET/MRI revealed a significantly higher amount of osseous metastases (90 versus 141) than PET/CT. PET/CT is associated with a statistically higher specificity than PET/MRI in the lesion detection of all lesions together (98% versus 96%) and of osseous metastases (100% versus 95%), both in one study. None of the reviewed studies reported significant differences between PET/CT and DWI for any of the evaluated sites. There is a trend toward higher specificity for PET/CT. CONCLUSION In general, there is a trend toward higher sensitivity and lower specificity of PET/MRI when compared to PET/CT. Results on the diagnostic performance of DWI are conflicting. Rather than evaluating it separate, it seems to have complementary value when combined with other MR sequences.
Collapse
Affiliation(s)
- Cornelis Maarten de Mooij
- Departments of Radiology and Nuclear Medicine
- Surgery
- GROW – School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Inés Sunen
- Departments of Radiology and Nuclear Medicine
- Department of Radiology, Miguel Servet Hospital, Zaragoza, Spain
| | - Cristina Mitea
- Departments of Radiology and Nuclear Medicine
- GROW – School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | | | | | - Marjolein L. Smidt
- Surgery
- GROW – School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Thiemo J.A. van Nijnatten
- Departments of Radiology and Nuclear Medicine
- GROW – School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, The Netherlands
| |
Collapse
|
27
|
Hybrid PET/MRI in non-small cell lung cancer (NSCLC) and lung nodules-a literature review. Eur J Nucl Med Mol Imaging 2020; 48:584-591. [PMID: 32719914 DOI: 10.1007/s00259-020-04955-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 07/07/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND The use of hybrid PET/MRI for clinical staging is growing in several cancer forms and, consequently, PET/MRI has also gained interest in the assessment of non-small cell lung cancer (NSCLC) and lung lesions. However, lung evaluation with PET/MRI is associated with challenges related to technical issues and diagnostic image quality. We, therefore, investigated the published literature on PET/MRI for clinical staging in NSCLC or lung nodule detection specifically addressing diagnostic accuracy and technical issues. METHODS The data originates from a systematic search performed in PubMed/MEDLINE, Embase, and Cochrane Library on hybrid PET/MRI in patients with cancer for a scoping review published earlier ( https://doi.org/10.1007/s00259-019-04402-8 ). Studies in English and German evaluating the diagnostic performance of hybrid PET/MRI for NSCLC or lung nodule detection in cancer patients were selected. Data reported in peer-reviewed journals without restrictions to year of publication were included. RESULTS A total of 3138 publications were identified from which 116 published 2012-2018 were included. Of these, nine studies addressed PET/MRI in NSCLC (4) or lung nodule detection (5). Overall, PET/MRI did not provide advantages in preoperative T- and N-staging in NSCLC compared to PET/CT. The data on M-staging were too few for conclusions to be drawn. The lung nodule detection rate of PET/MRI was comparable to that of PET/CT for FDG-avid nodules larger than 10 mm, but the sensitivity of PET/MRI for detection of non-FDG-avid nodules smaller than 5 mm was low. CONCLUSION PET/MRI did not provide advantages in T- and N-staging of NSCLC compared to PET/CT. PET/MRI had a comparable sensitivity for detection of FDG-avid lung nodules and nodules over 10 mm, but PET/CT yielded a higher detection rate in non FDG-avid lung nodules under 5 mm. With PET/MRI, the overall detection rate for lung nodules in various cancer types remains inferior to that of PET/CT due to the lower diagnostic performance of MRI than CT in the lungs.
Collapse
|
28
|
López-Mora DA, Carrió I. Advances And New Indications of PET/CT scan. Med Clin (Barc) 2020; 156:65-67. [PMID: 32620354 DOI: 10.1016/j.medcli.2020.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 11/19/2022]
Affiliation(s)
- Diego Alfonso López-Mora
- Servicio de Medicina Nuclear. Hospital de la Santa Creu i Sant Pau. Universitat Autònoma de Barcelona, Barcelona, España.
| | - Ignasi Carrió
- Servicio de Medicina Nuclear. Hospital de la Santa Creu i Sant Pau. Universitat Autònoma de Barcelona, Barcelona, España
| |
Collapse
|
29
|
Martin O, Schaarschmidt BM, Kirchner J, Suntharalingam S, Grueneisen J, Demircioglu A, Heusch P, Quick HH, Forsting M, Antoch G, Herrmann K, Umutlu L. PET/MRI Versus PET/CT for Whole-Body Staging: Results from a Single-Center Observational Study on 1,003 Sequential Examinations. J Nucl Med 2019; 61:1131-1136. [DOI: 10.2967/jnumed.119.233940] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 12/02/2019] [Indexed: 12/31/2022] Open
|
30
|
Lung visualisation on PET/MRI: implementing a protocol with a short echo-time and low flip-angle volumetric interpolated breath-hold examination sequence. Clin Radiol 2019; 75:239.e15-239.e21. [PMID: 31801658 DOI: 10.1016/j.crad.2019.10.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 10/30/2019] [Indexed: 12/29/2022]
Abstract
AIM To assess the diagnostic performance in detecting lung lesions of a short echo-time (TE) and low flip-angle (FA) volumetric interpolated breath-hold examination (VIBE) sequence included in the integrated positron-emission tomography (PET)/magnetic resonance imaging (MRI) protocol. METHOD AND MATERIALS Thirty-seven oncological patients who underwent computed tomography (CT) and PET/MRI, including both a dedicated short TE, low FA VIBE (modified VIBE) and a standard VIBE of the lung, were enrolled. Modified VIBE images were reviewed retrospectively and independently by three raters, to detect pulmonary nodules, parenchymal consolidation, and bands. Three other groups examined standard VIBE, PET, and CT images. MRI and PET findings were compared to CT using Krippendorff's alpha using patient-based and a lesion-based analysis. Krippendorff's alpha was calculated to assess the interobserver agreement among the three raters of the modified VIBE. RESULTS In the patient-based analysis (positivity ≥1 lesion), the comparison of modified VIBE with CT showed an alpha of 0.54 for nodules <6 mm (versus 0.41 for standard VIBE and 0.09 for PET) and an alpha of 0.88 for nodules ≥6 mm (versus 0.74 for standard VIBE and 0.42 for PET). On a lesion-based analysis (presence/absence of each lesion), modified VIBE compared to CT showed an alpha of0.58 for nodules <6 mm (versus 0.44 for standard VIBE and 0.09 for PET) and an alpha of 0.90 for nodules ≥6 mm (versus 0.79 for standard VIBE and 0.50 for PET). The alpha value for the interobserver agreement was 0.90 for nodules <6 mm, 0.91 for nodules ≥6 mm, 1.00 for consolidations, and 0.95 for bands in the patient-based analysis and 0.89, 0.93, 1.00, and 0.95 in the lesion-based analysis. CONCLUSIONS Modified VIBE proved to be reproducible, showed better accuracy than standard VIBE and PET, and very good concordance with CT in assessing lung nodules ≥6 mm, whereas the agreement was less satisfactory for smaller nodules.
Collapse
|
31
|
Morsing A, Hildebrandt MG, Vilstrup MH, Wallenius SE, Gerke O, Petersen H, Johansen A, Andersen TL, Høilund-Carlsen PF. Hybrid PET/MRI in major cancers: a scoping review. Eur J Nucl Med Mol Imaging 2019; 46:2138-2151. [PMID: 31267161 DOI: 10.1007/s00259-019-04402-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 06/13/2019] [Indexed: 01/11/2023]
Abstract
PURPOSE PET/MRI was introduced for clinical use in 2011 and is now an established modality for the imaging of brain and certain pelvic cancers, whereas clinical use for the imaging of other forms of cancer is not yet widespread. We therefore systematically investigated what has been published on the use of PET/MRI compared to PET/CT in the imaging of cancers outside the brain, focusing on clinical areas of application related to diagnosis, staging and restaging. METHODS A systematic search of PubMed/MEDLINE, Embase and the Cochrane Library was performed. Studies evaluating the diagnostic performance of simultaneous PET/MRI in cancer patients were chosen. RESULTS A total of 3,138 publications were identified and 116 published during the period 2012-2018 were included and were grouped according to the major cancer forms: 13 head and neck (HNC), 9 breast (BC), 21 prostate (PC), 14 gynaecological, 13 gastrointestinal (GIC), and 46 various cancers. Data from studies comparing PET/MRI and PET/CT for staging/restaging suggested the superiority of 18F-FDG PET/MRI for the detection of tumour extension and retropharyngeal lymph node metastases in nasopharyngeal cancer, and for the detection of liver metastases and possibly bone marrow metastases in high-risk BC. FDG PET/MRI tended to be inferior for the detection of lung metastases in HNC and BC. 68Ga-PSMA-11 PET/MRI was superior to PET/CT for the detection of local PC recurrence. FDG PET/MRI was superior to FDG PET/CT for the detection of local tumour invasion in cervical cancer and had higher accuracy for the detection of liver metastases in colorectal cancer. CONCLUSION The scoping review methodology resulted in the identification of a huge number of records, of which less than 5% were suitable for inclusion and only a limited number allowed conclusions on the advantages/disadvantages of PET/MRI compared to PET/CT in the oncological setting. There was evidence to support the use of FDG PET/MRI in staging of nasopharyngeal cancer and high-risk BC. Preliminary data indicate the superiority of PET/MRI for the detection of local recurrence in PC, local tumour invasion in cervical cancer, and liver metastases in colorectal cancer. These conclusions are based on small datasets and need to be further explored.
Collapse
Affiliation(s)
- Anni Morsing
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark.
- MAgNetic Resonance Technology for Response Adapted Radiotherapy (MANTRA), Odense University Hospital, Odense, Denmark.
| | - Malene Grubbe Hildebrandt
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark
- Research Unit of Clinical Physiology and Nuclear Medicine, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Centre for Innovative Medical Technology (CIMT), Odense University Hospital, Odense, Denmark
| | - Mie Holm Vilstrup
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark
| | | | - Oke Gerke
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark
| | - Henrik Petersen
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark
| | - Allan Johansen
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark
| | - Thomas Lund Andersen
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark
- MAgNetic Resonance Technology for Response Adapted Radiotherapy (MANTRA), Odense University Hospital, Odense, Denmark
| | - Poul Flemming Høilund-Carlsen
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark
- Research Unit of Clinical Physiology and Nuclear Medicine, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
32
|
Øen SK, Aasheim LB, Eikenes L, Karlberg AM. Image quality and detectability in Siemens Biograph PET/MRI and PET/CT systems-a phantom study. EJNMMI Phys 2019; 6:16. [PMID: 31385052 PMCID: PMC6682841 DOI: 10.1186/s40658-019-0251-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 07/23/2019] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The technology of modern positron emission tomography (PET) systems continuously improving, and with it the possibility to detect smaller lesions. Since first introduced in 2010, the number of hybrid PET/magnetic resonance imaging (MRI) systems worldwide is constantly increasing. It is therefore important to assess and compare the image quality, in terms of detectability, between the PET/MRI and the well-established PET/computed tomography (CT) systems. For this purpose, a PET image quality phantom (Esser) with hot spheres, ranging from 4 to 20 mm in diameter, was prepared with fluorodeoxyglucose and sphere-to-background activity concentrations of 8:1 and 4:1, to mimic clinical conditions. The phantom was scanned on a PET/MRI and a PET/CT system for both concentrations to obtain contrast recovery coefficients (CRCs) and contrast-to-noise ratios (CNRs), for a range of reconstruction settings. The detectability of the spheres was scored by three human observers for both systems and concentrations and all reconstructions. Furthermore, the impact of acquisition time on CNR and observer detectability was investigated. RESULTS Reconstructions applying point-spread-function modeling (and time-of-flight for the PET/CT) yielded the highest CRC and CNR in general, and PET/CT demonstrated slightly higher values than PET/MRI for most sphere sizes. CNR was dependent on reconstruction settings and was maximized for 2 iterations, a pixel size of less than 2 mm and a 4 mm Gaussian filter. Acquisition times of 97 s (PET/MRI) and 150 s (PET/CT) resulted in similar total net true counts. For these acquisition times, the smallest detected spheres by the human observers in the 8:1 activity concentration was the 6-mm sphere with PET/MRI (CNR = 5.6) and the 5-mm sphere with PET/CT (CNR = 5.5). With an acquisition time of 180 s, the 5-mm sphere was also detected with PET/MRI (CNR = 5.8). The 8-mm sphere was the smallest detected sphere in the 4:1 activity concentration for both systems. CONCLUSION In this experimental study, similar detectability was found for the PET/MRI and the PET/CT, although for an increased acquisition time for the PET/MRI.
Collapse
Affiliation(s)
- Silje Kjærnes Øen
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Postbox 8905, N-7491, Trondheim, Norway.
| | - Lars Birger Aasheim
- Department of Radiology and Nuclear Medicine, St. Olavs University Hospital, Olav Kyrres gt 17, N-7006, Trondheim, Norway
| | - Live Eikenes
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Postbox 8905, N-7491, Trondheim, Norway
| | - Anna Maria Karlberg
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Postbox 8905, N-7491, Trondheim, Norway.,Department of Radiology and Nuclear Medicine, St. Olavs University Hospital, Olav Kyrres gt 17, N-7006, Trondheim, Norway
| |
Collapse
|
33
|
Murphy DJ, Mak SM, Mallia A, Jeljeli S, Stirling JJ, Goh V, Bille A, Cook GJR. Loco-regional staging of malignant pleural mesothelioma by integrated 18F-FDG PET/MRI. Eur J Radiol 2019; 115:46-52. [PMID: 31084758 DOI: 10.1016/j.ejrad.2019.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 03/04/2019] [Accepted: 04/04/2019] [Indexed: 01/21/2023]
Abstract
AIM To examine the performance of 18F-FDG PET/MRI in the loco-regional staging of malignant pleural mesothelioma (MPM). METHODS Consecutive subjects with MPM undergoing pre-operative staging with 18F-FDG PET/CT who underwent a same day integrated 18F-FDG PET/MRI were prospectively studied. Clinical TNM staging (AJCC 7th edition) was performed separately and in consensus by two readers on the 18F-FDG PET/MRI studies, and compared with staging by 18F-FDG PET/CT, and with final pathological stage, determined by a combination of intra-operative and histological findings. RESULTS 10 subjects (9 male, mean age 68 years) with biopsy-proven MPM (9 epithelioid tumours, 1 biphasic) were included. One subject underwent neo-adjuvant chemotherapy between imaging and surgery and was excluded from the clinical versus pathological stage analysis. Pathological staging was concordant with staging by 18F-FDG PET/MRI in 67% (n = 6) of subjects, and with 18F-FDG PET/CT staging in 33% (n = 3). Pathological T stage was concordant with 18F-FDG PET/MRI in 78% (n = 7), and with 18F-FDG PET/CT in 33% (n = 3) of subjects. Pathological N stage was concordant with both 18F-FDG PET/MRI and 18F-FDG PET/CT in 78% (n = 7) of cases. No subject had metastatic disease. There was good inter-observer agreement for overall PET/MRI staging (weighted kappa 0.63) with moderate inter-reader agreement for T staging (weighted kappa 0.59). All 6 subjects with prior talc pleurodesis demonstrated mismatch between elevated FDG uptake and restricted diffusion in areas of visible talc deposition. CONCLUSION Clinical MPM staging by 18F-FDG PET/MRI is feasible, and potentially provides more accurate loco-regional staging than PET/CT, particularly in T staging.
Collapse
Affiliation(s)
- D J Murphy
- King's College London & Guy's and St Thomas' PET Centre, London UK; Department of Cancer Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, London UK.
| | - S M Mak
- Department of Radiology, Guy's and St Thomas' NHS Foundation Trust, London UK
| | - A Mallia
- King's College London & Guy's and St Thomas' PET Centre, London UK; Department of Cancer Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, London UK
| | - S Jeljeli
- King's College London & Guy's and St Thomas' PET Centre, London UK
| | - J J Stirling
- King's College London & Guy's and St Thomas' PET Centre, London UK
| | - V Goh
- Department of Cancer Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, London UK; Department of Radiology, Guy's and St Thomas' NHS Foundation Trust, London UK
| | - A Bille
- Department of Cardiothoracic Surgery, Guy's and St Thomas' NHS Foundation Trust, London UK
| | - G J R Cook
- King's College London & Guy's and St Thomas' PET Centre, London UK; Department of Cancer Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, London UK
| |
Collapse
|
34
|
Integrated versus separate reading of F-18 FDG-PET/CT and MRI for abdominal malignancies – effect on staging outcomes and diagnostic confidence. Eur Radiol 2019; 29:6900-6910. [DOI: 10.1007/s00330-019-06253-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 04/04/2019] [Accepted: 04/25/2019] [Indexed: 12/11/2022]
|
35
|
Prospective comparison of whole-body MRI and 68Ga-PSMA PET/CT for the detection of biochemical recurrence of prostate cancer after radical prostatectomy. Eur J Nucl Med Mol Imaging 2019; 46:1542-1550. [DOI: 10.1007/s00259-019-04308-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 03/07/2019] [Indexed: 10/27/2022]
|
36
|
Kirchner J, Sawicki LM, Nensa F, Schaarschmidt BM, Reis H, Ingenwerth M, Bogner S, Aigner C, Buchbender C, Umutlu L, Antoch G, Herrmann K, Heusch P. Prospective comparison of 18F-FDG PET/MRI and 18F-FDG PET/CT for thoracic staging of non-small cell lung cancer. Eur J Nucl Med Mol Imaging 2018; 46:437-445. [PMID: 30074073 DOI: 10.1007/s00259-018-4109-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 07/23/2018] [Indexed: 12/20/2022]
Abstract
OBJECTIVES To compare the diagnostic performance of 18F-FDG PET/MRI and 18F-FDG PET/CT for primary and locoregional lymph node staging in non-small cell lung cancer (NSCLC). METHODS In this prospective study, a total of 84 patients (51 men, 33 women, mean age 62.5 ± 9.1 years) with histopathologically confirmed NSCLC underwent 18F-FDG PET/CT followed by 18F-FDG PET/MRI in a single injection protocol. Two readers independently assessed T and N staging in separate sessions according to the seventh edition of the American Joint Committee on Cancer staging manual for 18F-FDG PET/CT and 18F-FDG PET/MRI, respectively. Histopathology as a reference standard was available for N staging in all 84 patients and for T staging in 39 patients. Differences in staging accuracy were assessed by McNemars chi2 test. The maximum standardized uptake value (SUVmax) and longitudinal diameters of primary tumors were correlated using Pearson's coefficients. RESULTS T stage was categorized concordantly in 18F-FDG PET/MRI and 18F-FDG PET/CT in 38 of 39 (97.4%) patients. Herein, 18F-FDG PET/CT and 18F-FDG PET/MRI correctly determined the T stage in 92.3 and 89.7% of patients, respectively. N stage was categorized concordantly in 83 of 84 patients (98.8%). 18F-FDG PET/CT correctly determined the N stage in 78 of 84 patients (92.9%), while 18F-FDG PET/MRI correctly determined the N stage in 77 of 84 patients (91.7%). Differences between 18F-FDG PET/CT and 18F-FDG PET/MRI in T and N staging accuracy were not statistically significant (p > 0.5, each). Tumor size and SUVmax measurements derived from both imaging modalities exhibited excellent correlation (r = 0.963 and r = 0.901, respectively). CONCLUSION 18F-FDG PET/MRI and 18F-FDG PET/CT show an equivalently high diagnostic performance for T and N staging in patients suffering from NSCLC.
Collapse
Affiliation(s)
- Julian Kirchner
- Department of Diagnostic and Interventional Radiology, University Dusseldorf, Medical Faculty, Moorenstrasse 5, D-40225, Dusseldorf, Germany.
| | - Lino M Sawicki
- Department of Diagnostic and Interventional Radiology, University Dusseldorf, Medical Faculty, Moorenstrasse 5, D-40225, Dusseldorf, Germany
| | - Felix Nensa
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, D-45147, Essen, Germany
| | - Benedikt M Schaarschmidt
- Department of Diagnostic and Interventional Radiology, University Dusseldorf, Medical Faculty, Moorenstrasse 5, D-40225, Dusseldorf, Germany
| | - Henning Reis
- Institute of Pathology, University Hospital Essen, West German Cancer Center, University Duisburg-Essen and the German Cancer Consortium (DKTK) Essen, D-45147, Essen, Germany
| | - Marc Ingenwerth
- Institute of Pathology, University Hospital Essen, West German Cancer Center, University Duisburg-Essen and the German Cancer Consortium (DKTK) Essen, D-45147, Essen, Germany
| | - Simon Bogner
- Department of Medical Oncology, University Hospital Essen, West German Cancer Center, University of Duisburg-Essen, D-45122, Essen, Germany
| | - Clemens Aigner
- Department of Thoracic Surgery and Surgical Endoscopy, University Hospital Essen, Ruhrlandklinik, University of Duisburg-Essen, D-45147, Essen, Germany
| | - Christian Buchbender
- Department of Diagnostic and Interventional Radiology, University Dusseldorf, Medical Faculty, Moorenstrasse 5, D-40225, Dusseldorf, Germany
| | - Lale Umutlu
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, D-45147, Essen, Germany
| | - Gerald Antoch
- Department of Diagnostic and Interventional Radiology, University Dusseldorf, Medical Faculty, Moorenstrasse 5, D-40225, Dusseldorf, Germany
| | - Ken Herrmann
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, D-45147, Essen, Germany
| | - Philipp Heusch
- Department of Diagnostic and Interventional Radiology, University Dusseldorf, Medical Faculty, Moorenstrasse 5, D-40225, Dusseldorf, Germany
| |
Collapse
|
37
|
Abstract
PURPOSE PET/computed tomography (CT) has been shown to detect lesions in patients with pulmonary tuberculosis (PTB) and may be useful for assessing PTB disease in clinical research studies. However, radiation dose is of concern for clinical research in individuals with an underlying curable disease. This study aimed to determine whether PET/MR is equivalent to PET/CT in PTB. MATERIALS AND METHODS Ten patients with microbiologically confirmed PTB were recruited. Patients received 129.0±4.1 MBq of fluorine-18-fluorodeoxyglucose. Five of the 10 patients underwent a PET/MR scan, followed by PET/CT. The remaining five were first imaged on the PET/CT, followed by the PET/MRI. PET acquisition began at 66.7±14.4 min (mean±SD) after injection when performing PET/MR first (PET/CT: 117.2±5.6 min) and 92.4±7.6 min when patients were imaged on PET/MR second (PET/CT: 61.1±3.9 min). PET data were reconstructed iteratively with Ordinary-Poisson Ordered-Subset Expectation-Maximization and reconstruction parameters were matched across the two scanners. A visual lesion detection task and a standardized uptake value (SUV) analysis were carried out. The CT Hounsfield unit values of PTB lesions were also compared with MR-based attenuation correction mu-map tissue classes. RESULTS A total of 108 PTB lesions were detected on PET/MR and 112 on PET/CT. SUV analysis was carried out on 50 of these lesions that were observed with both modalities. Mean standardized uptake value (SUVmean) and maximum standardized uptake value (SUVmax) were significantly lower on PET/MR (SUVmean: 2.6±1.4; SUVmax: 4.3±2.5) than PET/CT (SUVmean: 3.5±1.5; SUVmax: 5.3±2.4). CONCLUSION PET/MR visual performance was shown to be comparable to PET/CT in terms of the number of PTB lesions detected. SUVs were significantly lower on PET/MR. Dixon-based attenuation correction underestimates the linear attenuation coefficient of PTB lesions, resulting in lower SUVs compared with PET/CT. However, the use of PET/MR to measure the response of lung lesions to assess response to treatment in research studies is unlikely to be affected by these differences in quantification.
Collapse
|
38
|
Sauter AW, Stieltjes B, Weikert T, Gatidis S, Wiese M, Klarhöfer M, Wild D, Lardinois D, Bremerich J, Sommer G. The Spatial Relationship between Apparent Diffusion Coefficient and Standardized Uptake Value of 18F-Fluorodeoxyglucose Has a Crucial Influence on the Numeric Correlation of Both Parameters in PET/MRI of Lung Tumors. CONTRAST MEDIA & MOLECULAR IMAGING 2017; 2017:8650853. [PMID: 29391862 PMCID: PMC5748125 DOI: 10.1155/2017/8650853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 09/18/2017] [Accepted: 10/02/2017] [Indexed: 11/30/2022]
Abstract
The minimum apparent diffusion coefficient (ADCmin) derived from diffusion-weighted MRI (DW-MRI) and the maximum standardized uptake value (SUVmax) of FDG-PET are markers of aggressiveness in lung cancer. The numeric correlation of the two parameters has been extensively studied, but their spatial interplay is not well understood. After FDG-PET and DW-MRI coregistration, values and location of ADCmin- and SUVmax-voxels were analyzed. The upper limit of the 95% confidence interval for registration accuracy of sequential PET/MRI was 12 mm, and the mean distance (D) between ADCmin- and SUVmax-voxels was 14.0 mm (average of two readers). Spatial mismatch (D > 12 mm) between ADCmin and SUVmax was found in 9/25 patients. A considerable number of mismatch cases (65%) was also seen in a control group that underwent simultaneous PET/MRI. In the entire patient cohort, no statistically significant correlation between SUVmax and ADCmin was seen, while a moderate negative linear relationship (r = -0.5) between SUVmax and ADCmin was observed in tumors with a spatial match (D ≤ 12 mm). In conclusion, spatial mismatch between ADCmin and SUVmax is found in a considerable percentage of patients. The spatial connection of the two parameters SUVmax and ADCmin has a crucial influence on their numeric correlation.
Collapse
Affiliation(s)
- Alexander W. Sauter
- University Hospital Basel, University of Basel, Clinic of Radiology & Nuclear Medicine, Petersgraben 4, 4031 Basel, Switzerland
- Diagnostic and Interventional Radiology, University Hospital Tübingen, Eberhard Karls University, Hoppe-Seyler-Straße 3, 72076 Tübingen, Germany
| | - Bram Stieltjes
- University Hospital Basel, University of Basel, Clinic of Radiology & Nuclear Medicine, Petersgraben 4, 4031 Basel, Switzerland
| | - Thomas Weikert
- University Hospital Basel, University of Basel, Clinic of Radiology & Nuclear Medicine, Petersgraben 4, 4031 Basel, Switzerland
| | - Sergios Gatidis
- Diagnostic and Interventional Radiology, University Hospital Tübingen, Eberhard Karls University, Hoppe-Seyler-Straße 3, 72076 Tübingen, Germany
| | - Mark Wiese
- University Hospital Basel, University of Basel, Clinic of Thoracic Surgery, Spitalstrasse 21, 4031 Basel, Switzerland
| | - Markus Klarhöfer
- Siemens Healthineers, Freilagerstrasse 40, 8047 Zürich, Switzerland
| | - Damian Wild
- University Hospital Basel, University of Basel, Clinic of Radiology & Nuclear Medicine, Petersgraben 4, 4031 Basel, Switzerland
| | - Didier Lardinois
- University Hospital Basel, University of Basel, Clinic of Thoracic Surgery, Spitalstrasse 21, 4031 Basel, Switzerland
| | - Jens Bremerich
- University Hospital Basel, University of Basel, Clinic of Radiology & Nuclear Medicine, Petersgraben 4, 4031 Basel, Switzerland
| | - Gregor Sommer
- University Hospital Basel, University of Basel, Clinic of Radiology & Nuclear Medicine, Petersgraben 4, 4031 Basel, Switzerland
| |
Collapse
|
39
|
Ehman EC, Johnson GB, Villanueva-Meyer JE, Cha S, Leynes AP, Larson PEZ, Hope TA. PET/MRI: Where might it replace PET/CT? J Magn Reson Imaging 2017; 46:1247-1262. [PMID: 28370695 PMCID: PMC5623147 DOI: 10.1002/jmri.25711] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/06/2017] [Indexed: 12/13/2022] Open
Abstract
Simultaneous positron emission tomography and MRI (PET/MRI) is a technology that combines the anatomic and quantitative strengths of MR imaging with physiologic information obtained from PET. PET and computed tomography (PET/CT) performed in a single scanning session is an established technology already in widespread and accepted use worldwide. Given the higher cost and complexity of operating and interpreting the studies obtained on a PET/MRI system, there has been question as to which patients would benefit most from imaging with PET/MRI versus PET/CT. In this article, we compare PET/MRI with PET/CT, detail the applications for which PET/MRI has shown promise and discuss impediments to future adoption. It is our hope that future work will prove the benefit of PET/MRI to specific groups of patients, initially those in which PET/CT and MRI are already performed, leveraging simultaneity and allowing for greater degrees of multiparametric evaluation. LEVEL OF EVIDENCE 5 Technical Efficacy: Stage 5 J. Magn. Reson. Imaging 2017;46:1247-1262.
Collapse
Affiliation(s)
- Eric C. Ehman
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | - Soonmee Cha
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Andrew Palmera Leynes
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Peder Eric Zufall Larson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Thomas A. Hope
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| |
Collapse
|
40
|
Gatidis S, Gückel B, la Fougère C, Schmitt J, Schäfer JF. [Simultaneous whole-body PET-MRI in pediatric oncology : More than just reducing radiation?]. Radiologe 2017; 56:622-30. [PMID: 27306199 DOI: 10.1007/s00117-016-0122-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Diagnostic imaging plays an essential role in pediatric oncology with regard to diagnosis, therapy-planning, and the follow-up of solid tumors. The current imaging standard in pediatric oncology includes a variety of radiological and nuclear medicine imaging modalities depending on the specific tumor entity. The introduction of combined simultaneous positron emission tomography (PET) and magnetic resonance imaging (MRI) has opened up new diagnostic options in pediatric oncology. This novel modality combines the excellent anatomical accuracy of MRI with the metabolic information of PET. In initial clinical studies, the technical feasibility and possible diagnostic advantages of combined PET-MRI have been in comparison with alternative imaging techniques. It was shown that a reduction in radiation exposure of up to 70 % is achievable compared with PET-CT. Furthermore, it has been shown that the number of imaging studies necessary can be markedly reduced using combined PET-MRI. Owing to its limited availability, combined PET-MRI is currently not used as a routine procedure. However, this new modality has the potential to become the imaging reference standard in pediatric oncology in the future. This review article summarizes the central aspects of pediatric oncological PET-MRI based on existing literature. Typical pediatric oncological PET-MRI cases are also presented.
Collapse
Affiliation(s)
- S Gatidis
- Radiologische Klinik, Diagnostische und Interventionelle Radiologie, Universität Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Deutschland.
| | - B Gückel
- Radiologische Klinik, Diagnostische und Interventionelle Radiologie, Universität Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Deutschland
| | - C la Fougère
- Radiologische Klinik, Nuklearmedizin, Universität Tübingen, Tübingen, Deutschland
| | - J Schmitt
- Abteilung für Präklinische Bildgebung und Radiopharmazie, Werner Siemens Imaging Center, Universität Tübingen, Tübingen, Deutschland
| | - J F Schäfer
- Radiologische Klinik, Diagnostische und Interventionelle Radiologie, Universität Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Deutschland
| |
Collapse
|
41
|
|
42
|
Kalia V, Leung DG, Sneag DB, Del Grande F, Carrino JA. Advanced MRI Techniques for Muscle Imaging. Semin Musculoskelet Radiol 2017; 21:459-469. [PMID: 28772322 DOI: 10.1055/s-0037-1604007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
AbstractAdvanced magnetic resonance imaging (MRI) techniques can evaluate a wide array of muscle pathologies including acute or chronic muscle injury, musculotendinous response to injury, intramuscular collections and soft tissue masses, and others. In recent years, MRI has played a more important role in muscle disease diagnosis and monitoring. MRI provides excellent spatial and contrast resolution and helps direct optimal sites for muscle biopsy. Whole-body MRI now helps identify signature patterns of muscular involvement in large anatomical regions with relative ease. Quantitative MRI has advanced the evaluation and disease tracking of muscle atrophy and fatty infiltration in entities such as muscular dystrophies. Multivoxel magnetic resonance spectroscopy (MRS) now allows a more thorough, complete evaluation of a muscle of interest without the inherent sampling bias of single-voxel MRS or biopsy. Diffusion MRI allows quantification of muscle inflammation and capillary perfusion as well as muscle fiber tracking.
Collapse
Affiliation(s)
- Vivek Kalia
- Department of Radiology and Imaging, Hospital for Special Surgery, New York, New York
| | - Doris G Leung
- The Center for Genetic Muscle Disorders, Kennedy Krieger Institute, Baltimore, Maryland
| | - Darryl B Sneag
- Department of Radiology and Imaging, Hospital for Special Surgery, New York, New York
| | - Filippo Del Grande
- Servizio si Radiologia del Sottoceneri, Ospedale Regionale di Lugano, Lugano, Ticino, Switzerland
| | - John A Carrino
- Department of Radiology and Imaging, Hospital for Special Surgery, New York, New York
| |
Collapse
|
43
|
Sawicki LM, Deuschl C, Beiderwellen K, Ruhlmann V, Poeppel TD, Heusch P, Lahner H, Führer D, Bockisch A, Herrmann K, Forsting M, Antoch G, Umutlu L. Evaluation of 68Ga-DOTATOC PET/MRI for whole-body staging of neuroendocrine tumours in comparison with 68Ga-DOTATOC PET/CT. Eur Radiol 2017; 27:4091-4099. [DOI: 10.1007/s00330-017-4803-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 02/21/2017] [Accepted: 03/13/2017] [Indexed: 12/13/2022]
|
44
|
Comparative characteristics of quantitative indexes for 18F-FDG uptake and metabolic volume in sequentially obtained PET/MRI and PET/CT. Nucl Med Commun 2017; 38:333-339. [DOI: 10.1097/mnm.0000000000000655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
45
|
Riola-Parada C, García-Cañamaque L, Pérez-Dueñas V, Garcerant-Tafur M, Carreras-Delgado J. Simultaneous PET/MRI vs. PET/CT in oncology. A systematic review. Rev Esp Med Nucl Imagen Mol 2016. [DOI: 10.1016/j.remnie.2016.06.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
46
|
Simultaneous PET/MRI vs PET/CT in oncology. A systematic review. Rev Esp Med Nucl Imagen Mol 2016; 35:306-12. [PMID: 27424217 DOI: 10.1016/j.remn.2016.06.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 06/03/2016] [Accepted: 06/09/2016] [Indexed: 12/19/2022]
Abstract
OBJECTIVE The aim of this review was to evaluate the diagnostic performance of simultaneous PET/MRI in oncology compared with that of PET/CT, based upon the available evidence. MATERIAL AND METHODS A systematic search was performed in the Medline and Embase databases to identify original clinical articles published up to 21 January 2016, in order to compare simultaneous PET/MRI and PET/CT in oncology patients. RESULTS A total of 57 articles were obtained that included various diseases: head and neck cancer (5), lung cancer and lung nodules (13), colorectal cancer (1), liver lesions (2), abdominal incidentalomas (1), neuroendocrine tumours (2), thyroid carcinoma (2), breast cancer (3), gynaecological cancer (2), prostate cancer (4), lymphoma (2), multiple myeloma (1), bone metastases (3), intracranial tumours (2), paediatric oncology (1) and various tumours (13). Diagnostic performance of simultaneous PET/MRI was similar or even better to that of PET/CT in most oncological diseases. However, PET/CT was superior for small lung nodule detection. CONCLUSION Simultaneous PET/MRI in oncology is feasible, performing at least equally as well as PET/CT, with lower radiation exposure. However, available evidence is still limited. Studies including more patients and tumours are needed to establish PET/MRI indications and to identify appropriate protocols for each disease.
Collapse
|
47
|
Schaarschmidt BM, Grueneisen J, Metzenmacher M, Gomez B, Gauler T, Roesel C, Heusch P, Ruhlmann V, Umutlu L, Antoch G, Buchbender C. Thoracic staging with 18F-FDG PET/MR in non-small cell lung cancer – does it change therapeutic decisions in comparison to 18F-FDG PET/CT? Eur Radiol 2016; 27:681-688. [DOI: 10.1007/s00330-016-4397-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/30/2016] [Accepted: 05/02/2016] [Indexed: 12/24/2022]
|
48
|
Schaarschmidt BM, Sawicki LM, Gomez B, Grueneisen J, Hoiczyk M, Heusch P, Buchbender C. Malignant pleural mesothelioma: initial experience in integrated (18)F-FDG PET/MR imaging. Clin Imaging 2016; 40:956-60. [PMID: 27232931 DOI: 10.1016/j.clinimag.2016.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 02/29/2016] [Accepted: 05/02/2016] [Indexed: 12/12/2022]
Abstract
PURPOSE This study aims to compare staging results of (18)F-FDG PET/computed tomography (CT) and integrated PET/magnetic resonance (MR) in malignant pleural mesothelioma (MPM) patients and to investigate a potential apparent diffusion coefficient (ADC)/SUV correlation. MATERIALS AND METHODS Six patients with MPM underwent (18)F-FDG PET/CT and PET/MR including diffusion-weighted imaging. Thoracic TNM staging was performed for both modalities. SUV and ADC were assessed in therapy-naive pleural lesions. RESULTS In thoracic TNM staging, no differences were found between PET/CT and PET/MR. An inverse correlation was observed between SUVmean and ADCmin (r=-0.63, P=.002). CONCLUSION MPM can be staged using PET/MR. The inverse correlation ADC/SUV indicates that future research on multiparametric therapy response evaluation may be warranted.
Collapse
Affiliation(s)
- Benedikt M Schaarschmidt
- University Dusseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology, D-40225 Dusseldorf, Germany; University Duisburg-Essen, Medical Faculty, Department of Diagnostic and Interventional Radiology and Neuroradiology, D-45147 Essen, Germany.
| | - Lino M Sawicki
- University Dusseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology, D-40225 Dusseldorf, Germany
| | - Benedikt Gomez
- University Duisburg-Essen, Medical Faculty, Department of Nuclear Medicine, D-45147 Essen, Germany
| | - Johannes Grueneisen
- University Duisburg-Essen, Medical Faculty, Department of Diagnostic and Interventional Radiology and Neuroradiology, D-45147 Essen, Germany
| | - Mathias Hoiczyk
- University Duisburg-Essen, Medical Faculty, Department of Medical Oncology, Essen, Germany
| | - Philipp Heusch
- University Dusseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology, D-40225 Dusseldorf, Germany
| | - Christian Buchbender
- University Dusseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology, D-40225 Dusseldorf, Germany
| |
Collapse
|