1
|
Miederer I, Shi K, Wendler T. Machine learning methods for tracer kinetic modelling. Nuklearmedizin 2023; 62:370-378. [PMID: 37820696 DOI: 10.1055/a-2179-5818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Tracer kinetic modelling based on dynamic PET is an important field of Nuclear Medicine for quantitative functional imaging. Yet, its implementation in clinical routine has been constrained by its complexity and computational costs. Machine learning poses an opportunity to improve modelling processes in terms of arterial input function prediction, the prediction of kinetic modelling parameters and model selection in both clinical and preclinical studies while reducing processing time. Moreover, it can help improving kinetic modelling data used in downstream tasks such as tumor detection. In this review, we introduce the basics of tracer kinetic modelling and present a literature review of original works and conference papers using machine learning methods in this field.
Collapse
Affiliation(s)
- Isabelle Miederer
- Department of Nuclear Medicine, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Kuangyu Shi
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, Bern, Switzerland
- Chair for Computer-Aided Medical Procedures and Augmented Reality, Technical University of Munich, Garching near Munich, Germany
| | - Thomas Wendler
- Chair for Computer-Aided Medical Procedures and Augmented Reality, Technical University of Munich, Garching near Munich, Germany
- Department of diagnostic and interventional Radiology and Neuroradiology, University Hospital Augsburg, Augsburg, Germany
| |
Collapse
|
2
|
Abdollahi H, Saboury B, Soltani M, Shi K, Uribe C, Rahmim A. Radiopharmaceutical therapy on-a-chip: a perspective on microfluidic-driven digital twins towards personalized cancer therapies. Sci Bull (Beijing) 2023; 68:1983-1988. [PMID: 37573246 DOI: 10.1016/j.scib.2023.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/14/2023]
Affiliation(s)
- Hamid Abdollahi
- Department of Radiology, University of British Columbia, Vancouver V5Z 1M9, Canada; Department of Integrative Oncology, BC Cancer Research Institute, Vancouver V5Z 1L3, Canada
| | - Babak Saboury
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver V5Z 1L3, Canada; Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda 20892, USA
| | - Madjid Soltani
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver V5Z 1L3, Canada; Department of Electrical & Computer Engineering, University of Waterloo, Waterloo N2L 3G1, Canada
| | - Kuangyu Shi
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland; Computer Aided Medical Procedures and Augmented Reality, Institute of Informatics, Technical University of Munich, Munich 80333, Germany
| | - Carlos Uribe
- Department of Radiology, University of British Columbia, Vancouver V5Z 1M9, Canada; Department of Integrative Oncology, BC Cancer Research Institute, Vancouver V5Z 1L3, Canada; Functional Imaging, BC Cancer, Vancouver V5Z 4E6, Canada
| | - Arman Rahmim
- Department of Radiology, University of British Columbia, Vancouver V5Z 1M9, Canada; Department of Integrative Oncology, BC Cancer Research Institute, Vancouver V5Z 1L3, Canada; Department of Physics & Astronomy, University of British Columbia, Vancouver V6T 1Z1, Canada.
| |
Collapse
|
3
|
Lv L, You Y, Liu Y, Yang Z. Advanced Research in Cellular Pharmacokinetics and its Cutting-edge Technologies. Curr Pharm Des 2022; 28:3095-3104. [PMID: 36082865 DOI: 10.2174/1381612828666220907102606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 08/01/2022] [Indexed: 01/28/2023]
Abstract
Pharmacokinetics (PK), as a significant part of pharmacology, runs through the overall process of the preclinical and clinical research on drugs and plays a significant role in determining the material basis of efficacy and mechanism research. However, due to the limitations of classical PK, cellular PK was put forward and developed rapidly. Many novel and original technologies have been innovatively applied to cellular PK research, thereby providing powerful technical support. As a novel field of PK research, cellular PK expands the research object and enriches the theoretical framework of PK. It provides a new perspective for elucidating the mechanism of drug action and the dynamic process of drug in the body. Furthermore, it provides a scientific basis and guiding significance for the development of new drugs and clinical rational drug use. Cellular PK can explain the dynamic process of certain drugs (e.g., antineoplastic drugs and antibiotics) and the disposition kinetics characteristics in some specific tissues (e.g., brain and tumor) in a clearer and more accurate manner. It is a beneficial supplement and the perfection of traditional PK. In the future, traditional and cellular PKs will complement each other well and improve into an all-around research system in drug developments. Briefly, this paper reviews the conceptual development of cellular PK and key associated technologies, explores its main functions and applications, and looks forward to the important pioneering significance and promising value for the development of PK.
Collapse
Affiliation(s)
- Lingjuan Lv
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Yuyang You
- School of Automation, Beijing Institute of Technology, China
| | - Yeju Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Zhihong Yang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| |
Collapse
|
4
|
Ren W, Ji B, Guan Y, Cao L, Ni R. Recent Technical Advances in Accelerating the Clinical Translation of Small Animal Brain Imaging: Hybrid Imaging, Deep Learning, and Transcriptomics. Front Med (Lausanne) 2022; 9:771982. [PMID: 35402436 PMCID: PMC8987112 DOI: 10.3389/fmed.2022.771982] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 02/16/2022] [Indexed: 12/26/2022] Open
Abstract
Small animal models play a fundamental role in brain research by deepening the understanding of the physiological functions and mechanisms underlying brain disorders and are thus essential in the development of therapeutic and diagnostic imaging tracers targeting the central nervous system. Advances in structural, functional, and molecular imaging using MRI, PET, fluorescence imaging, and optoacoustic imaging have enabled the interrogation of the rodent brain across a large temporal and spatial resolution scale in a non-invasively manner. However, there are still several major gaps in translating from preclinical brain imaging to the clinical setting. The hindering factors include the following: (1) intrinsic differences between biological species regarding brain size, cell type, protein expression level, and metabolism level and (2) imaging technical barriers regarding the interpretation of image contrast and limited spatiotemporal resolution. To mitigate these factors, single-cell transcriptomics and measures to identify the cellular source of PET tracers have been developed. Meanwhile, hybrid imaging techniques that provide highly complementary anatomical and molecular information are emerging. Furthermore, deep learning-based image analysis has been developed to enhance the quantification and optimization of the imaging protocol. In this mini-review, we summarize the recent developments in small animal neuroimaging toward improved translational power, with a focus on technical improvement including hybrid imaging, data processing, transcriptomics, awake animal imaging, and on-chip pharmacokinetics. We also discuss outstanding challenges in standardization and considerations toward increasing translational power and propose future outlooks.
Collapse
Affiliation(s)
- Wuwei Ren
- School of Information Science and Technology, ShanghaiTech University, Shanghai, China
- Shanghai Engineering Research Center of Energy Efficient and Custom AI IC, Shanghai, China
| | - Bin Ji
- Department of Radiopharmacy and Molecular Imaging, School of Pharmacy, Fudan University, Shanghai, China
| | - Yihui Guan
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Lei Cao
- Shanghai Changes Tech, Ltd., Shanghai, China
| | - Ruiqing Ni
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, ETH Zürich and University of Zurich, Zurich, Switzerland
| |
Collapse
|
5
|
Proof of concept of a multimodal intravital molecular imaging system for tumour transpathology investigation. Eur J Nucl Med Mol Imaging 2021; 49:1157-1165. [PMID: 34651225 PMCID: PMC8921117 DOI: 10.1007/s00259-021-05574-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 09/22/2021] [Indexed: 12/22/2022]
Abstract
Background Transpathology highlights the interpretation of the underlying physiology behind molecular imaging. However, it remains challenging due to the discrepancies between in vivo and in vitro measurements and difficulties of precise co-registration between trans-scaled images. This study aims to develop a multimodal intravital molecular imaging (MIMI) system as a tool for in vivo tumour transpathology investigation. Methods The proposed MIMI system integrates high-resolution positron imaging, magnetic resonance imaging (MRI) and microscopic imaging on a dorsal skin window chamber on an athymic nude rat. The window chamber frame was designed to be compatible with multimodal imaging and its fiducial markers were customized for precise physical alignment among modalities. The co-registration accuracy was evaluated based on phantoms with thin catheters. For proof of concept, tumour models of the human colorectal adenocarcinoma cell line HT-29 were imaged. The tissue within the window chamber was sectioned, fixed and haematoxylin–eosin (HE) stained for comparison with multimodal in vivo imaging. Results The final MIMI system had a maximum field of view (FOV) of 18 mm × 18 mm. Using the fiducial markers and the tubing phantom, the co-registration errors are 0.18 ± 0.27 mm between MRI and positron imaging, 0.19 ± 0.22 mm between positron imaging and microscopic imaging and 0.15 ± 0.27 mm between MRI and microscopic imaging. A pilot test demonstrated that the MIMI system provides an integrative visualization of the tumour anatomy, vasculatures and metabolism of the in vivo tumour microenvironment, which was consistent with ex vivo pathology. Conclusions The established multimodal intravital imaging system provided a co-registered in vivo platform for trans-scale and transparent investigation of the underlying pathology behind imaging, which has the potential to enhance the translation of molecular imaging. Supplementary Information The online version contains supplementary material available at 10.1007/s00259-021-05574-y.
Collapse
|
6
|
Ramadan Q, Fardous RS, Hazaymeh R, Alshmmari S, Zourob M. Pharmacokinetics-On-a-Chip: In Vitro Microphysiological Models for Emulating of Drugs ADME. Adv Biol (Weinh) 2021; 5:e2100775. [PMID: 34323392 DOI: 10.1002/adbi.202100775] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 06/08/2021] [Indexed: 12/15/2022]
Abstract
Despite many ongoing efforts across the full spectrum of pharmaceutical and biotech industries, drug development is still a costly undertaking that involves a high risk of failure during clinical trials. Animal models played vital roles in understanding the mechanism of human diseases. However, the use of these models has been a subject of heated debate, particularly due to ethical matters and the inevitable pathophysiological differences between animals and humans. Current in vitro models lack the sufficient functionality and predictivity of human pharmacokinetics and toxicity, therefore, are not capable to fully replace animal models. The recent development of micro-physiological systems has shown great potential as indispensable tools for recapitulating key physiological parameters of humans and providing in vitro methods for predicting the pharmacokinetics and pharmacodynamics in humans. Integration of Absorption, Distribution, Metabolism, and Excretion (ADME) processes within one close in vitro system is a paramount development that would meet important unmet pharmaceutical industry needs. In this review paper, synthesis of the ADME-centered organ-on-a-chip technology is systemically presented from what is achieved to what needs to be done, emphasizing the requirements of in vitro models that meet industrial needs in terms of the structure and functions.
Collapse
Affiliation(s)
- Qasem Ramadan
- Alfaisal University, Riyadh, 11533, Kingdom of Saudi Arabia
| | - Roa Saleem Fardous
- Alfaisal University, Riyadh, 11533, Kingdom of Saudi Arabia.,Strathclyde Institute of Pharmacy and Biomedical Sciences, Strathclyde University, Glasgow, G4 0RE, United Kingdom
| | - Rana Hazaymeh
- Almaarefa University, Riyadh, 13713, Kingdom of Saudi Arabia
| | - Sultan Alshmmari
- Saudi Food and Drug Authority, Riyadh, 13513-7148, Kingdom of Saudi Arabia
| | | |
Collapse
|
7
|
Kim TJ, Ha B, Bick AD, Kim M, Tang SK, Pratx G. Microfluidics-Coupled Radioluminescence Microscopy for In Vitro Radiotracer Kinetic Studies. Anal Chem 2021; 93:4425-4433. [PMID: 33647202 PMCID: PMC8006742 DOI: 10.1021/acs.analchem.0c04321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Integrated bioassay systems that combine microfluidics and radiation detectors can deliver medical radiopharmaceuticals to live cells with precise timing, while minimizing radiation dose and sample volume. However, the spatial resolution of many radiation imaging systems is limited to bulk cell populations. Here, we demonstrate microfluidics-coupled radioluminescence microscopy (μF-RLM), a new integrated system that can image radiotracer uptake in live adherent cells growing inside microincubators with spatial resolution better than 30 μm. Our method enables on-chip radionuclide imaging by incorporating an inorganic scintillator plate (CdWO4) into a microfluidic chip. We apply this approach to investigate the factors that influence the dynamic uptake of [18F]fluorodeoxyglucose (FDG) by cancer cells. In the first experiment, we measured the effect of flow on FDG uptake of cells and found that a continuous flow of the radiotracer led to fourfold higher uptake than static incubation, suggesting that convective replenishment enhances molecular radiotracer transport into cells. In the second set of experiments, we applied pharmacokinetic modeling to show that lactic acidosis inhibits FDG uptake by cancer cells in vitro and that this decrease is primarily due to downregulation of FDG transport into the cells. The other two rate constants, which represent FDG export and FDG metabolism, were relatively unaffected by lactic acidosis. Lactic acidosis is common in solid tumors because of the dysregulated metabolism and inefficient vasculature. In conclusion, μF-RLM is a simple and practical approach for integrating high-resolution radionuclide imaging within standard microfluidics devices, thus potentially opening venues for investigating the efficacy of radiopharmaceuticals in in vitro cancer models.
Collapse
Affiliation(s)
- Tae Jin Kim
- Division of Medical Physics, Department of Radiation Oncology, Stanford University, 300 Pasteur Dr., Stanford, CA 94305, USA
| | - Byunghang Ha
- Department of Mechanical Engineering, Stanford University, 440 Escondido Mall, Stanford, CA 94305, USA
| | - Alison Dana Bick
- Department of Mechanical Engineering, Stanford University, 440 Escondido Mall, Stanford, CA 94305, USA
| | - Minkyu Kim
- Department of Mechanical Engineering, Stanford University, 440 Escondido Mall, Stanford, CA 94305, USA
| | - Sindy K.Y. Tang
- Department of Mechanical Engineering, Stanford University, 440 Escondido Mall, Stanford, CA 94305, USA
| | - Guillem Pratx
- Division of Medical Physics, Department of Radiation Oncology, Stanford University, 300 Pasteur Dr., Stanford, CA 94305, USA
| |
Collapse
|
8
|
Liu Z, Zhang P, Ji H, Long Y, Jing B, Wan L, Xi D, An R, Lan X. A mini-panel PET scanner-based microfluidic radiobioassay system allowing high-throughput imaging of real-time cellular pharmacokinetics. LAB ON A CHIP 2020; 20:1110-1123. [PMID: 32043092 DOI: 10.1039/c9lc01066a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
On-chip radiometric detection of biological samples using radiotracers has become an emerging research field known as microfluidic radiobioassays. Performing parallel radiobioassays is highly desirable for saving time/effort, reducing experimental variation between assays, and minimizing the cost of the radioisotope. Continuously infused microfluidic radioassay (CIMR) is one of the useful tools for investigating cellular pharmacokinetics and assessing the binding and uptakes of radiopharmaceuticals. However, existing CIMR systems can only measure the dynamics of one sample at a time due to the limited field of view (FOV) of the positron detector. To increase the throughput, we propose a new CIMR system with a custom-built miniaturized panel-based positron-emission tomography (PET) scanner and a parallel infusion setup/method, capable of imaging the cellular pharmacokinetics of three samples in one measurement. With this system, the pharmacokinetics of parallel or comparison samples can be imaged simultaneously. The increased throughput is attributed to two innovations: 1) the large 3D FOV of the mini-panel PET scanner, enabling more samples to be imaged in the microfluidic chip; and 2) a parallel infusion method, in which only one reference chamber is needed for indicating the dynamic input of the infused radiotracer medium, thus saving the total reference chambers needed compared to the current sequential infusion method. Combining the CIMR technique and the mini-panel PET scanner, this study also firstly demonstrated the feasibility of using PET, as an imaging modality, for microfluidic radiobioassays. Besides the increased throughput, the 3D imaging of PET also provides possibilities for further applications such as organoid/3D culturing systems, non-planar microfluidics, and organs-on-chips. The system is more practical for a broader range of applications in nuclear medicine, molecular imaging, and lab-on-a-chip studies.
Collapse
Affiliation(s)
- Zhen Liu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, Hubei Province 430022, China. and Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Pengfei Zhang
- Biomedical Engineering Department, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hao Ji
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, Hubei Province 430022, China. and Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Yu Long
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, Hubei Province 430022, China. and Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Boping Jing
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, Hubei Province 430022, China. and Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Lu Wan
- RAYDATA Technology Co., Ltd. (Wuhan), Wuhan 430074, China
| | - Daoming Xi
- Raycan Technology Co., Ltd. (Suzhou), Suzhou 215163, China
| | - Rui An
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, Hubei Province 430022, China. and Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, Hubei Province 430022, China. and Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| |
Collapse
|
9
|
Liu Z, Lan X. Microfluidic radiobioassays: a radiometric detection tool for understanding cellular physiology and pharmacokinetics. LAB ON A CHIP 2019; 19:2315-2339. [PMID: 31222194 DOI: 10.1039/c9lc00159j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The investigation of molecular uptake and its kinetics in cells is valuable for understanding the cellular physiological status, the observation of drug interventions, and the development of imaging agents and pharmaceuticals. Microfluidic radiobioassays, or microfluidic radiometric bioassays, constitute a radiometric imaging-on-a-chip technology for the assay of biological samples using radiotracers. From 2006 to date, microfluidic radiobioassays have shown advantages in many applications, including radiotracer characterization, enzyme activity radiobioassays, fast drug evaluation, single-cell imaging, facilitation of dynamic positron emission tomography (PET) imaging, and cellular pharmacokinetics (PK)/pharmacodynamics (PD) studies. These advantages lie in the minimized and integrated detection scheme, allowing real-time tracking of dynamic uptake, high sensitivity radiotracer imaging, and quantitative interpretation of imaging results. In this review, the basics of radiotracers, various radiometric detection methods, and applications of microfluidic radiobioassays will be introduced and summarized, and the potential applications and future directions of microfluidic radiobioassays will be forecasted.
Collapse
Affiliation(s)
- Zhen Liu
- Department of Nuclear Medicine, Wuhan Union Hospital, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, Hubei Province 430022, China.
| | | |
Collapse
|
10
|
Jian Z, Cheng T, Zhang Z, Raulefs S, Shi K, Steiger K, Maeritz N, Kleigrewe K, Hofmann T, Benitz S, Bruns P, Lamp D, Jastroch M, Akkan J, Jäger C, Huang P, Nie S, Shen S, Zou X, Ceyhan GO, Michalski CW, Friess H, Kleeff J, Kong B. Glycemic Variability Promotes Both Local Invasion and Metastatic Colonization by Pancreatic Ductal Adenocarcinoma. Cell Mol Gastroenterol Hepatol 2018; 6:429-449. [PMID: 30258965 PMCID: PMC6154439 DOI: 10.1016/j.jcmgh.2018.07.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 07/17/2018] [Indexed: 12/15/2022]
Abstract
Background & Aims Although nearly half of pancreatic ductal adenocarcinoma (PDAC) patients have diabetes mellitus with episodes of hyperglycemia, its tumor microenvironment is hypoglycemic. Thus, it is crucial for PDAC cells to develop adaptive mechanisms dealing with oscillating glucose levels. So far, the biological impact of such glycemic variability on PDAC biology remains unknown. Methods Murine PDAC cells were cultured in low- and high-glucose medium to investigate the molecular, biochemical, and metabolic influence of glycemic variability on tumor behavior. A set of in vivo functional assays including orthotopic implantation and portal and tail vein injection were used. Results were further confirmed on tissues from PDAC patients. Results Glycemic variability has no significant effect on PDAC cell proliferation. Hypoglycemia is associated with local invasion and angiogenesis, whereas hyperglycemia promotes metastatic colonization. Increased metastatic colonization under hyperglycemia is due to increased expression of runt related transcription factor 3 (Runx3), which further activates expression of collagen, type VI, alpha 1 (Col6a1), forming a glycemic pro-metastatic pathway. Through epigenetic machinery, retinoic acid receptor beta (Rarb) expression fluctuates according to glycemic variability, acting as a critical sensor relaying the glycemic signal to Runx3/Col6a1. Moreover, the signal axis of Rarb/Runx3/Col6a1 is pharmaceutically accessible to a widely used antidiabetic substance, metformin, and Rar modulator. Finally, PDAC tissues from patients with diabetes show an increased expression of COL6A1. Conclusions Glycemic variability promotes both local invasion and metastatic colonization of PDAC. A pro-metastatic signal axis Rarb/Runx3/Col6a1 whose activity is controlled by glycemic variability is identified. The therapeutic relevance of this pathway needs to be explored in PDAC patients, especially in those with diabetes.
Collapse
Key Words
- 2DG, 2-deoxy-D-glucose
- ADP, adenosine diphosphate
- ATP, adenosine triphosphate
- CT, computed tomography
- Caix, carbonic anhydrase IX
- Col6a1, collagen
- ECM, extracellular matrix
- Egr2, early growth response 2
- FBS, fetal bovine serum
- Glucose Metabolism
- IHC, immunohistochemistry
- Metastasis
- PBS, phosphate-buffered saline
- PCR, polymerase chain reaction
- PDAC, pancreatic ductal adenocarcinoma
- PET, positron emission tomography
- Pancreatic Cancer
- RA, retinoic acid
- Rarb, retinoic acid receptor beta
- Retinoic Acid
- Runx3, runt related transcription factor 3
- qRT-PCR, quantitative real-time polymerase chain reaction
- type VI, alpha 1
Collapse
Affiliation(s)
- Ziying Jian
- Department of Surgery, Klinikum rechts der Isar, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Tao Cheng
- Department of Surgery, Klinikum rechts der Isar, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Zhiheng Zhang
- Department of Surgery, Klinikum rechts der Isar, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Susanne Raulefs
- Department of Surgery, Klinikum rechts der Isar, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Kuangyu Shi
- Department of Nuclear Medicine, TUM, Munich, Germany
| | | | - Nadja Maeritz
- Department of Surgery, Klinikum rechts der Isar, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Karin Kleigrewe
- Bavarian Center for Biomolecular Mass Spectrometry, Freising, Germany
| | - Thomas Hofmann
- Bavarian Center for Biomolecular Mass Spectrometry, Freising, Germany
| | - Simone Benitz
- Department of Surgery, Klinikum rechts der Isar, School of Medicine, Technical University of Munich (TUM), Munich, Germany
- Medizinische Klinik und Poliklinik II, Klinikum der LMU, Munich, Germany
| | - Philipp Bruns
- Division of Applied Bioinformatics, German Cancer Research Center, Heidelberg, Germany
| | - Daniel Lamp
- Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research, Helmholtz Zentrum München, Neuherberg, Germany
- Division of Metabolic Diseases, TUM, Munich, Germany
| | - Martin Jastroch
- Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research, Helmholtz Zentrum München, Neuherberg, Germany
| | - Jan Akkan
- Department of Surgery, Klinikum rechts der Isar, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Carsten Jäger
- Department of Surgery, Klinikum rechts der Isar, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Peilin Huang
- Department of Pathology, School of Medicine, Southeast University, Nanjing, China
| | - Shuang Nie
- Department of Gastroenterology, Affiliated Drum Tower Hospital of Nanjing University, Medical School, Nanjing, China
| | - Shanshan Shen
- Department of Gastroenterology, Affiliated Drum Tower Hospital of Nanjing University, Medical School, Nanjing, China
| | - Xiaoping Zou
- Department of Gastroenterology, Affiliated Drum Tower Hospital of Nanjing University, Medical School, Nanjing, China
| | - Güralp O. Ceyhan
- Department of Surgery, Klinikum rechts der Isar, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Christoph W. Michalski
- Department of Visceral, Vascular and Endocrine Surgery, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Helmut Friess
- Department of Surgery, Klinikum rechts der Isar, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Jörg Kleeff
- Department of Visceral, Vascular and Endocrine Surgery, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Bo Kong
- Department of Surgery, Klinikum rechts der Isar, School of Medicine, Technical University of Munich (TUM), Munich, Germany
- Department of Gastroenterology, Affiliated Drum Tower Hospital of Nanjing University, Medical School, Nanjing, China
- German Cancer Consortium (DKTK) at the partner site Munich, Munich, Germany
| |
Collapse
|
11
|
Wang Q, Sengupta D, Kim TJ, Pratx G. In silico optimization of radioluminescence microscopy. JOURNAL OF BIOPHOTONICS 2018; 11:10.1002/jbio.201700138. [PMID: 28945305 PMCID: PMC5839938 DOI: 10.1002/jbio.201700138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 09/19/2017] [Accepted: 09/21/2017] [Indexed: 06/07/2023]
Abstract
Radioluminescence microscopy (RLM) is a high-resolution method for imaging radionuclide uptake in live cells within a fluorescence microscopy environment. Although RLM currently provides sufficient spatial resolution and sensitivity for cell imaging, it has not been systematically optimized. This study seeks to optimize the parameters of the system by computational simulation using a combination of numerical models for the system's various components: Monte-Carlo simulation for radiation transport, 3D optical point-spread function for the microscope, and stochastic photosensor model for the electron multiplying charge coupled device (EMCCD) camera. The relationship between key parameters and performance metrics relevant to image quality is examined. Results show that Lu2 O3 :Eu yields the best performance among 5 different scintillator materials, and a thickness: 8 μm can best balance spatial resolution and sensitivity. For this configuration, a spatial resolution of ~20 μm and sensitivity of 40% can be achieved for all 3 magnifications investigated, provided that the user adjusts pixel binning and electron multiplying (EM) gain accordingly. Hence the primary consideration for selecting the magnification should be the desired field of view and magnification for concurrent optical microscopy studies. In conclusion, this study estimates the optimal imaging performance achievable with RLM and promotes further development for more robust imaging of cellular processes using radiotracers.
Collapse
Affiliation(s)
- Qian Wang
- Department of Radiation Oncology, Stanford University, California
94305, United States
| | - Debanti Sengupta
- Department of Radiation Oncology, Stanford University, California
94305, United States
| | - Tae Jin Kim
- Department of Radiation Oncology, Stanford University, California
94305, United States
| | - Guillem Pratx
- Department of Radiation Oncology, Stanford University, California
94305, United States
| |
Collapse
|
12
|
Gallina ME, Kim TJ, Shelor M, Vasquez J, Mongersun A, Kim M, Tang SKY, Abbyad P, Pratx G. Toward a Droplet-Based Single-Cell Radiometric Assay. Anal Chem 2017; 89:6472-6481. [PMID: 28562033 PMCID: PMC5480233 DOI: 10.1021/acs.analchem.7b00414] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
![]()
Radiotracers are
widely used to track molecular processes, both in vitro and in vivo, with high sensitivity
and specificity. However, most radionuclide detection methods have
spatial resolution inadequate for single-cell analysis. A few existing
methods can extract single-cell information from radioactive decays,
but the stochastic nature of the process precludes high-throughput
measurement (and sorting) of single cells. In this work, we introduce
a new concept for translating radioactive decays occurring stochastically
within radiolabeled single-cells into an integrated, long-lasting
fluorescence signal. Single cells are encapsulated in radiofluorogenic
droplets containing molecular probes sensitive to byproducts of ionizing
radiation (primarily reactive oxygen species, or ROS). Different probes
were examined in bulk solutions, and dihydrorhodamine 123 (DHRh 123)
was selected as the lead candidate due to its sensitivity and reproducibility.
Fluorescence intensity of DHRh 123 in bulk increased at a rate of
54% per Gy of X-ray radiation and 15% per MBq/ml of 2-deoxy-2-[18F]-fluoro-d-glucose ([18F]FDG). Fluorescence
imaging of microfluidic droplets showed the same linear response,
but droplets were less sensitive overall than the bulk ROS sensor
(detection limit of 3 Gy per droplet). Finally, droplets encapsulating
radiolabeled cancer cells allowed, for the first time, the detection
of [18F]FDG radiotracer uptake in single cells through
fluorescence activation. With further improvements, we expect this
technology to enable quantitative measurement and selective sorting
of single cells based on the uptake of radiolabeled small molecules.
Collapse
Affiliation(s)
- Maria Elena Gallina
- Division of Medical Physics, Department of Radiation Oncology, Stanford University , 300 Pasteur Drive, Palo Alto, California 94305, United States
| | - Tae Jin Kim
- Division of Medical Physics, Department of Radiation Oncology, Stanford University , 300 Pasteur Drive, Palo Alto, California 94305, United States
| | - Mark Shelor
- University of California-Merced , Department of Bioengineering, 5200 North Lake Road, Merced, California 95343, United States
| | - Jaime Vasquez
- University of California-San Francisco , School of Pharmacy, 600 16th Street, San Francisco, California, 94158, United States
| | - Amy Mongersun
- Department of Chemistry and Biochemistry, Santa Clara University , Daly Science 123500 El Camino Real, Santa Clara, California 95053, United States
| | - Minkyu Kim
- Department of Mechanical Engineering, Stanford University , 418 Panama Mall, Stanford, California 94305, United States
| | - Sindy K Y Tang
- Department of Mechanical Engineering, Stanford University , 418 Panama Mall, Stanford, California 94305, United States
| | - Paul Abbyad
- Department of Chemistry and Biochemistry, Santa Clara University , Daly Science 123500 El Camino Real, Santa Clara, California 95053, United States
| | - Guillem Pratx
- Division of Medical Physics, Department of Radiation Oncology, Stanford University , 300 Pasteur Drive, Palo Alto, California 94305, United States
| |
Collapse
|