1
|
Evangelista L, Zattoni F, Burei M, Bertin D, Borsatti E, Baresic T, Farsad M, Trenti E, Bartolomei M, Panareo S, Urso L, Trifirò G, Brugola E, Chierichetti F, Donner D, Setti L, Gallan M, Del Bianco P, Magni G, De Salvo GL, Novara G. A Prospective Randomized Multicenter Study on the Impact of [ 18F]F-Choline PET/CT Versus Conventional Imaging for Staging Intermediate- to High-Risk Prostate Cancer. J Nucl Med 2024; 65:1013-1020. [PMID: 38844361 DOI: 10.2967/jnumed.123.267355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/07/2024] [Indexed: 07/03/2024] Open
Abstract
This study aimed to compare the efficacy of [18F]F-choline PET/CT with conventional imaging for staging and managing intermediate- to high-risk prostate cancer (PCa). The primary objective was to assess the ability of PET/CT with [18F]F-choline to identify lymph node and systemic involvement during initial staging. Secondary objectives included evaluating the impact of [18F]F-choline PET/CT on unnecessary local treatments and assessing the safety of [18F]F-choline agents. Additionally, the study aimed to analyze recurrence-free survival and overall survival 5 y after randomization. Methods: A prospective controlled, open, randomized multicenter phase III trial involving 7 Italian centers was conducted. Eligible patients with intermediate- to high-risk PCa were randomized in a 1:1 ratio. Two groups were formed: one undergoing conventional imaging (abdominopelvic contrast-enhanced CT and bone scanning) and the other receiving conventional imaging plus [18F]F-choline PET/CT. The study was terminated prematurely; however, all the endpoints were thoroughly analyzed and enriched. Results: Between February 2016 and December 2020, 256 patients were randomly assigned. In total, 236 patients (117 in the control arm and 119 in the experimental arm) were considered for the final assessment. In the experimental arm, the sensitivity for lymph node metastases, determined by final pathology and serial prostate-specific antigen evaluations, was higher than in the control arm (77.78% vs. 28.57% and 65.62% vs. 17.65%, respectively). The [18F]F-choline was tolerated well. The use of [18F]F-choline PET/CT resulted in an approximately 8% reduction in unnecessary extended lymphadenectomy compared with contrast-enhanced CT. Additionally, [18F]F-choline PET/CT had a marginal impact on 5-y overall survival, contributing to a 4% increase in survival rates. Conclusion: In the initial staging of PCa, [18F]F-choline PET/CT exhibited diagnostic performance superior to that of conventional imaging for detecting metastases. [18F]F-choline PET/CT reduced the rate of unnecessary extensive lymphadenectomy by up to 8%. These findings support the consideration of discontinuing conventional imaging for staging PCa.
Collapse
Affiliation(s)
- Laura Evangelista
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy;
- Nuclear Medicine Unit, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Fabio Zattoni
- Urology Unit, Department of Surgery, Oncology, and Gastroenterology, Urologic Unit, University of Padua, Padua, Italy
- Department of Medicine, DIMED, University of Padua, Padua, Italy
| | - Marta Burei
- Nuclear Medicine Unit, Veneto Institute of Oncology, Padua, Italy
| | - Daniele Bertin
- Nuclear Medicine Unit, Veneto Institute of Oncology, Padua, Italy
| | - Eugenio Borsatti
- Nuclear Medicine Unit, Department of Radiation Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Tanja Baresic
- Nuclear Medicine Unit, Department of Radiation Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Mohsen Farsad
- Department of Nuclear Medicine, Central Hospital of Bolzano, Bozen, Italy
| | - Emanuela Trenti
- Department of Urology, Central Hospital of Bolzano, Bozen, Italy
| | | | - Stefano Panareo
- Nuclear Medicine Unit, University Hospital, Ferrara, Italy
- Nuclear Medicine Unit, Azienda Ospedaliero Universitaria di Modena, Modena, Italy
| | - Luca Urso
- Nuclear Medicine Unit, University Hospital, Ferrara, Italy
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
| | | | | | - Franca Chierichetti
- Nuclear Medicine Unit, APSS della Provincia Autonoma di Trento, Santa Chiara Hospital, Trento, Italy
| | - Davide Donner
- Nuclear Medicine Unit, APSS della Provincia Autonoma di Trento, Santa Chiara Hospital, Trento, Italy
- Department of Medical and Surgical Sciences, Alma Mater Studiorum Università di Bologna, Bologna, Italy
| | - Lucia Setti
- Nuclear Medicine Unit, Humanitas Gavazzeni, Bergamo, Italy
| | - Mauro Gallan
- Nuclear Medicine Unit, Dell'Angelo Hospital, Mestre-Venezia, Italy; and
| | - Paola Del Bianco
- Clinical Research Unit, Veneto Institute of Oncology, Padua, Italy
| | - Giovanna Magni
- Clinical Research Unit, Veneto Institute of Oncology, Padua, Italy
| | | | - Giacomo Novara
- Urology Unit, Department of Surgery, Oncology, and Gastroenterology, Urologic Unit, University of Padua, Padua, Italy
| |
Collapse
|
2
|
Ozawa A, Iwasaki M, Yokoyama K, Tsuchiya J, Kawano R, Nishihara H, Tateishi U. Correlation between choline kinase alpha expression and 11C-choline accumulation in breast cancer using positron emission tomography/computed tomography: a retrospective study. Sci Rep 2023; 13:17620. [PMID: 37848481 PMCID: PMC10582087 DOI: 10.1038/s41598-023-44542-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/10/2023] [Indexed: 10/19/2023] Open
Abstract
Choline kinase (CK) is reportedly overexpressed in various malignancies. Among its isoforms, CKα overexpression is presumably related to oncogenic change. Choline positron emission tomography (PET) is reportedly useful for detecting and evaluating therapy outcomes in malignancies. In this study, we investigated the correlation between CKα expression and 11C-choline accumulation in breast cancer cells. We also compared the CKα expression level with other pathological findings for investigating tumour activity. Fifty-six patients with breast cancer (mean age: 51 years) who underwent their first medical examination between May 2007 and December 2008 were enrolled. All the patients underwent 11C-choline PET/computed tomography imaging prior to surgery. The maximum standardised uptake value was recorded for evaluating 11C-choline accumulation. The intensity of CKα expression was classified using immunostaining. A significant correlation was observed between CKα expression and 11C-choline accumulation (P < 0.0001). A comparison of breast cancer mortality demonstrated that strong CKα expression was associated with a shorter survival time (P < 0.0001). 11C-choline accumulation was also negatively correlated with survival time (P < 0.0001). Tumours with strong CKα expression are reportedly highly active in breast cancer. A correlation was observed between CKα expression and 11C-choline accumulation, suggesting their role as prognostic indicators of breast cancer.
Collapse
Affiliation(s)
- Akane Ozawa
- Department of Diagnostic Radiology and Nuclear Medicine, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan
| | - Masako Iwasaki
- Department of Diagnostic Radiology and Nuclear Medicine, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan
| | - Kota Yokoyama
- Department of Diagnostic Radiology and Nuclear Medicine, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan
| | - Junichi Tsuchiya
- Department of Diagnostic Radiology and Nuclear Medicine, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan
| | - Ryutaro Kawano
- Genomics Unit, Keio Cancer Center, Keio University School of Medicine, Tokyo, Japan
| | - Hiroshi Nishihara
- Genomics Unit, Keio Cancer Center, Keio University School of Medicine, Tokyo, Japan
| | - Ukihide Tateishi
- Department of Diagnostic Radiology and Nuclear Medicine, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan.
| |
Collapse
|
3
|
Chetta P, Sriram R, Zadra G. Lactate as Key Metabolite in Prostate Cancer Progression: What Are the Clinical Implications? Cancers (Basel) 2023; 15:3473. [PMID: 37444583 PMCID: PMC10340474 DOI: 10.3390/cancers15133473] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/24/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Advanced prostate cancer represents the fifth leading cause of cancer death in men worldwide. Although androgen-receptor signaling is the major driver of the disease, evidence is accumulating that disease progression is supported by substantial metabolic changes. Alterations in de novo lipogenesis and fatty acid catabolism are consistently reported during prostate cancer development and progression in association with androgen-receptor signaling. Therefore, the term "lipogenic phenotype" is frequently used to describe the complex metabolic rewiring that occurs in prostate cancer. However, a new scenario has emerged in which lactate may play a major role. Alterations in oncogenes/tumor suppressors, androgen signaling, hypoxic conditions, and cells in the tumor microenvironment can promote aerobic glycolysis in prostate cancer cells and the release of lactate in the tumor microenvironment, favoring immune evasion and metastasis. As prostate cancer is composed of metabolically heterogenous cells, glycolytic prostate cancer cells or cancer-associated fibroblasts can also secrete lactate and create "symbiotic" interactions with oxidative prostate cancer cells via lactate shuttling to sustain disease progression. Here, we discuss the multifaceted role of lactate in prostate cancer progression, taking into account the influence of the systemic metabolic and gut microbiota. We call special attention to the clinical opportunities of imaging lactate accumulation for patient stratification and targeting lactate metabolism.
Collapse
Affiliation(s)
- Paolo Chetta
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA;
| | - Renuka Sriram
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143, USA;
| | - Giorgia Zadra
- Institute of Molecular Genetics, National Research Council (IGM-CNR), 27100 Pavia, Italy
| |
Collapse
|
4
|
Gao X, Tang Y, Chen M, Li J, Yin H, Gan Y, Zu X, Cai Y, Hu S. A prospective comparative study of [ 68Ga]Ga-RM26 and [ 68Ga]Ga-PSMA-617 PET/CT imaging in suspicious prostate cancer. Eur J Nucl Med Mol Imaging 2023; 50:2177-2187. [PMID: 36811661 DOI: 10.1007/s00259-023-06142-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 02/08/2023] [Indexed: 02/24/2023]
Abstract
PURPOSE Prostate-specific membrane antigen (PSMA)-based PET/CT imaging has limitations in the diagnosis of prostate cancer (PCa). We recruited 207 participants with suspicious PCa to perform PET/CT imaging with radiolabeled gastrin-releasing peptide receptor (GRPR) antagonist, [68Ga]Ga-RM26, and compare with [68Ga]Ga-PSMA-617 and histopathology. METHODS Every participant with suspicious PCa was scanned with both [68Ga]Ga-RM26 and [68Ga]Ga-PSMA-617 PET/CT. PET/CT imaging was compared using pathologic specimens as a reference standard. RESULTS Of the 207 participants analyzed, 125 had cancer, and 82 were diagnosed with benign prostatic hyperplasia (BPH). The sensitivity and specificity of [68Ga]Ga-RM26 and [68Ga]Ga-PSMA-617 PET/CT imaging differed significantly for detecting clinically significant PCa. The area under the ROC curve (AUC) was 0.54 for [68Ga]Ga-RM26 PET/CT and 0.91 for [68Ga]Ga-PSMA-617 PET/CT in detecting PCa. For clinically significant PCa imaging, the AUCs were 0.51 vs. 0.93, respectively. [68Ga]Ga-RM26 PET/CT imaging had higher sensitivity for PCa with Gleason score (GS) = 6 (p = 0.03) than [68Ga]Ga-PSMA-617 PET/CT but poor specificity (20.73%). In the group with PSA < 10 ng/mL, the sensitivity, specificity, and AUC of [68Ga]Ga-RM26 PET/CT were lower than [68Ga]Ga-PSMA-617 PET/CT (60.00% vs. 80.30%, p = 0.12, 23.26% vs. 88.37%, p = 0.000, and 0.524 vs. 0.822, p = 0.000, respectively). [68Ga]Ga-RM26 PET/CT exhibited significantly higher SUVmax in specimens with GS = 6 (p = 0.04) and in the low-risk group (p = 0.01), and its uptake did not increase with PSA level, GS, or clinical stage. CONCLUSION This prospective study provided evidence for the superior accuracy of [68Ga]Ga-PSMA-617 PET/CT over [68Ga]Ga-RM26 PET/CT in detecting more clinically significant PCa. [68Ga]Ga-RM26 PET/CT showed an advantage for imaging low-risk PCa.
Collapse
Affiliation(s)
- Xiaomei Gao
- Department of Pathology, Disorders of Prostate Cancer Multidisciplinary Team, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Hunan Province, No.87 Xiangya Road, Changsha City, 410008, People's Republic of China
| | - Yongxiang Tang
- Department of Nuclear Medicine, Disorders of Prostate Cancer Multidisciplinary Team, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Hunan Province, No.87 Xiangya Road, Changsha City, 410008, People's Republic of China
| | - Minfeng Chen
- Department of Urology, Disorders of Prostate Cancer Multidisciplinary Team, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Hunan Province, No.87 Xiangya Road, Changsha City, 410008, People's Republic of China
| | - Jian Li
- Department of Nuclear Medicine, Disorders of Prostate Cancer Multidisciplinary Team, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Hunan Province, No.87 Xiangya Road, Changsha City, 410008, People's Republic of China
| | - Hongling Yin
- Department of Pathology, Disorders of Prostate Cancer Multidisciplinary Team, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Hunan Province, No.87 Xiangya Road, Changsha City, 410008, People's Republic of China
| | - Yu Gan
- Department of Urology, Disorders of Prostate Cancer Multidisciplinary Team, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Hunan Province, No.87 Xiangya Road, Changsha City, 410008, People's Republic of China
| | - Xiongbin Zu
- Department of Urology, Disorders of Prostate Cancer Multidisciplinary Team, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Hunan Province, No.87 Xiangya Road, Changsha City, 410008, People's Republic of China.
| | - Yi Cai
- Department of Urology, Disorders of Prostate Cancer Multidisciplinary Team, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Hunan Province, No.87 Xiangya Road, Changsha City, 410008, People's Republic of China.
| | - Shuo Hu
- Department of Nuclear Medicine, Disorders of Prostate Cancer Multidisciplinary Team, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Hunan Province, No.87 Xiangya Road, Changsha City, 410008, People's Republic of China.
- Key Laboratory of Biological, Nanotechnology of National Health Commission, Xiangya Hospital, Central South University, Hunan Province, No.87 Xiangya Road, Changsha City, 410008, People's Republic of China.
| |
Collapse
|
5
|
Schollhammer R, Quintyn Ranty ML, de Clermont Gallerande H, Cavelier F, Valverde IE, Vimont D, Hindié E, Morgat C. Theranostics of Primary Prostate Cancer: Beyond PSMA and GRP-R. Cancers (Basel) 2023; 15:cancers15082345. [PMID: 37190273 DOI: 10.3390/cancers15082345] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/07/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023] Open
Abstract
The imaging of Prostate-Specific Membrane Antigen (PSMA) is now widely used at the initial staging of prostate cancers in patients with a high metastatic risk. However, its ability to detect low-grade tumor lesions is not optimal. METHODS First, we prospectively performed neurotensin receptor-1 (NTS1) IHC in a series of patients receiving both [68Ga]Ga-PSMA-617 and [68Ga]Ga-RM2 before prostatectomy. In this series, PSMA and GRP-R IHC were also available (n = 16). Next, we aimed at confirming the PSMA/GRP-R/NTS1 expression profile by retrospective autoradiography (n = 46) using a specific radiopharmaceuticals study and also aimed to decipher the expression of less-investigated targets such as NTS2, SST2 and CXCR4. RESULTS In the IHC study, all samples with negative PSMA staining (two patients with ISUP 2 and one with ISUP 3) were strongly positive for NTS1 staining. No samples were negative for all three stains-for PSMA, GRP-R or NTS1. In the autoradiography study, binding of [111In]In-PSMA-617 was high in all ISUP groups. However, some samples did not bind or bound weakly to [111In]In-PSMA-617 (9%). In these cases, binding of [111n]In-JMV 6659 and [111In]In-JMV 7488 towards NTS1 and NTS2 was high. CONCLUSIONS Targeting PSMA and NTS1/NTS2 could allow for the detection of all intraprostatic lesions.
Collapse
Affiliation(s)
- Romain Schollhammer
- Nuclear Medicine Department, Bordeaux University Hospital, 33000 Bordeaux, France
- INCIA, University of Bordeaux, CNRS, EPHE, UMR 5287, 33000 Bordeaux, France
| | | | - Henri de Clermont Gallerande
- Nuclear Medicine Department, Bordeaux University Hospital, 33000 Bordeaux, France
- INCIA, University of Bordeaux, CNRS, EPHE, UMR 5287, 33000 Bordeaux, France
| | - Florine Cavelier
- Institut des Biomolécules Max Mousseron IBMM, UMR 5247, CNRS, Université Montpellier, ENSCM, Pôle Chimie Balard, 1919 Route de Mende, Cedex 5, 34293 Montpellier, France
| | - Ibai E Valverde
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR 6302, CNRS, Université Bourgogne Franche-Comté, 9 Avenue Alain Savary, 21000 Dijon, France
| | - Delphine Vimont
- INCIA, University of Bordeaux, CNRS, EPHE, UMR 5287, 33000 Bordeaux, France
| | - Elif Hindié
- Nuclear Medicine Department, Bordeaux University Hospital, 33000 Bordeaux, France
- INCIA, University of Bordeaux, CNRS, EPHE, UMR 5287, 33000 Bordeaux, France
- Institut Universitaire de France (IUF), 75231 Paris, France
| | - Clément Morgat
- Nuclear Medicine Department, Bordeaux University Hospital, 33000 Bordeaux, France
- INCIA, University of Bordeaux, CNRS, EPHE, UMR 5287, 33000 Bordeaux, France
| |
Collapse
|
6
|
Schollhammer R, Robert G, Asselineau J, Yacoub M, Vimont D, Balamoutoff N, Bladou F, Bénard A, Hindié E, Gallerande HDC, Morgat C. Comparison of 68Ga-PSMA-617 PET/CT and 68Ga-RM2 PET/CT in Patients with Localized Prostate Cancer Who Are Candidates for Radical Prostatectomy: A Prospective, Single-Arm, Single-Center, Phase II Study. J Nucl Med 2023; 64:379-385. [PMID: 36215569 PMCID: PMC10071805 DOI: 10.2967/jnumed.122.263889] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 08/23/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Considering the wide range of therapeutic options for localized prostate cancer (e.g., active surveillance, radiation-beam therapy, focal therapy, and radical prostatectomy), accurate assessment of the aggressiveness and localization of primary prostate cancer lesions is essential for treatment decision making. National Comprehensive Cancer Network guidelines recognize prostate-specific membrane antigen (PSMA) PET/CT for use in initial staging of high-risk primary prostate cancer. The gastrin-releasing peptide receptor (GRP-R) is a neuropeptide receptor overexpressed by low-risk prostate cancer cells. We aimed to perform the first (to our knowledge) prospective head-to-head comparison of PSMA- and GRP-R-targeted imaging at initial staging to understand how PSMA PET and GRP-R PET can be used or combined in clinical practice. Methods: This was a prospective, single-center, diagnostic cross-sectional imaging study using anonymized, masked, and independent interpretations of paired PET/CT studies in 22 patients with 68Ga-PSMA-617 (a radiolabeled PSMA inhibitor) and 68Ga-RM2 (68Ga-DOTA-4-amino-1-carboxymethylpiperidine-d-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2, a radiolabeled GRP-R antagonist). We enrolled patients with newly diagnosed, biopsy-proven prostate cancer. None had received neoadjuvant hormone therapy or chemotherapy, and all underwent extended pelvic lymph node dissection. Histologic findings served as a reference. Results: On a lesion-based analysis (including lesions < 0.1 cm3), 68Ga-PSMA-617 PET/CT detected 74.3% (26/35) of all tumor lesions and 68Ga-RM2 PET/CT detected 78.1% (25/32; 1 patient could not be offered 68Ga-RM2 PET/CT). Paired examinations showed positive uptake of the 2 tracers in 21 of 32 lesions (65.6%), negative uptake in 5 of 32 lesions (15.6%), and discordant uptake in 6 of 32 lesions (18.8%). Uptake of 68Ga-PSMA-617 was higher when the International Society of Urological Pathology (ISUP) score was at least 4 versus at least 1 (P < 0.0001) or 2 (P = 0.0002). There were no significant differences in uptake between ISUP scores for 68Ga-RM2. Median 68Ga-RM2 SUVmax was significantly higher than median 68Ga-PSMA-617 SUVmax in the ISUP-2 subgroup (P = 0.01). Conclusion: 68Ga-PSMA-617 PET/CT is useful to depict higher, more clinically significant ISUP score lesions, and 68Ga-RM2 PET/CT has a higher detection rate for low-ISUP tumors. Combining PSMA PET and GRP-R PET allows for better classification of intraprostatic lesions.
Collapse
Affiliation(s)
- Romain Schollhammer
- Nuclear Medicine Department, Bordeaux University Hospital, Bordeaux, France
- INCIA, University of Bordeaux, CNRS, EPHE, UMR 5287, Bordeaux, France
| | - Grégoire Robert
- Department of Urology, Bordeaux University Hospital, Bordeaux, France
| | - Julien Asselineau
- CHU Bordeaux, Public Health Department, Clinical Epidemiology Unit, Bordeaux, France
| | - Mokrane Yacoub
- Department of Pathology, Bordeaux University Hospital, Bordeaux, France; and
| | - Delphine Vimont
- INCIA, University of Bordeaux, CNRS, EPHE, UMR 5287, Bordeaux, France
| | | | - Franck Bladou
- Department of Urology, Bordeaux University Hospital, Bordeaux, France
| | - Antoine Bénard
- CHU Bordeaux, Public Health Department, Clinical Epidemiology Unit, Bordeaux, France
| | - Elif Hindié
- Nuclear Medicine Department, Bordeaux University Hospital, Bordeaux, France
- INCIA, University of Bordeaux, CNRS, EPHE, UMR 5287, Bordeaux, France
- Institut Universitaire de France, Paris, France
| | - Henri de Clermont Gallerande
- Nuclear Medicine Department, Bordeaux University Hospital, Bordeaux, France
- INCIA, University of Bordeaux, CNRS, EPHE, UMR 5287, Bordeaux, France
| | - Clément Morgat
- Nuclear Medicine Department, Bordeaux University Hospital, Bordeaux, France;
- INCIA, University of Bordeaux, CNRS, EPHE, UMR 5287, Bordeaux, France
| |
Collapse
|
7
|
Małkiewicz B, Kiełb P, Karwacki J, Czerwińska R, Długosz P, Lemiński A, Nowak Ł, Krajewski W, Szydełko T. Utility of Lymphadenectomy in Prostate Cancer: Where Do We Stand? J Clin Med 2022; 11:jcm11092343. [PMID: 35566471 PMCID: PMC9103547 DOI: 10.3390/jcm11092343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/16/2022] [Accepted: 04/18/2022] [Indexed: 02/04/2023] Open
Abstract
The purpose of this review is to summarize the current knowledge on lymph node dissection (LND) in prostate cancer (PCa) patients undergoing radical prostatectomy (RP). Despite a growing body of evidence, the utility and therapeutic and prognostic value of such an approach, as well as the optimal extent of LND, remain unsolved issues. Although LND is the most accurate staging procedure, the direct therapeutic effect is still not evident from the current literature, which limits the possibility of establishing clear recommendations. This indicates the need for further robust and adequately designed high-quality clinical trials.
Collapse
Affiliation(s)
- Bartosz Małkiewicz
- University Center of Excellence in Urology, Department of Minimally Invasive and Robotic Urology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (P.K.); (J.K.); (R.C.); (P.D.); (Ł.N.); (W.K.); (T.S.)
- Correspondence: ; Tel.: +48-506-158-136
| | - Paweł Kiełb
- University Center of Excellence in Urology, Department of Minimally Invasive and Robotic Urology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (P.K.); (J.K.); (R.C.); (P.D.); (Ł.N.); (W.K.); (T.S.)
| | - Jakub Karwacki
- University Center of Excellence in Urology, Department of Minimally Invasive and Robotic Urology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (P.K.); (J.K.); (R.C.); (P.D.); (Ł.N.); (W.K.); (T.S.)
| | - Róża Czerwińska
- University Center of Excellence in Urology, Department of Minimally Invasive and Robotic Urology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (P.K.); (J.K.); (R.C.); (P.D.); (Ł.N.); (W.K.); (T.S.)
| | - Paulina Długosz
- University Center of Excellence in Urology, Department of Minimally Invasive and Robotic Urology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (P.K.); (J.K.); (R.C.); (P.D.); (Ł.N.); (W.K.); (T.S.)
| | - Artur Lemiński
- Department of Urology and Urological Oncology, Pomeranian Medical University, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland;
| | - Łukasz Nowak
- University Center of Excellence in Urology, Department of Minimally Invasive and Robotic Urology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (P.K.); (J.K.); (R.C.); (P.D.); (Ł.N.); (W.K.); (T.S.)
| | - Wojciech Krajewski
- University Center of Excellence in Urology, Department of Minimally Invasive and Robotic Urology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (P.K.); (J.K.); (R.C.); (P.D.); (Ł.N.); (W.K.); (T.S.)
| | - Tomasz Szydełko
- University Center of Excellence in Urology, Department of Minimally Invasive and Robotic Urology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (P.K.); (J.K.); (R.C.); (P.D.); (Ł.N.); (W.K.); (T.S.)
| |
Collapse
|
8
|
Colosimo C, Pasqualetti F, Aristei C, Borghesi S, Forte L, Mignogna M, Badii D, Bosio M, Paiar F, Nanni S, Bertocci S, Lastrucci L, Parisi S, Ingrosso G. Stereotactic radiotherapy for bone oligometastases. Rep Pract Oncol Radiother 2022; 27:40-45. [PMID: 35402030 PMCID: PMC8989454 DOI: 10.5603/rpor.a2022.0009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/20/2021] [Indexed: 12/25/2022] Open
Abstract
About 60–90% of cancer patients are estimated to develop bone metastases, particularly in the spine. Bone scintigraphy, computed tomography (CT ) and magnetic resonance imaging (MRI ) are currently used to assess metastatic bone disease; positron emission tomography/computed tomography (PET-CT ) has become more widespread in clinical practice because of its high sensitivity and specificity with about 95% diagnostic accuracy. The most common and well-known radiotracer is 18F-fluorodeoxyglucose (18FDG); several other PET-radiotracers are currently under investigation for different solid tumors, such as 11C or 18FDG-choline and prostate specific membrane antigen (PSMA)-PET/CT for prostate cancer. In treatment planning, standard and investigational imaging modalities should be registered with the planning CT so as to best define the bone target volume. For target volume delineation of spine metastases, the International Spine Radiosurgery Consortium (ISRC ) of North American experts provided consensus guidelines. Single fraction stereotactic radiotherapy (SRT ) doses ranged from 12 to 24 Gy; fractionated SRT administered 21–27 Gy in 3 fractions or 20–35 Gy in 5 fractions. After spine SRT, less than 5% of patients experienced grade ≥ 3 acute toxicity. Late toxicity included the extremely rare radiation-induced myelopathy and a 14% risk of de novo vertebral compression fractures.
Collapse
Affiliation(s)
- Caterina Colosimo
- Operative Unit of Radiotherapy, Department of Oncology, San Luca Hospital, Lucca, Italy
| | - Francesco Pasqualetti
- Department of Radiation Oncology, Azienda Ospedaliera Universitaria Pisana, University of Pisa, Italy
| | - Cynthia Aristei
- Radiation Oncology Section, University of Perugia and Perugia General Hospital, Italy
| | - Simona Borghesi
- Radiation Oncology Unit of Arezzo-Valdarno, Azienda USL Toscana Sud Est, Italy
| | - Letizia Forte
- Department of Radiotherapy, Livorno Hospital, ATNO, Italy
| | - Marcello Mignogna
- Operative Unit of Radiotherapy, Department of Oncology, San Luca Hospital, Lucca, Italy
| | | | - Manrico Bosio
- Department of Radiotherapy, Livorno Hospital, ATNO, Italy
| | - Fabiola Paiar
- Department of Radiation Oncology, Azienda Ospedaliera Universitaria Pisana, University of Pisa, Italy
| | - Sara Nanni
- Radiation Oncology Unit of Arezzo-Valdarno, Azienda USL Toscana Sud Est, Italy
| | - Silvia Bertocci
- Radiation Oncology Unit of Arezzo-Valdarno, Azienda USL Toscana Sud Est, Italy
| | | | - Silvana Parisi
- Radiation Oncology Unit - Department of Biomedical, Dental Science, and Morphological and Functional Images, University of Messina, Italy
| | - Gianluca Ingrosso
- Radiation Oncology Section, University of Perugia and Perugia General Hospital, Italy
| |
Collapse
|
9
|
Griffiths GL, Vasquez C, Escorcia F, Clanton J, Lindenberg L, Mena E, Choyke PL. Translating a radiolabeled imaging agent to the clinic. Adv Drug Deliv Rev 2022; 181:114086. [PMID: 34942275 PMCID: PMC8889912 DOI: 10.1016/j.addr.2021.114086] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 11/30/2021] [Accepted: 12/16/2021] [Indexed: 02/03/2023]
Abstract
Molecular Imaging is entering the most fruitful, exciting period in its history with many new agents under development, and several reaching the clinic in recent years. While it is unusual for just one laboratory to take an agent from initial discovery through to full clinical approval the steps along the way are important to understand for all interested participants even if one is not involved in the entire process. Here, we provide an overview of these processes beginning at discovery and preclinical validation of a new molecular imaging agent and using as an exemplar a low molecular weight disease-specific targeted positron emission tomography (PET) agent. Compared to standard drug development requirements, molecular imaging agents may benefit from a regulatory standpoint from their low mass administered doses, they nonetheless still need to go through a series of well-defined steps before they can be considered for Phase 1 human testing. After outlining the discovery and preclinical validation approaches, we will also discuss the nuances of Phase 1, Phase 2 and Phase 3 studies that may culminate in an FDA general use approval. Finally, some post-approval aspects of novel molecular imaging agents are considered.
Collapse
Affiliation(s)
- Gary L. Griffiths
- Clinical Research Directorate, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, MD
| | - Crystal Vasquez
- Molecular Imaging Branch, National Cancer Institute, Bethesda, MD
| | - Freddy Escorcia
- Molecular Imaging Branch, National Cancer Institute, Bethesda, MD
| | | | - Liza Lindenberg
- Molecular Imaging Branch, National Cancer Institute, Bethesda, MD
| | - Esther Mena
- Molecular Imaging Branch, National Cancer Institute, Bethesda, MD
| | - Peter L. Choyke
- Molecular Imaging Branch, National Cancer Institute, Bethesda, MD
| |
Collapse
|
10
|
Shen K, Liu B, Zhou X, Ji Y, Chen L, Wang Q, Xue W. The Evolving Role of 18F-FDG PET/CT in Diagnosis and Prognosis Prediction in Progressive Prostate Cancer. Front Oncol 2021; 11:683793. [PMID: 34395251 PMCID: PMC8358601 DOI: 10.3389/fonc.2021.683793] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/08/2021] [Indexed: 11/13/2022] Open
Abstract
Positron emission tomography/computed tomography (PET/CT) is widely used in prostate cancer to evaluate the localized tumor burden and detect symptomatic metastatic lesions early. 18F-FDG is the most used tracer for oncologic imaging, but it has limitations in detecting early-stage prostate cancer. 68Ga-PSMA is a new tracer that has high specificity and sensibility in detecting local and metastatic tumors. But with the progression of prostate cancer, the enhancement of glucose metabolism in progressive prostate cancer provides a chance for 18F-FDG. This review focuses on PET/CT in the detection and prognosis of prostate cancer, summarizing the literature on 18F-FDG and 68Ga-PSMA in prostate cancer and highlighting that 18F-FDG has advantages in detecting local recurrence, visceral and lymph node metastases compared to 68Ga-PSMA in partial progressive prostate cancer and castration-resistant prostate cancer patients. We emphasize 18F-FDG PET/CT can compensate for the weakness of 68Ga-PSMA PET/CT in progressive prostate cancer.
Collapse
Affiliation(s)
- Kai Shen
- State Key Laboratory of Oncogenes and Related Genes, Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bo Liu
- State Key Laboratory of Oncogenes and Related Genes, Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiang Zhou
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yiyi Ji
- State Key Laboratory of Oncogenes and Related Genes, Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Chen
- State Key Laboratory of Oncogenes and Related Genes, Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qi Wang
- State Key Laboratory of Oncogenes and Related Genes, Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Xue
- State Key Laboratory of Oncogenes and Related Genes, Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
11
|
Klusa D, Lohaus F, Furesi G, Rauner M, Benešová M, Krause M, Kurth I, Peitzsch C. Metastatic Spread in Prostate Cancer Patients Influencing Radiotherapy Response. Front Oncol 2021; 10:627379. [PMID: 33747899 PMCID: PMC7971112 DOI: 10.3389/fonc.2020.627379] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 12/30/2020] [Indexed: 12/18/2022] Open
Abstract
Radiotherapy and surgery are curative treatment options for localized prostate cancer (PCa) with a 5-year survival rate of nearly 100%. Once PCa cells spread into distant organs, such as bone, the overall survival rate of patients drops dramatically. The metastatic cascade and organotropism of PCa cells are regulated by different cellular subtypes, organ microenvironment, and their interactions. This cross-talk leads to pre-metastatic niche formation that releases chemo-attractive factors enforcing the formation of distant metastasis. Biological characteristics of PCa metastasis impacting on metastatic sites, burden, and latency is of clinical relevance. Therefore, the implementation of modern hybrid imaging technologies into clinical routine increased the sensitivity to detect metastases at earlier stages. This enlarged the number of PCa patients diagnosed with a limited number of metastases, summarized as oligometastatic disease. These patients can be treated with androgen deprivation in combination with local-ablative radiotherapy or radiopharmaceuticals directed to metastatic sites. Unfortunately, the number of patients with disease recurrence is high due to the enormous heterogeneity within the oligometastatic patient population and the lack of available biomarkers with predictive potential for metastasis-directed radiotherapy. Another, so far unmet clinical need is the diagnosis of minimal residual disease before onset of clinical manifestation and/or early relapse after initial therapy. Here, monitoring of circulating and disseminating tumor cells in PCa patients during the course of radiotherapy may give us novel insight into how metastatic spread is influenced by radiotherapy and vice versa. In summary, this review critically compares current clinical concepts for metastatic PCa patients and discuss the implementation of recent preclinical findings improving our understanding of metastatic dissemination and radiotherapy resistance into standard of care.
Collapse
Affiliation(s)
- Daria Klusa
- National Center for Tumor Diseases (NCT), Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Fabian Lohaus
- Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Giulia Furesi
- Helmholtz-Zentrum Dresden—Rossendorf (HZDR), Dresden,Germany
| | - Martina Rauner
- Helmholtz-Zentrum Dresden—Rossendorf (HZDR), Dresden,Germany
| | | | - Mechthild Krause
- National Center for Tumor Diseases (NCT), Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Ina Kurth
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Claudia Peitzsch
- National Center for Tumor Diseases (NCT), Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
12
|
Abstract
Prostate cancer is the commonest malignancy to affect men in the United Kingdom. Extraprostatic disease detection at staging and in the setting of biochemical recurrence is essential in determining treatment strategy. Conventional imaging including computed tomography and bone scintigraphy are limited in their ability to detect sites of loco-regional nodal and metastatic bone disease, particularly at clinically relevant low prostate-specific antigen levels. The use of positron emission tomography-computed tomography has helped overcome these deficiencies and is leading a paradigm shift in the management of prostate cancer using a wide range of radiopharmaceuticals. Their mechanisms of action, utility in both staging and biochemical recurrence, and comparative strengths and weaknesses will be covered in this article.
Collapse
Affiliation(s)
- Manil Subesinghe
- King's College London & Guy's & St. Thomas' PET Centre, St. Thomas' Hospital, London, UK; Department of Cancer Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.
| | - Meghana Kulkarni
- Department of Cancer Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Gary J Cook
- King's College London & Guy's & St. Thomas' PET Centre, St. Thomas' Hospital, London, UK; Department of Cancer Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| |
Collapse
|
13
|
Quesada-Olarte JM, Allaf ME, Alvarez-Maestro M, Martínez-Piñeiro L. Molecular imaging of prostate cancer: Review of imaging agents, modalities, and current status. Actas Urol Esp 2020; 44:386-399. [PMID: 32709428 DOI: 10.1016/j.acuro.2019.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 12/17/2019] [Indexed: 11/17/2022]
Abstract
INTRODUCTION The clinical course of Prostate cancer (PCa) are markedly diverse, ranging from indolent to highly aggressive disseminated disease. Molecular imaging techniques are playing an increasing role in early PCa detection, staging and disease recurrence. There are some molecular imaging modalities, radiotracers agents and its performance are important in current clinical practice PCa. OBJECTIVE This review summarizes the latest information regarding molecular imaging of PCa and is designed to assist urologists with ordering and interpreting these modalities and different radiotracers for different patients. EVIDENCE ACQUISITION A PubMed-based literature search was conducted up to September 2019. We selected the most recent and relevant original articles, metanalysis and reviews that have provided relevant information to guide molecular imaging modalities and radiotracers use. EVIDENCE SYNTHESIS In this review, we discuss 3 main molecular imaging modalities and 7 radiotracer technologies available. CONCLUSIONS The use molecular imaging modalities and radiotracers has a unique role in biochemical recurrence and diagnosis of ganglionar and bone progression of PCa. In the present time, no one of these molecular imaging modalities can be recommended over the classical work-up of abdominopelvic CT scan and bone scan, and large-scale and multi-institutional studies are required to validate the efficacy and cost utility of these new technologies.
Collapse
Affiliation(s)
| | - M E Allaf
- Departamento de Urología, Johns Hopkins University Hospital, Baltimore, Estados Unidos
| | | | | |
Collapse
|
14
|
Schollhammer R, De Clermont Gallerande H, Yacoub M, Quintyn Ranty ML, Barthe N, Vimont D, Hindié E, Fernandez P, Morgat C. Comparison of the radiolabeled PSMA-inhibitor 111In-PSMA-617 and the radiolabeled GRP-R antagonist 111In-RM2 in primary prostate cancer samples. EJNMMI Res 2019; 9:52. [PMID: 31161459 PMCID: PMC6546761 DOI: 10.1186/s13550-019-0517-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 05/06/2019] [Indexed: 12/24/2022] Open
Abstract
Purpose Prostate-specific membrane antigen (PSMA) and gastrin-releasing peptide receptor (GRP-R) are expressed in prostate cancer and can be targeted with radiolabeled inhibitors and antagonists. Their performances for the initial characterization of prostatic tumors have been barely evaluated but never compared. We aimed to gather comparative preclinical data of the role of PSMA and GRP-R targeting in prostate cancer. Procedures We retrospectively studied 20 frozen prostatectomy samples with various metastatic risks of the D’Amico classification. Tissue samples were investigated by tissular microimaging using the radiolabeled PSMA inhibitor 111In-PSMA-617 and the radiolabeled GRP-R antagonist 111In-RM2. Bindings of the two radiopharmaceuticals were compared to histology and clinico-biological data (Gleason score, PSA values, metastatic risks). Results Binding of 111In-PSMA-617 was high whatever the metastatic risk (p = 0.665), Gleason score (p = 0.555), or PSA value (p = 0.404) while 111In-RM2 exhibited a significantly higher binding in the low metastatic risk group (p = 0.046), in the low PSA value group (p = 0.001), and in samples with Gleason 6 score (p = 0.006). Conclusion PSMA and GRP-R based imaging might have complementary performances for the initial characterization of prostatic tumors. Prospective clinical studies comparing the two tracers in this setting are needed.
Collapse
Affiliation(s)
- Romain Schollhammer
- Nuclear Medicine Department, University Hospital of Bordeaux, Place Amélie Raba Léon, 33000, 33076, Bordeaux, France. .,University of Bordeaux, INCIA, UMR5287, 33400, Talence, France. .,CNRS, INCIA, UMR5287, 33400, Talence, France.
| | - Henri De Clermont Gallerande
- Nuclear Medicine Department, University Hospital of Bordeaux, Place Amélie Raba Léon, 33000, 33076, Bordeaux, France
| | - Mokrane Yacoub
- Department of Pathology, University Hospital of Bordeaux, 33076, Bordeaux, France
| | | | | | - Delphine Vimont
- University of Bordeaux, INCIA, UMR5287, 33400, Talence, France.,CNRS, INCIA, UMR5287, 33400, Talence, France
| | - Elif Hindié
- Nuclear Medicine Department, University Hospital of Bordeaux, Place Amélie Raba Léon, 33000, 33076, Bordeaux, France.,University of Bordeaux, INCIA, UMR5287, 33400, Talence, France.,CNRS, INCIA, UMR5287, 33400, Talence, France
| | - Philippe Fernandez
- Nuclear Medicine Department, University Hospital of Bordeaux, Place Amélie Raba Léon, 33000, 33076, Bordeaux, France.,University of Bordeaux, INCIA, UMR5287, 33400, Talence, France.,CNRS, INCIA, UMR5287, 33400, Talence, France
| | - Clément Morgat
- Nuclear Medicine Department, University Hospital of Bordeaux, Place Amélie Raba Léon, 33000, 33076, Bordeaux, France.,University of Bordeaux, INCIA, UMR5287, 33400, Talence, France.,CNRS, INCIA, UMR5287, 33400, Talence, France
| |
Collapse
|
15
|
Gutiérrez-Cardo A, Pérez Duarte A, García-Argüello S, López Lorenzo B, Lillo García M, Valdivielso P. Assessment of 68Ga-PSMA-11 PET positivity predictive factors in prostate cancer. Rev Esp Med Nucl Imagen Mol 2019. [DOI: 10.1016/j.remnie.2018.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
16
|
Valoración de factores predictivos de positividad en PET con 68Ga-PSMA-11 en el cáncer de próstata. Rev Esp Med Nucl Imagen Mol 2019; 38:22-28. [DOI: 10.1016/j.remn.2018.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 09/03/2018] [Accepted: 09/08/2018] [Indexed: 11/24/2022]
|
17
|
Samper Ots P, Luis Cardo A, Vallejo Ocaña C, Cabeza Rodríguez MA, Glaria Enríquez LA, Couselo Paniagua ML, Olivera Vegas J. Diagnostic performance of 18F-choline PET-CT in prostate cancer. Clin Transl Oncol 2018; 21:766-773. [DOI: 10.1007/s12094-018-1985-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 11/09/2018] [Indexed: 10/27/2022]
|
18
|
Abstract
PURPOSE OF REVIEW To present a perspective on the current status and future directions of focal therapy for prostate cancer (PCa). RECENT FINDINGS Focal therapy for localized PCa is a rapidly evolving field. Various recent concepts - the index lesion driving prognosis, the enhanced detection of clinically significant PCa using multiparametric MRI and targeted biopsy, improved risk-stratification using novel blood/tissue biomarkers, the recognition that reducing radical treatment-related morbidity (along with reducing pathologic progression) is a clinically meaningful end-point - have all led to a growing interest in focal therapy. Novel focal therapy modalities are being investigated, mostly in phase 1 and 2 studies. Recently, level I prospective randomized data comparing partial gland ablation with a standard-of-care treatment became available from one study. Recent developments in imaging, including 7-T MRI, functional imaging, radiomics and contrast-enhanced ultrasound show early promise. We also discuss emerging concepts in patient selection for focal therapy. SUMMARY PCa focal therapy has evolved considerably in the recent few years. Overall, these novel focal therapy treatments demonstrate safety and feasibility, low treatment-related toxicity and acceptable short-term and in some cases medium-term oncologic outcomes. As imaging techniques evolve, patient selection, detection of clinically significant PCa and noninvasive assessment of therapeutic efficacy will be further optimized. The aspirational goal of achieving oncologic control while reducing radical treatment-related morbidity will drive further innovation in the field.
Collapse
|
19
|
Das CJ, Razik A, Sharma S. Positron emission tomography in prostate cancer: An update on state of the art. Indian J Urol 2018; 34:172-179. [PMID: 30034126 PMCID: PMC6034413 DOI: 10.4103/iju.iju_320_17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Prostate cancer (PCa), one of the most common cancers in males, is a topic of active interest in imaging research. Positron emission tomography/computed tomography (PET/CT) and PET/magnetic resonance imaging (PET/MRI) have enabled the combination of morphologic and functional imaging with the promise of providing better information in guiding therapy. 18F-fluorodeoxyglucose, the workhorse radiopharmaceutical in PET imaging, has not found preference in PCa since these tumors show poor glucose uptake and can be obscured by the normal urinary excretion of the radiotracer. Hence, the last two decades have seen the development of multiple newer radiotracers and better optimization of the technical aspects of PET imaging. The combination of functional imaging and MRI holds great promise. We searched PubMed, Scopus, and Google Scholar for peer-reviewed literature concerning the advances and newer developments in the imaging of PCa between the years 2005 and 2017. This review aims at summarizing current evidence on the role of PET imaging in PCa and its impact on the diagnosis, staging, prognostication, response assessment, and restaging of this malignancy.
Collapse
Affiliation(s)
- Chandan Jyoti Das
- Department of Radio-Diagnosis, All India Institute of Medical Sciences, New Delhi, India
| | - Abdul Razik
- Department of Radio-Diagnosis, All India Institute of Medical Sciences, New Delhi, India
| | - Sanjay Sharma
- Department of Radio-Diagnosis, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
20
|
Evolución de la Medicina Nuclear en el diagnóstico y tratamiento de pacientes con cáncer de próstata. Rev Esp Med Nucl Imagen Mol 2018; 37:71-72. [DOI: 10.1016/j.remn.2017.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 12/25/2017] [Indexed: 11/18/2022]
|
21
|
García Velloso M, Rodríguez Fraile M. Evolution of nuclear medicine in the diagnosis and treatment of prostate cancer. Rev Esp Med Nucl Imagen Mol 2018. [DOI: 10.1016/j.remnie.2017.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
22
|
Xue Y, Chen S, Qin J, Liu Y, Huang B, Chen H. Application of Deep Learning in Automated Analysis of Molecular Images in Cancer: A Survey. CONTRAST MEDIA & MOLECULAR IMAGING 2017; 2017:9512370. [PMID: 29114182 PMCID: PMC5661078 DOI: 10.1155/2017/9512370] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 09/06/2017] [Indexed: 11/17/2022]
Abstract
Molecular imaging enables the visualization and quantitative analysis of the alterations of biological procedures at molecular and/or cellular level, which is of great significance for early detection of cancer. In recent years, deep leaning has been widely used in medical imaging analysis, as it overcomes the limitations of visual assessment and traditional machine learning techniques by extracting hierarchical features with powerful representation capability. Research on cancer molecular images using deep learning techniques is also increasing dynamically. Hence, in this paper, we review the applications of deep learning in molecular imaging in terms of tumor lesion segmentation, tumor classification, and survival prediction. We also outline some future directions in which researchers may develop more powerful deep learning models for better performance in the applications in cancer molecular imaging.
Collapse
Affiliation(s)
- Yong Xue
- Guangzhou Panyu Central Hospital, Guangzhou, China
- Medical Imaging Institute of Panyu, Guangzhou, China
| | - Shihui Chen
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Centre, Shenzhen University, Shenzhen, China
| | - Jing Qin
- School of Nursing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Yong Liu
- Intensive Care Unit, Southern Medical University Shenzhen Hospital, Shenzhen, China
| | - Bingsheng Huang
- Medical Imaging Institute of Panyu, Guangzhou, China
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Centre, Shenzhen University, Shenzhen, China
| | - Hanwei Chen
- Guangzhou Panyu Central Hospital, Guangzhou, China
- Medical Imaging Institute of Panyu, Guangzhou, China
| |
Collapse
|
23
|
Eiber M, Fendler WP, Rowe SP, Calais J, Hofman MS, Maurer T, Schwarzenboeck SM, Kratowchil C, Herrmann K, Giesel FL. Prostate-Specific Membrane Antigen Ligands for Imaging and Therapy. J Nucl Med 2017; 58:67S-76S. [DOI: 10.2967/jnumed.116.186767] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 03/20/2017] [Indexed: 02/07/2023] Open
|
24
|
Cardona Arboniés J, Rodríguez Alfonso B, Mucientes Rasilla J, Martínez Ballesteros C, Zapata Paz I, Prieto Soriano A, Carballido Rodriguez J, Mitjavila Casanovas M. 18 F-Choline PET/CT scan in staging and biochemical recurrence in prostate cancer patients: Changes in classification and radiotherapy planning. Rev Esp Med Nucl Imagen Mol 2017. [DOI: 10.1016/j.remnie.2017.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
25
|
Wetter A, Grueneisen J, Umutlu L. PET/MR imaging of pelvic malignancies. Eur J Radiol 2017; 94:A44-A51. [DOI: 10.1016/j.ejrad.2017.02.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 02/13/2017] [Accepted: 02/15/2017] [Indexed: 01/03/2023]
|
26
|
Cardona Arboniés J, Rodríguez Alfonso B, Mucientes Rasilla J, Martínez Ballesteros C, Zapata Paz I, Prieto Soriano A, Carballido Rodriguez J, Mitjavila Casanovas M. 18F-Choline PET/CT scan in staging and biochemical recurrence in prostate cancer patients: Changes in classification and radiotherapy planning. Rev Esp Med Nucl Imagen Mol 2017; 36:292-297. [PMID: 28366421 DOI: 10.1016/j.remn.2017.02.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 02/13/2017] [Accepted: 02/14/2017] [Indexed: 10/19/2022]
Abstract
OBJECTIVE To evaluate the role of the 18F-Choline PET/CT in prostate cancer management when detecting distant disease in planning radiotherapy and staging and to evaluate the therapy changes guided by PET/TC results. MATERIAL AND METHODS A retrospective evaluation was performed on 18F-Choline PET/CT scans of patients with prostate cancer. Staging and planning radiotherapy scans were selected in patients with at least 9 months follow up. There was a total of 56 studies, 33 (58.93%) for staging, and 23 (41.07%) for planning radiotherapy. All scans were obtained using a hybrid PET/CT scanner. The PET/CT acquisition protocol consisted of a dual-phase procedure after the administration of an intravenous injection of 296-370MBq of 18F-Choline. RESULTS There were 43 out of 56 (76.8%) scans considered as positive, and 13 (23.2%) were negative. The TNM staging was changed in 13 (23.2%) scans. The PET/CT findings ruled out distant disease in 4 out of 13 scans, and unknown distant disease was detected in 9 (69.3%) scans. CONCLUSIONS 18F-Choline PET/CT is a useful technique for detecting unknown distant disease in prostate cancer when staging and planning radiotherapy. The inclusion of 18F-choline PET/CT should be considered in prostate cancer management protocols.
Collapse
Affiliation(s)
- J Cardona Arboniés
- Servicio de Medicina Nuclear, Hospital Universitario Puerta de Hierro, Majadahonda, España.
| | - B Rodríguez Alfonso
- Servicio de Medicina Nuclear, Hospital Universitario Puerta de Hierro, Majadahonda, España
| | - J Mucientes Rasilla
- Servicio de Medicina Nuclear, Hospital Universitario Puerta de Hierro, Majadahonda, España
| | | | - I Zapata Paz
- Servicio de Oncología Radioterápica, Hospital Universitario Puerta de Hierro, Majadahonda, España
| | - A Prieto Soriano
- Servicio de Medicina Nuclear, Hospital Universitario Puerta de Hierro, Majadahonda, España
| | | | - M Mitjavila Casanovas
- Servicio de Medicina Nuclear, Hospital Universitario Puerta de Hierro, Majadahonda, España
| |
Collapse
|
27
|
Jadvar H. Radiotheranostics in Prostate Cancer: Introduction and Overview. J Nucl Med 2016; 57:1S-2S. [DOI: 10.2967/jnumed.116.183517] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 09/01/2016] [Indexed: 12/17/2022] Open
|