1
|
Benfante V, Stefano A, Ali M, Laudicella R, Arancio W, Cucchiara A, Caruso F, Cammarata FP, Coronnello C, Russo G, Miele M, Vieni A, Tuttolomondo A, Yezzi A, Comelli A. An Overview of In Vitro Assays of 64Cu-, 68Ga-, 125I-, and 99mTc-Labelled Radiopharmaceuticals Using Radiometric Counters in the Era of Radiotheranostics. Diagnostics (Basel) 2023; 13:diagnostics13071210. [PMID: 37046428 PMCID: PMC10093267 DOI: 10.3390/diagnostics13071210] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/11/2023] [Accepted: 03/17/2023] [Indexed: 04/14/2023] Open
Abstract
Radionuclides are unstable isotopes that mainly emit alpha (α), beta (β) or gamma (γ) radiation through radiation decay. Therefore, they are used in the biomedical field to label biomolecules or drugs for diagnostic imaging applications, such as positron emission tomography (PET) and/or single-photon emission computed tomography (SPECT). A growing field of research is the development of new radiopharmaceuticals for use in cancer treatments. Preclinical studies are the gold standard for translational research. Specifically, in vitro radiopharmaceutical studies are based on the use of radiopharmaceuticals directly on cells. To date, radiometric β- and γ-counters are the only tools able to assess a preclinical in vitro assay with the aim of estimating uptake, retention, and release parameters, including time- and dose-dependent cytotoxicity and kinetic parameters. This review has been designed for researchers, such as biologists and biotechnologists, who would like to approach the radiobiology field and conduct in vitro assays for cellular radioactivity evaluations using radiometric counters. To demonstrate the importance of in vitro radiopharmaceutical assays using radiometric counters with a view to radiogenomics, many studies based on 64Cu-, 68Ga-, 125I-, and 99mTc-labeled radiopharmaceuticals have been revised and summarized in this manuscript.
Collapse
Affiliation(s)
- Viviana Benfante
- Ri.MED Foundation, Via Bandiera 11, 90133 Palermo, Italy
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Molecular and Clinical Medicine, University of Palermo, 90127 Palermo, Italy
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), 90015 Cefalù, Italy
| | - Alessandro Stefano
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), 90015 Cefalù, Italy
| | - Muhammad Ali
- Ri.MED Foundation, Via Bandiera 11, 90133 Palermo, Italy
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Molecular and Clinical Medicine, University of Palermo, 90127 Palermo, Italy
| | | | - Walter Arancio
- Ri.MED Foundation, Via Bandiera 11, 90133 Palermo, Italy
| | - Antonino Cucchiara
- Department of Diagnostic and Therapeutic Services, IRCCS-ISMETT (Mediterranean Institute for Transplantation and Advanced Specialized Therapies), Via Tricomi 5, 90127 Palermo, Italy
| | - Fabio Caruso
- Department of Diagnostic and Therapeutic Services, IRCCS-ISMETT (Mediterranean Institute for Transplantation and Advanced Specialized Therapies), Via Tricomi 5, 90127 Palermo, Italy
| | - Francesco Paolo Cammarata
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), 90015 Cefalù, Italy
| | - Claudia Coronnello
- Ri.MED Foundation, Via Bandiera 11, 90133 Palermo, Italy
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Giorgio Russo
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), 90015 Cefalù, Italy
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Monica Miele
- Ri.MED Foundation, Via Bandiera 11, 90133 Palermo, Italy
| | - Alessandra Vieni
- Department of Diagnostic and Therapeutic Services, IRCCS-ISMETT (Mediterranean Institute for Transplantation and Advanced Specialized Therapies), Via Tricomi 5, 90127 Palermo, Italy
| | - Antonino Tuttolomondo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Molecular and Clinical Medicine, University of Palermo, 90127 Palermo, Italy
| | - Anthony Yezzi
- Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Albert Comelli
- Ri.MED Foundation, Via Bandiera 11, 90133 Palermo, Italy
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| |
Collapse
|
2
|
Emamian M, Abbaspour A, Shahani T, Biglari A, Sharafi A. Non-viral Suicide Gene Therapy: Cytosine Deaminase Gene Directed by VEGF Promoter and 5-fluorocytosine as a Gene Directed Enzyme/prodrug System in Breast Cancer Model. Drug Res (Stuttg) 2021; 71:395-406. [PMID: 34182589 DOI: 10.1055/a-1488-6054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The present study investigated the potential of vascular endothelial growth factor (VEGF) promoter to derive cytosine deaminase (CD) transfected by polyamidoamine (G4-PAMAM) dendrimers to 4T1 murine breast cancer cell line as gene-directed enzyme/prodrug therapy. The VEGF promoter and cytosine deaminase gene were cloned into the pEGFP-N1vector from the genomic DNA of 4T1 and E. coli, respectively. The frequency of transfection for VEGF-CD-pEGFP-N1 and pEGFP-N1- CD treated groups was 35±3 and 36±4, respectively. MTT assay was perform to evaluate the cytotoxic effects of converted 5-flurocytosine on 4T1 cells. Also, the optimal concentration of 5-FC in 4T1 cells transfected by VEGF-CD-pEGFP-N1 plasmid was evaluated. The GFP expression of transfected 4T1 cells by VEGF-CD-pEGFP-N1were observed by fluorescent microscopy and flowcytometry. Results demonstrated that the suicide CD gene was successfully expressed in 4T1 cells determined by RT-PCR and GFP expression. A concentration of 200 μg/ml 5-FC was identified as optimal dose of prodrug. Furthermore, the CD/5-FC enzyme/prodrug system not only demonstrated toxicity on transformed 4T1 cells but also exerted a 'bystander effect' determined by MTT assay. The results showed that by 35% transfection with VEGF-CD-pEGFP-N1and CD-pEGFP-N1 plasmids, 80% and 90% inhibition of the cells growth occurred, respectively.
Collapse
Affiliation(s)
- Manouchehr Emamian
- Department of Genetics & Molecular Medicine, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran.,Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Akbar Abbaspour
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Tina Shahani
- Department of Genetics & Molecular Medicine, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran.,Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.,Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Alireza Biglari
- Department of Genetics & Molecular Medicine, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran.,Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Ali Sharafi
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.,Department of Pharmaceutical Biotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran.,Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
3
|
Li M, Sagastume EE, Lee D, McAlister D, DeGraffenreid AJ, Olewine KR, Graves S, Copping R, Mirzadeh S, Zimmerman BE, Larsen R, Johnson FL, Schultz MK. 203/212Pb Theranostic Radiopharmaceuticals for Image-guided Radionuclide Therapy for Cancer. Curr Med Chem 2020; 27:7003-7031. [PMID: 32720598 PMCID: PMC10613023 DOI: 10.2174/0929867327999200727190423] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/25/2020] [Accepted: 04/15/2020] [Indexed: 02/07/2023]
Abstract
Receptor-targeted image-guided Radionuclide Therapy (TRT) is increasingly recognized as a promising approach to cancer treatment. In particular, the potential for clinical translation of receptor-targeted alpha-particle therapy is receiving considerable attention as an approach that can improve outcomes for cancer patients. Higher Linear-energy Transfer (LET) of alpha-particles (compared to beta particles) for this purpose results in an increased incidence of double-strand DNA breaks and improved-localized cancer-cell damage. Recent clinical studies provide compelling evidence that alpha-TRT has the potential to deliver a significantly more potent anti-cancer effect compared with beta-TRT. Generator-produced 212Pb (which decays to alpha emitters 212Bi and 212Po) is a particularly promising radionuclide for receptor-targeted alpha-particle therapy. A second attractive feature that distinguishes 212Pb alpha-TRT from other available radionuclides is the possibility to employ elementallymatched isotope 203Pb as an imaging surrogate in place of the therapeutic radionuclide. As direct non-invasive measurement of alpha-particle emissions cannot be conducted using current medical scanner technology, the imaging surrogate allows for a pharmacologically-inactive determination of the pharmacokinetics and biodistribution of TRT candidate ligands in advance of treatment. Thus, elementally-matched 203Pb labeled radiopharmaceuticals can be used to identify patients who may benefit from 212Pb alpha-TRT and apply appropriate dosimetry and treatment planning in advance of the therapy. In this review, we provide a brief history on the use of these isotopes for cancer therapy; describe the decay and chemical characteristics of 203/212Pb for their use in cancer theranostics and methodologies applied for production and purification of these isotopes for radiopharmaceutical production. In addition, a medical physics and dosimetry perspective is provided that highlights the potential of 212Pb for alpha-TRT and the expected safety for 203Pb surrogate imaging. Recent and current preclinical and clinical studies are presented. The sum of the findings herein and observations presented provide evidence that the 203Pb/212Pb theranostic pair has a promising future for use in radiopharmaceutical theranostic therapies for cancer.
Collapse
Affiliation(s)
- Mengshi Li
- Department of Radiology, The University of Iowa, Iowa City, IA USA
- Viewpoint Molecular Targeting, Inc., Coralville, IA USA
| | | | - Dongyoul Lee
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, IA, USA
| | | | | | | | - Stephen Graves
- Department of Radiology, The University of Iowa, Iowa City, IA USA
| | - Roy Copping
- Oak Ridge National Laboratory, The US Department of Energy, Oak Ridge TN USA
| | - Saed Mirzadeh
- Oak Ridge National Laboratory, The US Department of Energy, Oak Ridge TN USA
| | - Brian E. Zimmerman
- The National Institute of Standards and Technology, Gaithersburg, MD, USA
| | | | - Frances L. Johnson
- Viewpoint Molecular Targeting, Inc., Coralville, IA USA
- Department of Internal Medicine, Carver College of Medicine, The University of Iowa, Iowa City, Iowa USA
| | - Michael K. Schultz
- Department of Radiology, The University of Iowa, Iowa City, IA USA
- Viewpoint Molecular Targeting, Inc., Coralville, IA USA
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, IA, USA
- Department of Chemistry, The University of Iowa, Iowa City, IA, USA
| |
Collapse
|
4
|
Vats K, Agrawal K, Sharma R, Sarma HD, Satpati D, Dash A. Preparation and clinical translation of 99mTc-PSMA-11 for SPECT imaging of prostate cancer. MEDCHEMCOMM 2019; 10:2111-2117. [PMID: 32190233 DOI: 10.1039/c9md00401g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 10/15/2019] [Indexed: 01/07/2023]
Abstract
This study explores the feasibility of radiolabeling the HBED-CC-PSMA (PSMA-11) ligand with Tc-99m for SPECT imaging of prostate cancer patients. 68Ga-HBED-CC-PSMA (PSMA-11) is used clinically for PET/CT imaging of prostate cancer (PCa) patients. However, a PET/CT facility may not be affordable and/or accessible to remotely located health centers. Thus, economic considerations require development of a SPECT-based tracer to provide low cost effective health care to the entire global population. Hence, radiochemical parameters were varied and optimized to obtain the maximum radiochemical yield of 99mTc-PSMA-11. 99mTc-PSMA-11 could be prepared in 60 ± 5% radiochemical yield and >98% radiochemical purity with a specific activity of 15 ± 5 GBq μmol-1. The radiotracer exhibited high stability in vitro in human serum after 24 h. A cell uptake of 15.2 ± 1.2% was observed for 99mTc-PSMA-11 in PSMA-positive prostate carcinoma LNCaP cells. Rapid clearance from blood, liver, intestine, lungs and other major organs was observed during normal biodistribution studies. The radiotracer, 99mTc-PSMA-11, exhibited physiological distribution in salivary and lacrimal glands similar to that of 68Ga-PSMA-11 in mice and successfully identified primary tumors as well as metastatic lesions in human patients. This study thus highlights successful radiolabeling of HBED-CC-PSMA with Tc-99m and the potential of 99mTc-PSMA-11 as a SPECT imaging agent for PCa.
Collapse
Affiliation(s)
- Kusum Vats
- Radiopharmaceuticals Division , India . ; ; Tel: +91 22 25590748
| | - Kanhaiyalal Agrawal
- Department of Nuclear Medicine , All India Institute of Medical Sciences , Bhubaneswar-751019 , India
| | - Rohit Sharma
- Radiopharmaceuticals Division , India . ; ; Tel: +91 22 25590748.,Homi Bhabha National Institute , Anushaktinagar , Mumbai-400094 , India
| | - Haladhar Dev Sarma
- Radiation Biology and Health Science Division , Bhabha Atomic Research Centre , Mumbai-400085 , India
| | - Drishty Satpati
- Radiopharmaceuticals Division , India . ; ; Tel: +91 22 25590748.,Homi Bhabha National Institute , Anushaktinagar , Mumbai-400094 , India
| | - Ashutosh Dash
- Radiopharmaceuticals Division , India . ; ; Tel: +91 22 25590748.,Homi Bhabha National Institute , Anushaktinagar , Mumbai-400094 , India
| |
Collapse
|
5
|
Li M, Zhang X, Quinn TP, Lee D, Liu D, Kunkel F, Zimmerman BE, McAlister D, Olewein K, Menda Y, Mirzadeh S, Copping R, Johnson FL, Schultz MK. Automated cassette-based production of high specific activity [ 203/212Pb]peptide-based theranostic radiopharmaceuticals for image-guided radionuclide therapy for cancer. Appl Radiat Isot 2017; 127:52-60. [PMID: 28521118 PMCID: PMC6295910 DOI: 10.1016/j.apradiso.2017.05.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 04/29/2017] [Accepted: 05/06/2017] [Indexed: 01/28/2023]
Abstract
A method for preparation of Pb-212 and Pb-203 labeled chelator-modified peptide-based radiopharmaceuticals for cancer imaging and radionuclide therapy has been developed and adapted for automated clinical production. Pre-concentration and isolation of radioactive Pb2+ from interfering metals in dilute hydrochloric acid was optimized using a commercially-available Pb-specific chromatography resin packed in disposable plastic columns. The pre-concentrated radioactive Pb2+ is eluted in NaOAc buffer directly to the reaction vessel containing chelator-modified peptides. Radiolabeling was found to proceed efficiently at 85°C (45min; pH 5.5). The specific activity of radiolabeled conjugates was optimized by separation of radiolabeled conjugates from unlabeled peptide via HPLC. Preservation of bioactivity was confirmed by in vivo biodistribution of Pb-203 and Pb-212 labeled peptides in melanoma-tumor-bearing mice. The approach has been found to be robustly adaptable to automation and a cassette-based fluid-handling system (Modular Lab Pharm Tracer) has been customized for clinical radiopharmaceutical production. Our findings demonstrate that the Pb-203/Pb-212 combination is a promising elementally-matched radionuclide pair for image-guided radionuclide therapy for melanoma, neuroendocrine tumors, and potentially other cancers.
Collapse
Affiliation(s)
- Mengshi Li
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, IA, USA.
| | - Xiuli Zhang
- Department of Biochemistry, University of Missouri, Columbia, MO USA
| | - Thomas P Quinn
- Department of Biochemistry, University of Missouri, Columbia, MO USA
| | - Dongyoul Lee
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, IA, USA
| | - Dijie Liu
- Stead Family Department of Pediatrics, University of Iowa, Iowa City, IA, USA
| | - Falk Kunkel
- Eckert & Ziegler Radiopharma GmbH, Berlin, Germany
| | - Brian E Zimmerman
- National Institute of Standards and Technology, Gaithersburg, MD, USA
| | | | | | - Yusuf Menda
- Department of Radiology, The University of Iowa, Iowa City, IA, USA
| | - Saed Mirzadeh
- Oak Ridge National Laboratory, The US Department of Energy, Oak Ridge, TN, USA
| | - Roy Copping
- Oak Ridge National Laboratory, The US Department of Energy, Oak Ridge, TN, USA
| | - Frances L Johnson
- Viewpoint Molecular Targeting, LLC, Coralville, IA, USA; Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Michael K Schultz
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, IA, USA; Stead Family Department of Pediatrics, University of Iowa, Iowa City, IA, USA; Department of Radiology, The University of Iowa, Iowa City, IA, USA; Viewpoint Molecular Targeting, LLC, Coralville, IA, USA; Department of Radiation Oncology (Free Radical and Radiation Biology Program), Carver College of Medicine, University of Iowa, Iowa City, IA, USA; Department of Chemistry, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
6
|
|
7
|
Long-term Results of a Comparative PET/CT and PET/MRI Study of 11C-Acetate and 18F-Fluorocholine for Restaging of Early Recurrent Prostate Cancer. Clin Nucl Med 2017; 42:e242-e246. [PMID: 28240662 DOI: 10.1097/rlu.0000000000001609] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
PURPOSE The aims of this study were to assess the intraindividual performance of F-fluorocholine (FCH) and C-acetate (ACE) PET studies for restaging of recurrent prostate cancer (PCa), to correlate PET findings with long-term clinical and imaging follow-up, and to evaluate the impact of PET results on patient management. METHODS Thirty-three PCa patients relapsing after radical prostatectomy (n = 10, prostate-specific antigen [PSA] ≤3 ng/mL), primary radiotherapy (n = 8, prostate-specific antigen ≤5 ng/mL), or radical prostatectomy + salvage radiotherapy (n = 15) underwent ACE and FCH PET-CT (n = 29) or PET-MRI (n = 4) studies in a randomized sequence 0 to 21 days apart. RESULTS The detection rate for ACE was 66% and for FCH was 60%. Results were concordant in 79% of the cases (26/33) and discordant in 21% (retroperitoneal, n = 5; pararectal, n = 1; and external iliac nodes, n = 1). After a median FU of 41 months (n = 32, 1 patient lost to FU), the site of relapse was correctly identified by ACE and FCH in 53% (17/32) and 47% (15/32) of the patients, respectively (2 M1a patients ACE+/FCH-), whereas in 6 of 32 patients the relapse was not localized. Treatment approach was changed in 11 (34.4%) of 32 patients and 9 (28%) of 32 patients restaged with ACE and FCH PET, respectively. CONCLUSIONS In early recurrent PCa, ACE and FCH showed minor discrepancies, limited to nodal staging and mainly in the retroperitoneal area, with true positivity of PET findings confirmed in half of the cases during FU. Treatment approach turned out to be influenced by ACE or FCH PET studies in one third of the patients.
Collapse
|