1
|
Steenhout C, Deprez L, Hustinx R, Withofs N. Brain Tumor Assessment: Integrating PET/Computed Tomography and MR Imaging Modalities. PET Clin 2025; 20:165-174. [PMID: 39477722 DOI: 10.1016/j.cpet.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
While MR imaging is the main imaging modality to assess brain tumors, PET imaging has a specific role. Among the many tracers that have been proposed and are still being developed, 2-[18F]fluoro-2-deoxy-d-glucose ([18F]FDG) and O-(2-[18F]-fluoroethyl)-l-tyrosine ([18F]FET) PET remain the most solidly established in the clinics. In particular, [18F]FET has gained increased acceptance due to its higher sensitivity. In this paper, we present an overview of the current clinical status of brain tumor imaging, with emphasis on PET imaging.
Collapse
Affiliation(s)
- Camille Steenhout
- Division of Nuclear Medicine and Oncological Imaging, University Hopsital of Liège, Avenue de l'Hôpital 1, Liège B-4000, Belgium
| | - Louis Deprez
- Division of Nuclear Medicine and Oncological Imaging, University Hopsital of Liège, Avenue de l'Hôpital 1, Liège B-4000, Belgium
| | - Roland Hustinx
- Division of Nuclear Medicine and Oncological Imaging, University Hopsital of Liège, Avenue de l'Hôpital 1, Liège B-4000, Belgium
| | - Nadia Withofs
- Division of Nuclear Medicine and Oncological Imaging, University Hopsital of Liège, Avenue de l'Hôpital 1, Liège B-4000, Belgium.
| |
Collapse
|
2
|
Verrecchia-Ramos E, Ginet M, Morel O, Engels-Deutsch M, Ben Mahmoud S, Retif P. Optimization of reconstruction in quantitative brain PET images: Benefits from PSF modeling and correction of edge artifacts. Med Phys 2024; 51:9041-9056. [PMID: 39291702 DOI: 10.1002/mp.17419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 09/05/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Modern PET reconstruction algorithms incorporate point-spread-function (PSF) correction to mitigate partial volume effect. However, PSF correction can introduce edge artifacts that lead to quantification errors. Consequently, current international guidelines advise against using PSF correction in brain PET reconstruction. PURPOSE We aimed to investigate PSF-induced quantification errors in recent digital PET systems and identify conditions that mitigate them. This study utilized brain PET imaging with alginate-based realistic phantoms, simulating lesion-to-background activity ratios of 10:1 and 2:1, with eleven reconstruction parameter sets. METHODS Phantoms were prepared using a commercial anthropomorphic head phantom and two homemade inserts. Each insert contained a homogeneous 18F-FDG alginate background with hot spheres of varying diameter (3, 4, 6, 8, 10, 12, and 15 mm). PET imaging was conducted on a digital PET-CT system Biograph Vision 600 (Siemens), with a 10 min scan duration. Imaging was performed with and without PSF correction, with 2, 4, 6, 12, 18, or 24 iterations in reconstruction, and with or without additional Gaussian postfiltering. We assessed the recovery coefficient (RC), contrast recovery coefficient (CRC), variability, and CRC-to-variability ratios for each sphere size and reconstruction parameter set. RESULTS PSF-corrected images of the 10:1 spheres exhibited a nonmonotonic CRC-to-sphere diameter relationship due to edge artifacts overshoot in the 10 mm-diameter sphere. In contrast, PSF images of the 2:1 spheres showed a monotonically increasing relationship. Non-PSF images of both phantoms showed an expected monotonically increasing CRC-to-sphere diameter relationship but with lower CRC values compared to PSF images. The nonmonotonic relationship observed with 10:1 spheres was mitigated by applying a 3-mm FWHM Gaussian postfiltering. For both phantoms, reconstructions with 6 iterations, PSF correction, and additional 3-mm FWHM Gaussian postfiltering demonstrated the highest CRC-to-variability ratios. CONCLUSIONS Our findings indicate that Gaussian postfiltering suppresses PSF artifacts. This parameter set corrected the nonmonotonic CRC-to-sphere diameter relationship and improved the CRC-to-variability ratio compared to non-PSF reconstructions. Therefore, to enhance lesion detectability without compromising quantification accuracy, PSF correction coupled with Gaussian postfiltering should be used in brain PET.
Collapse
Affiliation(s)
| | - Merwan Ginet
- CHR Metz-Thionville, Department of Nuclear Medicine, Mercy Hospital, Ars-Laquenexy, France
| | - Olivier Morel
- CHR Metz-Thionville, Department of Nuclear Medicine, Mercy Hospital, Ars-Laquenexy, France
| | - Marc Engels-Deutsch
- CHR Metz-Thionville, Department of Odontology, Mercy Hospital, Ars-Laquenexy, France
- CNRS, LEM3, Université de Lorraine, Nancy, France
| | - Sinan Ben Mahmoud
- CHR Metz-Thionville, Department of Nuclear Medicine, Mercy Hospital, Ars-Laquenexy, France
| | - Paul Retif
- CHR Metz-Thionville, Department of Medical Physics, Mercy Hospital, Ars-Laquenexy, France
- CNRS, CRAN, Université de Lorraine, Nancy, France
| |
Collapse
|
3
|
Whittington B, Tzolos E, Joshi S, Bing R, Andrews J, Loganath K, Craig N, Balmforth C, Clark L, Lucatelli C, MacAskill MG, Tavares AAS, Clark T, Mills NL, Nash J, Dey D, Slomka PJ, Koglin N, Stephens AW, Dweck MR, Williams MC, Whiteley W, van Beek EJR, Wardlaw JM, Newby DE. Qualitative and quantitative analysis of 18F-GP1 positron emission tomography in thrombotic cardiovascular disease. Sci Rep 2024; 14:26792. [PMID: 39500930 PMCID: PMC11538255 DOI: 10.1038/s41598-024-77151-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/21/2024] [Indexed: 11/08/2024] Open
Abstract
18F-GP1 is a novel highly specific radiotracer that binds to activated platelets and thrombus. We aimed to establish the observer repeatability of coronary, carotid and cerebral 18F-GP1 uptake in patients presenting with acute myocardial infarction or ischaemic stroke. Forty-three patients presenting with acute myocardial infarction or ischaemic stroke underwent hybrid positron emission tomography (PET) and computed tomography (CT) angiography. Qualitative and quantitative assessment of 18F-GP1 uptake was performed on coronary arteries, carotid arteries and brain parenchyma. Qualitative uptake of 18F-GP1 had excellent intraobserver and interobserver agreement, with complete agreement for the presence or absence of visual 18F-GP1 uptake. For quantitative analysis, there were excellent intraclass correlation coefficients for intraobserver repeatability for coronary artery, carotid artery and brain parenchymal SUVmax and TBRmax measurements (all ≥ 0.92). Coronary artery and brain parenchymal analyses showed the strongest agreement in SUVmax values with mean biases of - 0.04 (limits of agreement - 0.21 to 0.20) and 0.02 (limits of agreement - 0.29 to 0.32) respectively. There was good interclass correlation coefficients for interobserver repeatability for coronary artery, carotid artery and brain parenchymal SUVmax and TBRmax measurements (all ≥ 0.89). The strongest interobserver agreement was seen with brain parenchymal SUVmax (mean SUVmax 1.95 ± 0.94) and TBRmax (mean TBRmax 9.55 ± 6.56) with mean biases of - 0.05 (limits of agreement - 0.37 to 0.27) and 0.04 (limits of agreement - 0.59 to 0.52) respectively. Visual qualitative and quantitative 18F-GP1 PET-CT image analyses provide robust and repeatable measurements of activated platelets and thrombi within the coronary arteries, carotid arteries and brain parenchyma.
Collapse
Affiliation(s)
- Beth Whittington
- BHF Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK.
| | - Evangelos Tzolos
- BHF Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Shruti Joshi
- BHF Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Rong Bing
- BHF Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Jack Andrews
- BHF Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Krithika Loganath
- BHF Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Neil Craig
- BHF Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Craig Balmforth
- BHF Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Laura Clark
- BHF Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | | | - Mark G MacAskill
- BHF Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
- Edinburgh Imaging, Queen's Medical Research Institute, Edinburgh, UK
| | - Adriana A S Tavares
- BHF Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
- Edinburgh Imaging, Queen's Medical Research Institute, Edinburgh, UK
| | - Tim Clark
- Edinburgh Imaging, Queen's Medical Research Institute, Edinburgh, UK
| | - Nicholas L Mills
- BHF Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
- Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Jennifer Nash
- BHF Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Damini Dey
- Departments of Medicine (Division of Artificial Intelligence in Medicine), Biomedical Imaging Research Institute, Cedars-Sinai Medical Centre, Los Angeles, USA
| | - Piotr J Slomka
- Departments of Medicine (Division of Artificial Intelligence in Medicine), Biomedical Imaging Research Institute, Cedars-Sinai Medical Centre, Los Angeles, USA
| | | | | | - Marc R Dweck
- BHF Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
- Edinburgh Imaging, Queen's Medical Research Institute, Edinburgh, UK
| | - Michelle C Williams
- BHF Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
- Edinburgh Imaging, Queen's Medical Research Institute, Edinburgh, UK
| | - William Whiteley
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Edwin J R van Beek
- BHF Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
- Edinburgh Imaging, Queen's Medical Research Institute, Edinburgh, UK
| | - Joanna M Wardlaw
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute Centre, University of Edinburgh, Edinburgh, UK
| | - David E Newby
- BHF Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
- Edinburgh Imaging, Queen's Medical Research Institute, Edinburgh, UK
| |
Collapse
|
4
|
Shukla S, Karbhari A, Rastogi S, Agarwal U, Rai P, Mahajan A. Bench-to-bedside imaging in brain metastases: a road to precision oncology. Clin Radiol 2024; 79:485-500. [PMID: 38637186 DOI: 10.1016/j.crad.2024.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 04/20/2024]
Abstract
Radiology has seen tremendous evolution in the last few decades. At the same time, oncology has made great strides in diagnosing and treating cancer. Distant metastases of neoplasms are being encountered more often in light of longer patient survival due to better therapeutic strategies and diagnostic methods. Brain metastasis (BM) is a dismal manifestation of systemic cancer. In the present scenario, magnetic resonance imaging (MRI), computed tomography (CT) and positron emission tomography (PET) are playing a big role in providing molecular information about cancer. Lately, molecular imaging has emerged as a stirring arena of dynamic imaging techniques that have enabled clinicians and scientists to noninvasively visualize and understand biological processes at the cellular and molecular levels. This knowledge has impacted etiopathogenesis, detection, personalized treatment, drug development, and our understanding of carcinogenesis. This article offers insight into the molecular biology underlying brain metastasis, its pathogenesis, imaging protocols, and algorithms. It also discusses disease-specific molecular imaging features, focusing on common tumors that spread to the brain, such as lung, breast, colorectal cancer, melanoma, and renal cell carcinoma. Additionally, it covers various targeted treatment options, criteria for assessing treatment response, and the role of artificial intelligence in diagnosing, managing, and predicting prognosis for patients with brain metastases.
Collapse
Affiliation(s)
- S Shukla
- Department of Radiodiagnosis and Imaging, Mahamana Pandit Madan Mohan Malaviya Cancer Centre and Homi Bhabha Cancer Hospital, Tata Memorial Hospital, Varanasi, 221 005, Maharashtra, India; Department of Radiodiagnosis and Imaging, Homi Bhabha National Institute, Tata Memorial Hospital, Mumbai, 400 012, Maharashtra, India
| | - A Karbhari
- Department of Radiodiagnosis and Imaging, Homi Bhabha National Institute, Tata Memorial Hospital, Mumbai, 400 012, Maharashtra, India
| | - S Rastogi
- Department of Radiodiagnosis and Imaging, Homi Bhabha National Institute, Tata Memorial Hospital, Mumbai, 400 012, Maharashtra, India
| | - U Agarwal
- Department of Radiodiagnosis and Imaging, Homi Bhabha National Institute, Tata Memorial Hospital, Mumbai, 400 012, Maharashtra, India
| | - P Rai
- Department of Radiodiagnosis and Imaging, Homi Bhabha National Institute, Tata Memorial Hospital, Mumbai, 400 012, Maharashtra, India
| | - A Mahajan
- Department of Imaging, The Clatterbridge Cancer Centre NHS Foundation Trust, L7 8YA Liverpool, UK; Faculty of Health and Life Sciences, University of Liverpool, L7 8TX, Liverpool, UK.
| |
Collapse
|
5
|
Galldiks N, Lohmann P, Fink GR, Langen KJ. Amino Acid PET in Neurooncology. J Nucl Med 2023; 64:693-700. [PMID: 37055222 DOI: 10.2967/jnumed.122.264859] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/10/2023] [Indexed: 04/15/2023] Open
Abstract
For decades, several amino acid PET tracers have been used to optimize diagnostics in patients with brain tumors. In clinical routine, the most important clinical indications for amino acid PET in brain tumor patients are differentiation of neoplasm from nonneoplastic etiologies, delineation of tumor extent for further diagnostic and treatment planning (i.e., diagnostic biopsy, resection, or radiotherapy), differentiation of treatment-related changes such as pseudoprogression or radiation necrosis after radiation or chemoradiation from tumor progression at follow-up, and assessment of response to anticancer therapy, including prediction of patient outcome. This continuing education article addresses the diagnostic value of amino acid PET for patients with either glioblastoma or metastatic brain cancer.
Collapse
Affiliation(s)
- Norbert Galldiks
- Department of Neurology, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany;
- Institute of Neuroscience and Medicine, Research Center Juelich, Juelich, Germany
- Center for Integrated Oncology, Universities of Aachen, Bonn, Cologne, and Duesseldorf, Germany; and
| | - Philipp Lohmann
- Institute of Neuroscience and Medicine, Research Center Juelich, Juelich, Germany
| | - Gereon R Fink
- Department of Neurology, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
- Institute of Neuroscience and Medicine, Research Center Juelich, Juelich, Germany
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine, Research Center Juelich, Juelich, Germany
- Center for Integrated Oncology, Universities of Aachen, Bonn, Cologne, and Duesseldorf, Germany; and
- Department of Nuclear Medicine, RWTH University Hospital Aachen, Aachen, Germany
| |
Collapse
|
6
|
Urso L, Bonatto E, Nieri A, Castello A, Maffione AM, Marzola MC, Cittanti C, Bartolomei M, Panareo S, Mansi L, Lopci E, Florimonte L, Castellani M. The Role of Molecular Imaging in Patients with Brain Metastases: A Literature Review. Cancers (Basel) 2023; 15:cancers15072184. [PMID: 37046845 PMCID: PMC10093739 DOI: 10.3390/cancers15072184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/28/2023] [Accepted: 04/03/2023] [Indexed: 04/14/2023] Open
Abstract
Over the last several years, molecular imaging has gained a primary role in the evaluation of patients with brain metastases (BM). Therefore, the "Response Assessment in Neuro-Oncology" (RANO) group recommends amino acid radiotracers for the assessment of BM. Our review summarizes the current use of positron emission tomography (PET) radiotracers in patients with BM, ranging from present to future perspectives with new PET radiotracers, including the role of radiomics and potential theranostics approaches. A comprehensive search of PubMed results was conducted. All studies published in English up to and including December 2022 were reviewed. Current evidence confirms the important role of amino acid PET radiotracers for the delineation of BM extension, for the assessment of response to therapy, and particularly for the differentiation between tumor progression and radionecrosis. The newer radiotracers explore non-invasively different biological tumor processes, although more consistent findings in larger clinical trials are necessary to confirm preliminary results. Our review illustrates the role of molecular imaging in patients with BM. Along with magnetic resonance imaging (MRI), the gold standard for diagnosis of BM, PET is a useful complementary technique for processes that otherwise cannot be obtained from anatomical MRI alone.
Collapse
Affiliation(s)
- Luca Urso
- Department of Nuclear Medicine PET/CT Centre, S. Maria della Misericordia Hospital, 45100 Rovigo, Italy
| | - Elena Bonatto
- Nuclear Medicine Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Alberto Nieri
- Nuclear Medicine Unit, Oncological Medical and Specialist Department, University Hospital of Ferrara, 44124 Cona, Italy
| | - Angelo Castello
- Nuclear Medicine Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Anna Margherita Maffione
- Department of Nuclear Medicine PET/CT Centre, S. Maria della Misericordia Hospital, 45100 Rovigo, Italy
| | - Maria Cristina Marzola
- Department of Nuclear Medicine PET/CT Centre, S. Maria della Misericordia Hospital, 45100 Rovigo, Italy
| | - Corrado Cittanti
- Nuclear Medicine Unit, Oncological Medical and Specialist Department, University Hospital of Ferrara, 44124 Cona, Italy
- Department of Translational Medicine, University of Ferrara, Via Aldo Moro 8, 44124 Ferrara, Italy
| | - Mirco Bartolomei
- Nuclear Medicine Unit, Oncological Medical and Specialist Department, University Hospital of Ferrara, 44124 Cona, Italy
| | - Stefano Panareo
- Nuclear Medicine Unit, Oncology and Haematology Department, University Hospital of Modena, 41125 Modena, Italy
| | - Luigi Mansi
- Interuniversity Research Center for the Sustainable Development (CIRPS), 00152 Rome, Italy
| | - Egesta Lopci
- Nuclear Medicine Unit, IRCCS-Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
| | - Luigia Florimonte
- Nuclear Medicine Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Massimo Castellani
- Nuclear Medicine Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| |
Collapse
|
7
|
Diagnostic Value of 18 F-FACBC PET/MRI in Brain Metastases. Clin Nucl Med 2022; 47:1030-1039. [PMID: 36241129 PMCID: PMC9653108 DOI: 10.1097/rlu.0000000000004435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
PURPOSE The study aims to evaluate whether combined 18 F-FACBC PET/MRI could provide additional diagnostic information compared with MRI alone in brain metastases. PATIENTS AND METHODS Eighteen patients with newly diagnosed or suspected recurrence of brain metastases received dynamic 18 F-FACBC PET/MRI. Lesion detection was evaluated on PET and MRI scans in 2 groups depending on prior stereotactic radiosurgery (SRS group) or not (no-SRS group). SUVs, time-activity curves, and volumetric analyses of the lesions were performed. RESULTS In the no-SRS group, 29/29 brain lesions were defined as "MRI positive." With PET, 19/29 lesions were detected and had high tumor-to-background ratios (TBRs) (D max MR , ≥7 mm; SUV max , 1.2-8.4; TBR, 3.9-25.9), whereas 10/29 lesions were undetected (D max MR , ≤8 mm; SUV max , 0.3-1.2; TBR, 1.0-2.7). In the SRS group, 4/6 lesions were defined as "MRI positive," whereas 2/6 lesions were defined as "MRI negative" indicative of radiation necrosis. All 6 lesions were detected with PET (D max MR , ≥15 mm; SUV max , 1.4-4.2; TBR, 3.6-12.6). PET volumes correlated and were comparable in size with contrast-enhanced MRI volumes but were only partially congruent (mean DSC, 0.66). All time-activity curves had an early peak, followed by a plateau or a decreasing slope. CONCLUSIONS 18 F-FACBC PET demonstrated uptake in brain metastases from cancer of different origins (lung, gastrointestinal tract, breast, thyroid, and malignant melanoma). However, 18 F-FACBC PET/MRI did not improve detection of brain metastases compared with MRI but might detect tumor tissue beyond contrast enhancement on MRI. 18 F-FACBC PET should be further evaluated in recurrent brain metastases.
Collapse
|
8
|
Wiggins RH, Hoffman JM, Fine GC, Covington MF, Salem AE, Koppula BR, Morton KA. PET-CT in Clinical Adult Oncology-V. Head and Neck and Neuro Oncology. Cancers (Basel) 2022; 14:cancers14112726. [PMID: 35681709 PMCID: PMC9179458 DOI: 10.3390/cancers14112726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/25/2022] [Accepted: 05/25/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Positron emission tomography (PET), typically combined with computed tomography (CT) has become a critical advanced imaging technique in oncology. With PET-CT, a radioactive molecule (radiotracer) is injected in the bloodstream and localizes to sites of tumor because of specific cellular features of the tumor that accumulate the targeting radiotracer. The CT scan, performed at the same time, provides information to facilitate attenuation correction, so that radioactivity from deep or dense structures can be better visualized, but with head and neck malignancies it is critical to provide correlating detailed anatomic imaging. PET-CT has a variety of applications in oncology, including staging, therapeutic response assessment, restaging, and surveillance. This series of six review articles provides an overview of the value, applications, and imaging and interpretive strategies of PET-CT in the more common adult malignancies. The fifth report in this series provides a review of PET-CT imaging in head and neck and neuro oncology. Abstract PET-CT is an advanced imaging modality with many oncologic applications, including staging, assessment of response to therapy, restaging, and longitudinal surveillance for recurrence. The goal of this series of six review articles is to provide practical information to providers and imaging professionals regarding the best use of PET-CT for specific oncologic indications, and the potential pitfalls and nuances that characterize these applications. In addition, key tumor-specific clinical information and representative PET-CT images are provided to outline the role that PET-CT plays in the management of oncology patients. Hundreds of different types of tumors exist, both pediatric and adult. A discussion of the role of FDG PET for all of these is beyond the scope of this review. Rather, this series of articles focuses on the most common adult malignancies that may be encountered in clinical practice. It also focuses on FDA-approved and clinically available radiopharmaceuticals, rather than research tracers or those requiring a local cyclotron. The fifth review article in this series focuses on PET-CT imaging in head and neck tumors, as well as brain tumors. Common normal variants, key anatomic features, and benign mimics of these tumors are reviewed. The goal of this review article is to provide the imaging professional with guidance in the interpretation of PET-CT for the more common head and neck malignancies and neuro oncology, and to inform the referring providers so that they can have realistic expectations of the value and limitations of PET-CT for the specific type of tumor being addressed.
Collapse
Affiliation(s)
- Richard H. Wiggins
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT 84132, USA; (R.H.W.); (J.M.H.); (G.C.F.); (M.F.C.); (A.E.S.); (B.R.K.)
| | - John M. Hoffman
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT 84132, USA; (R.H.W.); (J.M.H.); (G.C.F.); (M.F.C.); (A.E.S.); (B.R.K.)
| | - Gabriel C. Fine
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT 84132, USA; (R.H.W.); (J.M.H.); (G.C.F.); (M.F.C.); (A.E.S.); (B.R.K.)
| | - Matthew F. Covington
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT 84132, USA; (R.H.W.); (J.M.H.); (G.C.F.); (M.F.C.); (A.E.S.); (B.R.K.)
| | - Ahmed Ebada Salem
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT 84132, USA; (R.H.W.); (J.M.H.); (G.C.F.); (M.F.C.); (A.E.S.); (B.R.K.)
- Department of Radiodiagnosis and Intervention, Faculty of Medicine, Alexandria University, Alexandria 21526, Egypt
| | - Bhasker R. Koppula
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT 84132, USA; (R.H.W.); (J.M.H.); (G.C.F.); (M.F.C.); (A.E.S.); (B.R.K.)
| | - Kathryn A. Morton
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT 84132, USA; (R.H.W.); (J.M.H.); (G.C.F.); (M.F.C.); (A.E.S.); (B.R.K.)
- Intermountain Healthcare Hospitals, Summit Physician Specialists, Murray, UT 84123, USA
- Correspondence: ; Tel.: +1-801-581-7553
| |
Collapse
|
9
|
PET Imaging in Neuro-Oncology: An Update and Overview of a Rapidly Growing Area. Cancers (Basel) 2022; 14:cancers14051103. [PMID: 35267411 PMCID: PMC8909369 DOI: 10.3390/cancers14051103] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/08/2022] [Accepted: 02/19/2022] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Positron emission tomography (PET) is a functional imaging technique which plays an increasingly important role in the management of brain tumors. Owing different radiotracers, PET allows to image different metabolic aspects of the brain tumors. This review outlines currently available PET radiotracers and their respective indications in neuro-oncology. It specifically focuses on the investigation of gliomas, meningiomas, primary central nervous system lymphomas as well as brain metastases. Recent advances in the production of PET radiotracers, image analyses and translational applications to peptide radionuclide receptor therapy, which allow to treat brain tumors with radiotracers, are also discussed. The objective of this review is to provide a comprehensive overview of PET imaging’s potential in neuro-oncology as an adjunct to brain magnetic resonance imaging (MRI). Abstract PET plays an increasingly important role in the management of brain tumors. This review outlines currently available PET radiotracers and their respective indications. It specifically focuses on 18F-FDG, amino acid and somatostatin receptor radiotracers, for imaging gliomas, meningiomas, primary central nervous system lymphomas as well as brain metastases. Recent advances in radiopharmaceuticals, image analyses and translational applications to therapy are also discussed. The objective of this review is to provide a comprehensive overview of PET imaging’s potential in neuro-oncology as an adjunct to brain MRI for all medical professionals implicated in brain tumor diagnosis and care.
Collapse
|
10
|
Zhang-Yin JT, Girard A, Bertaux M. What Does PET Imaging Bring to Neuro-Oncology in 2022? A Review. Cancers (Basel) 2022; 14:cancers14040879. [PMID: 35205625 PMCID: PMC8870476 DOI: 10.3390/cancers14040879] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/01/2022] [Accepted: 02/07/2022] [Indexed: 01/27/2023] Open
Abstract
Simple Summary Positron emission tomography (PET) imaging is increasingly used to supplement MRI in the management of patient with brain tumors. In this article, we provide a review of the current place and perspectives of PET imaging for the diagnosis and follow-up of from primary brain tumors such as gliomas, meningiomas and central nervous system lymphomas, as well as brain metastases. Different PET radiotracers targeting different biological processes are used to accurately depict these brain tumors and provide unique metabolic and biologic information. Radiolabeled amino acids such as [18F]FDOPA or [18F]FET are used for imaging of gliomas while both [18F]FDG and amino acids can be used for brain metastases. Meningiomas can be seen with a high contrast using radiolabeled ligands of somatostatin receptors, which they usually carry. Unconventional tracers that allow the study of other biological processes such as cell proliferation, hypoxia, or neo-angiogenesis are currently being studied for brain tumors imaging. Abstract PET imaging is being increasingly used to supplement MRI in the clinical management of brain tumors. The main radiotracers implemented in clinical practice include [18F]FDG, radiolabeled amino acids ([11C]MET, [18F]FDOPA, [18F]FET) and [68Ga]Ga-DOTA-SSTR, targeting glucose metabolism, L-amino-acid transport and somatostatin receptors expression, respectively. This review aims at addressing the current place and perspectives of brain PET imaging for patients who suffer from primary or secondary brain tumors, at diagnosis and during follow-up. A special focus is given to the following: radiolabeled amino acids PET imaging for tumor characterization and follow-up in gliomas; the role of amino acid PET and [18F]FDG PET for detecting brain metastases recurrence; [68Ga]Ga-DOTA-SSTR PET for guiding treatment in meningioma and particularly before targeted radiotherapy.
Collapse
Affiliation(s)
| | - Antoine Girard
- Department of Nuclear Medicine, Centre Eugène Marquis, Université Rennes 1, 35000 Rennes, France
| | - Marc Bertaux
- Department of Nuclear Medicine, Foch Hospital, 92150 Suresnes, France
| |
Collapse
|
11
|
Gaebe K, Li AY, Das S. Clinical Biomarkers for Early Identification of Patients with Intracranial Metastatic Disease. Cancers (Basel) 2021; 13:cancers13235973. [PMID: 34885083 PMCID: PMC8656478 DOI: 10.3390/cancers13235973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/25/2021] [Accepted: 11/25/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary The development of brain metastases, or intracranial metastatic disease (IMD), is a serious and life-altering complication for many patients with cancer. While there have been substantial advancements in the treatments available for IMD and in our understanding of its pathogenesis, conventional methods remain insufficient to detect IMD at an early stage. In this review, we discuss current research on biomarkers specific to IMD. In particular, we highlight biomarkers that can be easily accessed via the bloodstream or cerebrospinal fluid, including circulating tumor cells and DNA, as well as advanced imaging techniques. The continued development of these assays could enable clinicians to detect IMD prior to the development of IMD-associated symptoms and ultimately improve patient prognosis and survival. Abstract Nearly 30% of patients with cancer will develop intracranial metastatic disease (IMD), and more than half of these patients will die within a few months following their diagnosis. In light of the profound effect of IMD on survival and quality of life, there is significant interest in identifying biomarkers that could facilitate the early detection of IMD or identify patients with cancer who are at high IMD risk. In this review, we will highlight early efforts to identify biomarkers of IMD and consider avenues for future investigation.
Collapse
Affiliation(s)
- Karolina Gaebe
- Institute of Medical Science, Faculty of Medicine, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 3K1, Canada; (K.G.); (A.Y.L.)
| | - Alyssa Y. Li
- Institute of Medical Science, Faculty of Medicine, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 3K1, Canada; (K.G.); (A.Y.L.)
| | - Sunit Das
- Institute of Medical Science, Faculty of Medicine, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 3K1, Canada; (K.G.); (A.Y.L.)
- Division of Neurosurgery, St. Michael’s Hospital, University of Toronto, 30 Bond Street, Toronto, ON M5B 1W8, Canada
- Correspondence:
| |
Collapse
|
12
|
Alshehri S, Prior J, Moshebah M, Schiappacasse L, Dunet V. Negative 18F-FET PET/CT in brain metastasis recurrence: a teaching case report. Eur J Hybrid Imaging 2021; 5:21. [PMID: 34806124 PMCID: PMC8606481 DOI: 10.1186/s41824-021-00115-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/08/2021] [Indexed: 12/01/2022] Open
Abstract
Positron emission tomography (PET) using O-(2-[18F]fluoroethyl)-L-tyrosine (18F-FET) PET has been shown to be a useful tool for differentiating radiation therapy outcomes, such as brain metastasis recurrence or radiation necrosis. We present the case of a female patient with brain metastases from pulmonary mucinous adenocarcinoma with suspicion of tumor recurrence on follow-up magnetic resonance imaging (MRI) after radiosurgery. 18F-FET PET/computed tomography (CT) was indicative of radiation necrosis. Due to the patient's medical history and the discrepancy between the brain MRI and PET/CT results, surgical biopsies were decided, which were positive for brain metastasis recurrence. The diagnosis of metastasis recurrence may also be challenging on 18F-FET PET/CT. In case of discrepancies between MRI and PET/CT results, false-negative 18F-FET PET/CT remains a possibility and requires careful follow-up or biopsy.
Collapse
Affiliation(s)
- Samirah Alshehri
- Service of Radiation Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
| | - John Prior
- Service of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Mohammed Moshebah
- Service of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Luis Schiappacasse
- Service of Radiation Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Vincent Dunet
- Service of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
13
|
Abstract
This article reviews recent advances in the use of standard and advanced imaging techniques for diagnosis and treatment of central nervous system (CNS) tumors, including glioma and brain metastasis. Following the recent transition from a histology-based approach in classifying CNS tumors to one that integrates histology with the molecular information of tumor, the approaches for imaging CNS tumors have also been adapted to this new framework. Some challenges related to the diagnosis and treatment of CNS tumors, such as differentiating tumor from treatment-related imaging changes, require further progress to implement advanced imaging for clinical use.
Collapse
Affiliation(s)
- Raymond Y Huang
- Department of Neuroradiology, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| | - Whitney B Pope
- Radiology, Section of Neuroradiology, Brain Tumor Imaging, UCLA Medical Center, Los Angeles, CA, USA; Department of Radiological Sciences, David Geffen School of Medicine, University of California-Los Angeles, 924 Westwood Boulevard, Suite 615, Los Angeles, CA 90024, USA; Department of Neurology, David Geffen School of Medicine, University of California-Los Angeles, 924 Westwood Boulevard, Suite 615, Los Angeles, CA 90024, USA
| |
Collapse
|
14
|
Sadaghiani MS, Sheikhbahaei S, Rowe SP, Pomper MG, Solnes LB. Cellular and Molecular Imaging with SPECT and PET in Brain Tumors. Radiol Clin North Am 2021; 59:363-375. [PMID: 33926683 DOI: 10.1016/j.rcl.2021.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This review highlights the 2 major molecular imaging modalities that are used in clinics, namely single-photon emission computed tomography (SPECT) and positron emission tomography (PET), and their added value in management of patients with brain tumors. There are a variety of SPECT and PET radiotracers that can allow imaging of different molecular processes. Those radiotracers target specific molecular features of tumors, resulting in improved specificity of these agents. Potential applications include staging of brain tumors and evaluating post-therapeutic changes.
Collapse
Affiliation(s)
- Mohammad S Sadaghiani
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 601 North Caroline Street, JHOC 3150, Baltimore, MD 21287, USA
| | - Sara Sheikhbahaei
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 601 North Caroline Street, JHOC 3150, Baltimore, MD 21287, USA
| | - Steven P Rowe
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 601 North Caroline Street, JHOC 3150, Baltimore, MD 21287, USA
| | - Martin G Pomper
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 601 North Caroline Street, JHOC 3150, Baltimore, MD 21287, USA
| | - Lilja B Solnes
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 601 North Caroline Street, JHOC 3150, Baltimore, MD 21287, USA.
| |
Collapse
|
15
|
Holzgreve A, Albert NL, Galldiks N, Suchorska B. Use of PET Imaging in Neuro-Oncological Surgery. Cancers (Basel) 2021; 13:cancers13092093. [PMID: 33926002 PMCID: PMC8123649 DOI: 10.3390/cancers13092093] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The use of positron emission tomography (PET) imaging in neuro-oncological surgery is an exciting field with thriving perspectives. Increasing evidence exists for amino acid-based PET to facilitate interpretation of imaging findings following therapeutic interventions in patients with glioma and brain metastases. In meningioma patients, radiolabeled somatostatin receptor ligands provide an improved tumor tissue visualization in lesions located in the vicinity of the skull base and differentiate between scar tissue and tumor recurrence. Moreover, they can be applied as an individual treatment option in recurrent atypical and anaplastic meningioma not eligible for further surgery and radiotherapy. With a focus on its clinical application, this review provides an overview of the emerging field of PET imaging in neuro-oncological surgery. Abstract This review provides an overview of current applications and perspectives of PET imaging in neuro-oncological surgery. The past and future of PET imaging in the management of patients with glioma and brain metastases are elucidated with an emphasis on amino acid tracers, such as O-(2-[18F]fluoroethyl)-L-tyrosine (18F-FET). The thematic scope includes surgical resection planning, prognostication, non-invasive prediction of molecular tumor characteristics, depiction of intratumoral heterogeneity, response assessment, differentiation between tumor progression and treatment-related changes, and emerging new tracers. Furthermore, the role of PET using specific somatostatin receptor ligands for the management of patients with meningioma is discussed. Further advances in neuro-oncological imaging can be expected from promising new techniques, such as hybrid PET/MR scanners and the implementation of artificial intelligence methods, such as radiomics.
Collapse
Affiliation(s)
- Adrien Holzgreve
- Department of Nuclear Medicine, University Hospital, LMU Munich, 81377 Munich, Germany; (A.H.); (N.L.A.)
| | - Nathalie L. Albert
- Department of Nuclear Medicine, University Hospital, LMU Munich, 81377 Munich, Germany; (A.H.); (N.L.A.)
| | - Norbert Galldiks
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany;
- Institute of Neuroscience and Medicine (INM-3), Research Center Juelich, 52425 Juelich, Germany
- Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne, and Duesseldorf, 50937 Cologne, Germany
| | - Bogdana Suchorska
- Department of Neurosurgery, Sana Kliniken Duisburg, 47055 Duisburg, Germany
- Correspondence: ; Tel.: +49-203-733-2401
| |
Collapse
|
16
|
Johannessen K, Berntsen EM, Johansen H, Solheim TS, Karlberg A, Eikenes L. 18F-FACBC PET/MRI in the evaluation of human brain metastases: a case report. Eur J Hybrid Imaging 2021; 5:7. [PMID: 34181107 PMCID: PMC8218039 DOI: 10.1186/s41824-021-00101-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/28/2021] [Indexed: 12/31/2022] Open
Abstract
Background Patients with metastatic cancer to the brain have a poor prognosis. In clinical practice, MRI is used to delineate, diagnose and plan treatment of brain metastases. However, MRI alone is limited in detecting micro-metastases, delineating lesions and discriminating progression from pseudo-progression. Combined PET/MRI utilises superior soft tissue images from MRI and metabolic data from PET to evaluate tumour structure and function. The amino acid PET tracer 18F-FACBC has shown promising results in discriminating high- and low-grade gliomas, but there are currently no reports on its use on brain metastases. This is the first study to evaluate the use of 18F-FACBC on brain metastases. Case presentation A middle-aged female patient with brain metastases was evaluated using hybrid PET/MRI with 18F-FACBC before and after stereotactic radiotherapy, and at suspicion of recurrence. Static/dynamic PET and contrast-enhanced T1 MRI data were acquired and analysed. This case report includes the analysis of four 18F-FACBC PET/MRI examinations, investigating their utility in evaluating functional and structural metastasis properties. Conclusion Analysis showed high tumour-to-background ratios in brain metastases compared to other amino acid PET tracers, including high uptake in a very small cerebellar metastasis, suggesting that 18F-FACBC PET can provide early detection of otherwise overlooked metastases. Further studies to determine a threshold for 18F-FACBC brain tumour boundaries and explore its utility in clinical practice should be performed.
Collapse
Affiliation(s)
- Knut Johannessen
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, NTNU, Postboks 8905, 7491, Trondheim, Norway
| | - Erik Magnus Berntsen
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, NTNU, Postboks 8905, 7491, Trondheim, Norway.,Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Håkon Johansen
- Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Tora S Solheim
- Cancer Clinic, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway.,Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Anna Karlberg
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, NTNU, Postboks 8905, 7491, Trondheim, Norway.,Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Live Eikenes
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, NTNU, Postboks 8905, 7491, Trondheim, Norway.
| |
Collapse
|
17
|
Imaging of Response to Radiosurgery and Immunotherapy in Brain Metastases: Quo Vadis? Curr Treat Options Neurol 2021. [DOI: 10.1007/s11940-021-00664-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Abstract
Purpose of Review
This review presents an overview of how advanced imaging techniques may help to overcome shortcomings of anatomical MRI for response assessment in patients with brain metastases who are undergoing stereotactic radiosurgery, immunotherapy, or combinations thereof.
Recent Findings
Study results suggest that parameters derived from amino acid PET, diffusion- and perfusion-weighted MRI, MR spectroscopy, and newer MRI methods are particularly helpful for the evaluation of the response to radiosurgery or checkpoint inhibitor immunotherapy and provide valuable information for the differentiation of radiotherapy-induced changes such as radiation necrosis from brain metastases. The evaluation of these imaging modalities is also of great interest in the light of emerging high-throughput analysis methods such as radiomics, which allow the acquisition of additional data at a low cost.
Summary
Preliminary results are promising and should be further evaluated. Shortcomings are different levels of PET and MRI standardization, the number of patients enrolled in studies, and the monocentric and retrospective character of most studies.
Collapse
|
18
|
[ 18F]FET PET Uptake Indicates High Tumor and Low Necrosis Content in Brain Metastasis. Cancers (Basel) 2021; 13:cancers13020355. [PMID: 33478030 PMCID: PMC7835779 DOI: 10.3390/cancers13020355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Various types of cancers can lead to brain metastasis. Treatment strategies have improved substantially in the past decade, leading to longer survival in many cases, but also to new diagnostic challenges. Being able to locate those parts of a lesion suspicious for brain metastasis that contain the highest concentrations of viable tumor cells can be crucial, e.g., to obtain a precise diagnosis via targeted biopsies or to differentiate recurring tumor from dead tissue after treatment. Positron emission tomography (PET) imaging has the potential to provide this kind of information. However, studies relating PET findings to actual tissue properties are sparse. The aim of this study was to investigate the association of PET imaging with microscopic tissue properties in samples obtained neurosurgically from brain metastases. Our findings can improve the planning and yield of biopsies from brain metastases, and they may inform future studies aimed at improving the discrimination of recurring from dead tumor in treated brain metastases using PET. Abstract Amino acid positron emission tomography (PET) has been employed in the management of brain metastases. Yet, histopathological correlates of PET findings remain poorly understood. We investigated the relationship of O-(2-[18F]Fluoroethyl)-L-tyrosine ([18F]FET) PET, magnetic resonance imaging (MRI), and histology in brain metastases. Fifteen patients undergoing brain metastasis resection were included prospectively. Using intraoperative navigation, 39 targeted biopsies were obtained from parts of the metastases that were either PET-positive or negative and MRI-positive or negative. Tumor and necrosis content, proliferation index, lymphocyte infiltration, and vascularization were determined histopathologically. [18F]FET PET had higher specificity than MRI (66% vs. 56%) and increased sensitivity for tumor from 73% to 93% when combined with MRI. Tumor content per sample increased with PET uptake (rs = 0.3, p = 0.045), whereas necrosis content decreased (rs = −0.4, p = 0.014). PET-positive samples had more tumor (median: 75%; interquartile range: 10–97%; p = 0.016) than PET-negative samples. The other investigated histological properties were not correlated with [18F]FET PET intensity. Tumors were heterogeneous at the levels of imaging and histology. [18F]FET PET can be a valuable tool in the management of brain metastases. In biopsies, one should aim for PET hotspots to increase the chance for retrieval of samples with high tumor cell concentrations. Multiple biopsies should be performed to account for intra-tumor heterogeneity. PET could be useful for differentiating treatment-related changes (e.g., radiation necrosis) from tumor recurrence.
Collapse
|
19
|
Galldiks N, Langen KJ, Albert NL, Chamberlain M, Soffietti R, Kim MM, Law I, Le Rhun E, Chang S, Schwarting J, Combs SE, Preusser M, Forsyth P, Pope W, Weller M, Tonn JC. PET imaging in patients with brain metastasis-report of the RANO/PET group. Neuro Oncol 2020; 21:585-595. [PMID: 30615138 DOI: 10.1093/neuonc/noz003] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 10/11/2018] [Accepted: 01/03/2019] [Indexed: 12/23/2022] Open
Abstract
Brain metastases (BM) from extracranial cancer are associated with significant morbidity and mortality. Effective local treatment options are stereotactic radiotherapy, including radiosurgery or fractionated external beam radiotherapy, and surgical resection. The use of systemic treatment for intracranial disease control also is improving. BM diagnosis, treatment planning, and follow-up is most often based on contrast-enhanced magnetic resonance imaging (MRI). However, anatomic imaging modalities including standard MRI have limitations in accurately characterizing posttherapeutic reactive changes and treatment response. Molecular imaging techniques such as positron emission tomography (PET) characterize specific metabolic and cellular features of metastases, potentially providing clinically relevant information supplementing anatomic MRI. Here, the Response Assessment in Neuro-Oncology working group provides recommendations for the use of PET imaging in the clinical management of patients with BM based on evidence from studies validated by histology and/or clinical outcome.
Collapse
Affiliation(s)
- Norbert Galldiks
- Department of Neurology, University Hospital Cologne, Cologne, Germany.,Institute of Neuroscience and Medicine 3, 4, Research Center Juelich, Juelich, Germany.,Center of Integrated Oncology, Universities of Cologne and Bonn, Cologne, Germany
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine 3, 4, Research Center Juelich, Juelich, Germany.,Department of Nuclear Medicine, University Hospital Aachen, Aachen, Germany
| | - Nathalie L Albert
- Department of Nuclear Medicine, Ludwig Maximilians-University of Munich, Munich, Germany
| | - Marc Chamberlain
- Departments of Neurology and Neurological Surgery, Fred Hutchinson Cancer Research Center, University of Washington, Seattle, Washington, USA
| | - Riccardo Soffietti
- Department of Neuro-Oncology, University and City of Health and Science Hospital, Turin, Italy
| | - Michelle M Kim
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan, USA
| | - Ian Law
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Denmark
| | - Emilie Le Rhun
- Department of Neurosurgery, University Hospital Lille, Lille, France
| | - Susan Chang
- Department of Neurosurgery, University of California, San Francisco, California, USA
| | - Julian Schwarting
- Department of Neurosurgery, Ludwig Maximilians-University of Munich, Munich, Germany.,German Cancer Consortium, Partner Site Munich, Germany
| | - Stephanie E Combs
- Department of Radiation Oncology, Technical University Munich, Munich, Germany
| | - Matthias Preusser
- Department of Medicine I and Comprehensive Cancer Centre CNS Tumours Unit, Medical University of Vienna, Vienna, Austria
| | - Peter Forsyth
- Moffitt Cancer Center, University of South Florida, Tampa, Florida, USA
| | - Whitney Pope
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, California , USA
| | - Michael Weller
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Jörg C Tonn
- Department of Neurosurgery, Ludwig Maximilians-University of Munich, Munich, Germany.,German Cancer Consortium, Partner Site Munich, Germany
| |
Collapse
|
20
|
PET Imaging of l-Type Amino Acid Transporter (LAT1) and Cystine-Glutamate Antiporter (xc−) with [18F]FDOPA and [18F]FSPG in Breast Cancer Models. Mol Imaging Biol 2020; 22:1562-1571. [DOI: 10.1007/s11307-020-01529-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 02/07/2023]
|
21
|
Abrantes AM, Pires AS, Monteiro L, Teixo R, Neves AR, Tavares NT, Marques IA, Botelho MF. Tumour functional imaging by PET. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165717. [PMID: 32035103 DOI: 10.1016/j.bbadis.2020.165717] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/15/2020] [Accepted: 01/30/2020] [Indexed: 12/18/2022]
Abstract
Carcinogenesis is a complex multistep process, characterized by changes at different levels, both genetic and epigenetic, which alter cell metabolism. Positron emission tomography (PET) is a very sensitive image modality that allows to evaluate oncometabolism. PET functionalities are immense, since by labelling a molecule that specifically intervenes in a biochemical regulatory pathway of interest with a positron-emitting radionuclide, we can easily image that pathway. Thus, PET makes possible imaging several metabolic processes and assessing risk prediction, screening, diagnosis, response to therapy, metastization and recurrence. In this paper, we provide an overview of different radiopharmaceuticals developed for PET use in oncology, with a focus on brain tumours, breast cancer, hepatocellular carcinoma, neuroendocrine tumours, bladder cancer and prostate cancer because for these cancer types PET has been shown to be valuable. Most of the described tracers are just used in the research environment, with the aim to assess if these tracers could be able to offer an improvement concerning staging/restaging, characterization and stratification of different types of cancer, as well as therapeutic response assessment. In pursuit of personalized therapy, we briefly discuss the more established metabolic tracers and describe recent work on the development of new radiopharmaceuticals, aware that there will continue to exist diagnostic challenges to face modern cancer medicine.
Collapse
Affiliation(s)
- Ana Margarida Abrantes
- Biophysics Institute, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; Clinical Academic Center of Coimbra, 3004-561 Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; CNC.IBILI Consortium/Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal.
| | - Ana Salomé Pires
- Biophysics Institute, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; Clinical Academic Center of Coimbra, 3004-561 Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; CNC.IBILI Consortium/Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal.
| | - Lúcia Monteiro
- Biophysics Institute, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; Clinical Academic Center of Coimbra, 3004-561 Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ricardo Teixo
- Biophysics Institute, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; Clinical Academic Center of Coimbra, 3004-561 Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; CNC.IBILI Consortium/Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ana Rita Neves
- Biophysics Institute, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; Clinical Academic Center of Coimbra, 3004-561 Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; Project Development Office, Department of Mathematics and Computer Science, Eindhoven University of Technology (TU/e), NL-5612 AE Eindhoven, the Netherlands
| | - Nuno Tiago Tavares
- Biophysics Institute, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; Clinical Academic Center of Coimbra, 3004-561 Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Inês Alexandra Marques
- Biophysics Institute, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; Clinical Academic Center of Coimbra, 3004-561 Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; CNC.IBILI Consortium/Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Maria Filomena Botelho
- Biophysics Institute, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; Clinical Academic Center of Coimbra, 3004-561 Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; CNC.IBILI Consortium/Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal.
| |
Collapse
|
22
|
Galldiks N, Lohmann P, Albert NL, Tonn JC, Langen KJ. Current status of PET imaging in neuro-oncology. Neurooncol Adv 2019; 1:vdz010. [PMID: 32642650 PMCID: PMC7324052 DOI: 10.1093/noajnl/vdz010] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Over the past decades, a variety of PET tracers have been used for the evaluation of patients with brain tumors. For clinical routine, the most important clinical indications for PET imaging in patients with brain tumors are the identification of neoplastic tissue including the delineation of tumor extent for the further diagnostic and therapeutic management (ie, biopsy, resection, or radiotherapy planning), the assessment of response to a certain anticancer therapy including its (predictive) effect on the patients’ outcome and the differentiation of treatment-related changes (eg, pseudoprogression and radiation necrosis) from tumor progression at follow-up. To serve medical professionals of all disciplines involved in the diagnosis and care of patients with brain tumors, this review summarizes the value of PET imaging for the latter-mentioned 3 clinically relevant indications in patients with glioma, meningioma, and brain metastases.
Collapse
Affiliation(s)
- Norbert Galldiks
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany.,Institute of Neuroscience and Medicine (INM-3, -4), Research Center Juelich, Juelich, Germany.,Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne, and Duesseldorf, Germany
| | - Philipp Lohmann
- Institute of Neuroscience and Medicine (INM-3, -4), Research Center Juelich, Juelich, Germany
| | - Nathalie L Albert
- Department of Nuclear Medicine, Ludwig Maximilians-University of Munich, Munich, Germany
| | - Jörg C Tonn
- Department of Neurosurgery, Ludwig Maximilians-University of Munich, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, Germany
| | - Karl-Josef Langen
- Department of Nuclear Medicine, University Hospital Aachen, Aachen, Germany
| |
Collapse
|
23
|
Evaluation of the Performance of 18F-Fluorothymidine Positron Emission Tomography/Computed Tomography (18F-FLT-PET/CT) in Metastatic Brain Lesions. Diagnostics (Basel) 2019; 9:diagnostics9010017. [PMID: 30691084 PMCID: PMC6468407 DOI: 10.3390/diagnostics9010017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 01/19/2019] [Accepted: 01/23/2019] [Indexed: 12/28/2022] Open
Abstract
18F-fluorothymidine (18F-FLT) is a radiolabeled thymidine analog that has been reported to help monitor tumor proliferation and has been studied in primary brain tumors; however, knowledge about 18F-FLT positron emission tomography/computed tomography (PET/CT) in metastatic brain lesions is limited. The purpose of this study is to evaluate the performance of 18F-FLT-PET/CT in metastatic brain lesions. A total of 20 PET/CT examinations (33 lesions) were included in the study. Semiquantitative analysis was performed: standard uptake value (SUV) with the utilization of SUVmax, tumor-to-background ratio (T/B), SUVpeak, SUV1cm3, SUV0.5cm3, SUV50%, SUV75%, PV50% (volume × SUV50%), and PV75% (volume × SUV75%) were calculated. Sensitivity, specificity, and accuracy for each parameter were calculated. Optimal cutoff values for each parameter were obtained. Using a receiver operating characteristic (ROC) curve analysis, the optimal cutoff values of SUVmax, T/B, and SUVpeak for discriminating active from non-active lesions were found to be 0.615, 4.21, and 0.425, respectively. In an ROC curve analysis, the area under the curve (AUC) is higher for SUVmax (p-value 0.017) compared to the rest of the parameters, while using optimal cutoff T/B shows the highest sensitivity and accuracy. PVs (proliferation × volumes) did not show any significance in discriminating positive from negative lesions. 18F-FLT-PET/CT can detect active metastatic brain lesions and may be used as a complementary tool. Further investigation should be performed.
Collapse
|
24
|
|
25
|
Prognostic impact of combining whole-body PET/CT and brain PET/MR in patients with lung adenocarcinoma and brain metastases. Eur J Nucl Med Mol Imaging 2018; 46:467-477. [PMID: 30415280 DOI: 10.1007/s00259-018-4210-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 11/02/2018] [Indexed: 12/25/2022]
Abstract
PURPOSE The role of brain FDG-PET in patients with lung cancer and brain metastases remains unclear. Here, we sought to determine the prognostic significance of whole-body PET/CT plus brain PET/MR in predicting the time to neurological progression (nTTP) and overall survival (OS) in this patient group. METHODS Of 802 patients with non-small cell lung cancer who underwent primary staging by a single-day protocol of whole-body PET/CT plus brain PET/MR, 72 cases with adenocarcinoma and brain metastases were enrolled for a prognostic analysis of OS. On the basis of the available follow-up brain status, only 52 patients were eligible for prognostic analysis of nTTP. Metastatic brain tumors were identified on post-contrast MR imaging, and the tumor-to-brain ratio (TBR) was measured on PET images. RESULTS Multivariate analysis revealed that FDG-PET findings and eligibility for initial treatment with targeted therapy were significant independent predictors of nTTP and OS. A new index, termed the molecular imaging prognostic (MIP) score, was proposed to define three disease classes. MIP scores were significant predictors of both nTTP and OS (P < 0.001). Pre-existing prognostic indices such as Lung-molGPA scores were significant predictors of OS but did not predict nTTP. CONCLUSIONS When staging is performed with whole-body PET/CT plus brain PET/MR, our new prognostic index may be helpful to stratify the outcomes of patients with lung adenocarcinoma and brain metastases. The superior prognostic power of this index for nTTP might be used to select appropriate patients for intracranial control and thereby achieve better quality of life.
Collapse
|
26
|
Buder-Bakhaya K, Hassel JC. Biomarkers for Clinical Benefit of Immune Checkpoint Inhibitor Treatment-A Review From the Melanoma Perspective and Beyond. Front Immunol 2018; 9:1474. [PMID: 30002656 PMCID: PMC6031714 DOI: 10.3389/fimmu.2018.01474] [Citation(s) in RCA: 159] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 06/13/2018] [Indexed: 12/26/2022] Open
Abstract
Background Immune checkpoint inhibition (ICI) with anti-CTLA-4 and/or anti-PD-1 antibodies is standard treatment for metastatic melanoma. Anti-PD-1 (pembrolizumab, nivolumab) and anti-PD-L1 antibodies (atezolizumab, durvalumab, and avelumab) have been approved for treatment of several other advanced malignancies, including non-small-cell lung cancer (NSCLC); renal cell, and urothelial carcinoma; head and neck cancer; gastric, hepatocellular, and Merkel-cell carcinoma; and classical Hodgkin lymphoma. In some of these malignancies approval was based on the detection of biomarkers such as PD-L1 expression or high microsatellite instability. Methods We review the current status of prognostic and predictive biomarkers used in ICI for melanoma and other malignancies. We include clinical, tissue, blood, and stool biomarkers, as well as imaging biomarkers. Results Several biomarkers have been studied in ICI for metastatic melanoma. In clinical practice, pre-treatment tumor burden measured by means of imaging and serum lactate dehydrogenase level is already being used to estimate the likelihood of effective ICI treatment. In peripheral blood, the number of different immune cell types, such as lymphocytes, neutrophils, and eosinophils, as well as different soluble factors, have been correlated with clinical outcome. For intra-tumoral biomarkers, expression of the PD-1 ligand PD-L1 has been found to be of some predictive value for anti-PD-1-directed therapy for NSCLC and melanoma. A high mutational load, particularly when accompanied by neoantigens, seems to facilitate immune response and correlates with patient survival for all entities treated by use of ICI. Tumor microenvironment also seems to be of major importance. Interestingly, even the gut microbiome has been found to correlate with response to ICI, most likely through immuno-stimulatory effects of distinct bacteria. New imaging biomarkers, e.g., for PET, and magnetic resonance imaging are also being investigated, and results suggest they will make early prediction of patient response possible. Conclusion Several promising results are available regarding possible biomarkers for response to ICI, which need to be validated in large clinical trials. A better understanding of how ICI works will enable the development of biomarkers that can predict the response of individual patients.
Collapse
Affiliation(s)
- Kristina Buder-Bakhaya
- Section of Dermatooncology, Department of Dermatology and National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany
| | - Jessica C Hassel
- Section of Dermatooncology, Department of Dermatology and National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
27
|
Abstract
Magnetic resonance imaging (MRI) is the cornerstone for evaluating patients with brain masses such as primary and metastatic tumors. Important challenges in effectively detecting and diagnosing brain metastases and in accurately characterizing their subsequent response to treatment remain. These difficulties include discriminating metastases from potential mimics such as primary brain tumors and infection, detecting small metastases, and differentiating treatment response from tumor recurrence and progression. Optimal patient management could be benefited by improved and well-validated prognostic and predictive imaging markers, as well as early response markers to identify successful treatment prior to changes in tumor size. To address these fundamental needs, newer MRI techniques including diffusion and perfusion imaging, MR spectroscopy, and positron emission tomography (PET) tracers beyond traditionally used 18-fluorodeoxyglucose are the subject of extensive ongoing investigations, with several promising avenues of added value already identified. These newer techniques provide a wealth of physiologic and metabolic information that may supplement standard MR evaluation, by providing the ability to monitor and characterize cellularity, angiogenesis, perfusion, pH, hypoxia, metabolite concentrations, and other critical features of malignancy. This chapter reviews standard and advanced imaging of brain metastases provided by computed tomography, MRI, and amino acid PET, focusing on potential biomarkers that can serve as problem-solving tools in the clinical management of patients with brain metastases.
Collapse
Affiliation(s)
- Whitney B Pope
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA, United States.
| |
Collapse
|
28
|
Wei W, Ehlerding EB, Lan X, Luo Q, Cai W. PET and SPECT imaging of melanoma: the state of the art. Eur J Nucl Med Mol Imaging 2018; 45:132-150. [PMID: 29085965 PMCID: PMC5700861 DOI: 10.1007/s00259-017-3839-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 09/18/2017] [Indexed: 12/12/2022]
Abstract
Melanoma represents the most aggressive form of skin cancer, and its incidence continues to rise worldwide. 18F-FDG PET imaging has transformed diagnostic nuclear medicine and has become an essential component in the management of melanoma, but still has its drawbacks. With the rapid growth in the field of nuclear medicine and molecular imaging, a variety of promising probes that enable early diagnosis and detection of melanoma have been developed. The substantial preclinical success of melanin- and peptide-based probes has recently resulted in the translation of several radiotracers to clinical settings for noninvasive imaging and treatment of melanoma in humans. In this review, we focus on the latest developments in radiolabeled molecular imaging probes for melanoma in preclinical and clinical settings, and discuss the challenges and opportunities for future development.
Collapse
Affiliation(s)
- Weijun Wei
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600# Yishan Road, Shanghai, 200233, China
- Department of Radiology, University of Wisconsin-Madison, Room 7137, 1111 Highland Avenue, Madison, WI, 53705-2275, USA
| | - Emily B Ehlerding
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology; Hubei Key Laboratory of Molecular Imaging, No. 1277 Jiefang Ave, Wuhan, 430022, China.
| | - Quanyong Luo
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600# Yishan Road, Shanghai, 200233, China.
| | - Weibo Cai
- Department of Radiology, University of Wisconsin-Madison, Room 7137, 1111 Highland Avenue, Madison, WI, 53705-2275, USA.
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- University of Wisconsin Carbone Cancer Center, Madison, WI, 53705, USA.
| |
Collapse
|
29
|
Imaging of amino acid transport in brain tumours: Positron emission tomography with O-(2-[ 18 F]fluoroethyl)- L -tyrosine (FET). Methods 2017; 130:124-134. [DOI: 10.1016/j.ymeth.2017.05.019] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 05/08/2017] [Accepted: 05/21/2017] [Indexed: 01/01/2023] Open
|