1
|
Nair AG, Ehrhardt GRA, Grunebaum E. Variable Lymphocyte Receptor B Technologies - Are They Ready for Prime Time? Immunol Invest 2025:1-21. [PMID: 39936604 DOI: 10.1080/08820139.2025.2462536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
OBJECTIVE To review the current and the potential research and clinical use of VLRBs. METHODS A literature search was conducted for English studies published in the past 20 years using the terms "Variable Lymphocyte Receptor," "VLR," "VLRB" or "Repebody." Only primary reports were included. RESULTS VLRB-based technologies are currently being investigated for diagnosis, imaging, and treatment of diverse conditions including solid organ and hematological malignancies, infectious diseases, autoimmunity, and degenerative and metabolic disorders. VLRB mAbs can be used to directly recognize disease biomarkers, such as B cells from chronic lymphocytic leukemia, or to deliver drugs to the brain or cancer cells. The VLRB C-terminal multimerization domain has been utilized to create vaccines while VLR-based chimeric antigen receptor (CAR) T cell constructs are being investigated for cancer therapies. CONCLUSIONS The extensive knowledge gained with VLRB mAbs in diverse in vitro and in vivo models emphasizes their promise for translation into clinical applications and readiness for prime time.
Collapse
Affiliation(s)
- Arundhati G Nair
- Developmental and Stem Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Götz R A Ehrhardt
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Eyal Grunebaum
- Developmental and Stem Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
- Division of Immunology and Allergy, Department of Pediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Crișan G, Moldovean-Cioroianu NS, Timaru DG, Andrieș G, Căinap C, Chiș V. Radiopharmaceuticals for PET and SPECT Imaging: A Literature Review over the Last Decade. Int J Mol Sci 2022; 23:5023. [PMID: 35563414 PMCID: PMC9103893 DOI: 10.3390/ijms23095023] [Citation(s) in RCA: 131] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 04/23/2022] [Accepted: 04/28/2022] [Indexed: 02/04/2023] Open
Abstract
Positron emission tomography (PET) uses radioactive tracers and enables the functional imaging of several metabolic processes, blood flow measurements, regional chemical composition, and/or chemical absorption. Depending on the targeted processes within the living organism, different tracers are used for various medical conditions, such as cancer, particular brain pathologies, cardiac events, and bone lesions, where the most commonly used tracers are radiolabeled with 18F (e.g., [18F]-FDG and NA [18F]). Oxygen-15 isotope is mostly involved in blood flow measurements, whereas a wide array of 11C-based compounds have also been developed for neuronal disorders according to the affected neuroreceptors, prostate cancer, and lung carcinomas. In contrast, the single-photon emission computed tomography (SPECT) technique uses gamma-emitting radioisotopes and can be used to diagnose strokes, seizures, bone illnesses, and infections by gauging the blood flow and radio distribution within tissues and organs. The radioisotopes typically used in SPECT imaging are iodine-123, technetium-99m, xenon-133, thallium-201, and indium-111. This systematic review article aims to clarify and disseminate the available scientific literature focused on PET/SPECT radiotracers and to provide an overview of the conducted research within the past decade, with an additional focus on the novel radiopharmaceuticals developed for medical imaging.
Collapse
Affiliation(s)
- George Crișan
- Faculty of Physics, Babeş-Bolyai University, Str. M. Kogălniceanu 1, 400084 Cluj-Napoca, Romania; (G.C.); (N.S.M.-C.); (D.-G.T.)
- Department of Nuclear Medicine, County Clinical Hospital, Clinicilor 3-5, 400006 Cluj-Napoca, Romania;
| | | | - Diana-Gabriela Timaru
- Faculty of Physics, Babeş-Bolyai University, Str. M. Kogălniceanu 1, 400084 Cluj-Napoca, Romania; (G.C.); (N.S.M.-C.); (D.-G.T.)
| | - Gabriel Andrieș
- Department of Nuclear Medicine, County Clinical Hospital, Clinicilor 3-5, 400006 Cluj-Napoca, Romania;
| | - Călin Căinap
- The Oncology Institute “Prof. Dr. Ion Chiricuţă”, Republicii 34-36, 400015 Cluj-Napoca, Romania;
| | - Vasile Chiș
- Faculty of Physics, Babeş-Bolyai University, Str. M. Kogălniceanu 1, 400084 Cluj-Napoca, Romania; (G.C.); (N.S.M.-C.); (D.-G.T.)
- Institute for Research, Development and Innovation in Applied Natural Sciences, Babeș-Bolyai University, Str. Fântânele 30, 400327 Cluj-Napoca, Romania
| |
Collapse
|
3
|
KSNM60: The History of Radiopharmaceutical Sciences in Korea. Nucl Med Mol Imaging 2022; 56:114-126. [DOI: 10.1007/s13139-022-00744-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 02/17/2022] [Accepted: 03/10/2022] [Indexed: 10/18/2022] Open
|
4
|
Nguyen PV, Hervé-Aubert K, Chourpa I, Allard-Vannier E. Active targeting strategy in nanomedicines using anti-EGFR ligands - A promising approach for cancer therapy and diagnosis. Int J Pharm 2021; 609:121134. [PMID: 34571073 DOI: 10.1016/j.ijpharm.2021.121134] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/09/2021] [Accepted: 09/22/2021] [Indexed: 12/21/2022]
Abstract
As active targeting using nanomedicines establishes itself as a strategy of choice in cancer therapy, several target receptors or ligands overexpressed in cancer cells have been identified and exploited. Among them, the epidermal growth factor receptor (EGFR) has emerged as one of the most promising oncomarkers for active targeting nanomedicines due to its overexpression and its active involvement in a wide range of cancer types. Henceforth, many novel EGFR-targeted nanomedicines for cancer therapy have been developed, giving encouraging results both in vitro and in vivo. This review focuses on different applications of such medicines in oncotherapy. On an important note, the contribution of EGFR-targeting ligands to final therapy efficacy along with current challenges and possible solutions or alternatives are emphasized.
Collapse
Affiliation(s)
- Phuoc Vinh Nguyen
- EA6295 Nanomédicaments et Nanosondes, Université de Tours, Tours, France
| | - Katel Hervé-Aubert
- EA6295 Nanomédicaments et Nanosondes, Université de Tours, Tours, France
| | - Igor Chourpa
- EA6295 Nanomédicaments et Nanosondes, Université de Tours, Tours, France
| | | |
Collapse
|
5
|
Nanomedicines functionalized with anti-EGFR ligands for active targeting in cancer therapy: Biological strategy, design and quality control. Int J Pharm 2021; 605:120795. [PMID: 34119579 DOI: 10.1016/j.ijpharm.2021.120795] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/28/2021] [Accepted: 06/07/2021] [Indexed: 02/06/2023]
Abstract
Recently, active targeting using nanocarriers with biological ligands has emerged as a novel strategy for improving the delivery of therapeutic and/or imaging agents to tumor cells. The presence of active targeting moieties on the surface of nanomedicines has been shown to play an important role in enhancing their accumulation in tumoral cells and tissues versus healthy ones. This property not only helps to increase the therapeutic index but also to minimize possible side effects of the designed nanocarriers. Since the overexpression of epidermal growth factor receptors (EGFR) is a common occurrence linked to the progression of a broad variety of cancers, the potential application of anti-EGFR immunotherapy and EGFR-targeting ligands in active targeting nanomedicines is getting increasing attention. Henceforth, the EGFR-targeted nanomedicines were extensively studied in vitro and in vivo but exhibited both satisfactory and disappointing results, depending on used protocols. This review is designed to give an overview of a variety of EGFR-targeting ligands available for nanomedicines, how to conjugate them onto the surface of nanoparticles, and the main analytical methods to confirm this successful conjugation.
Collapse
|
6
|
Chen D, Fan Q, Xu T, Dong J, Cui J, Wang Z, Wang J, Meng Q, Li S. Design, Synthesis and Binding Affinity Evaluation of Cytochrome P450 1B1 Targeted Chelators. Anticancer Agents Med Chem 2021; 22:261-269. [PMID: 33820523 DOI: 10.2174/1871520621666210405091645] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 03/06/2021] [Accepted: 03/08/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Cytochrome P450 1B1 (CYP1B1) is specifically expressed in a variety of tumors which makes it a promise imaging target of tumor. OBJECTIVE We aimed to design and synthesize CYP1B1 targeted chelators for the potential application in positron emission tomography (PET) imaging of tumor. METHODS 1,4,7-triazacyclononane-1,4-diiacetic acid (NODA) was connected to the CYP1B1 selective inhibitor we developed before through polyethylene glycol (PEG) linkers with different lengths. The inhibitory activities of chelators 6a-c against CYP1 family were evaluated by 7-ethoxyresorufin o-deethylation (EROD) assay. The manual docking between the chelators and the CYP1B1 are conducted subsequently. To determine the binding affinities of 6a-c to CYP1B1 in cells, we further performed a competition study at the cell level. RESULTS Among three chelators, 6a with the shortest linker showed the best inhibitory activity against CYP1B1. In the following molecular simulation study, protein-inhibitor complex of 6a showed the nearest F-heme distance which is consistent with the results of enzymatic assay. Finally, the cell based competitive assay proved the binding affinity of 6a-c to CYP1B1 enzyme. CONCLUSION We designed and synthesized a series of chelators which can bind to CYP1B1 enzyme in cancer cells.To our knowledge, this work is the first attempt to construct CYP1B1 targeted chelators for radiolabeling and we hope it will prompt the application of CYP1B1 imaging in tumor detection.
Collapse
Affiliation(s)
- Dongmei Chen
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240. China
| | - Qiqi Fan
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240. China
| | - Ting Xu
- Department of Breast Disease, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, 1961 Huashan Road, Shanghai 200030. China
| | - Jinyun Dong
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240. China
| | - Jiahua Cui
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240. China
| | - Zengtao Wang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240. China
| | - Jie Wang
- Department of Breast Disease, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, 1961 Huashan Road, Shanghai 200030. China
| | - Qingqing Meng
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240. China
| | - Shaoshun Li
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240. China
| |
Collapse
|
7
|
Natarajan A. Copper-64-immunoPET imaging: bench to bedside. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF RADIOPHARMACEUTICAL CHEMISTRY AND BIOLOGY 2020; 64:356-363. [PMID: 33045821 DOI: 10.23736/s1824-4785.20.03310-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Positron emission tomography (PET) is a growing non-invasive diagnostic and molecular imaging tool in nuclear medicine, that is used to identify several diseases including cancer. The immunoPET probe is made up of monoclonal antibodies (mAbs) or its fragments or similar molecules that tagged with positron radioisotopes (68Ga, 64Cu, 89Zr) bound together by a bifunctional chelator (BFC). This probe is designed to identify a specific disease. Currently, several immunoPET probes are being developed for preclinical as well as for clinical applications. These studies are showing promising results, both in preclinical and patients, using mostly 64Cu, 89Zr isotopes. This review elucidates the 64Cu based immunoPET applications, their pipelines and the emerging scope of this technique within the nuclear medicine and molecular imaging clinics from bench to bedside. Recently, immunoPET research have sharply increased especially after a big surge in approval of oncology antibodies by the FDA for immune checkpoint-blockade cancer immunotherapies. Currently, preclinical to clinical translations of immunoPET has several challenges, including designing probes, choice of radioisotopes, selection of stable BFC, and size of antibody and its tracer kinetics. All these obstacles will be addressed eventually by improving PET scanner sensitivity, designing appropriate size of imaging probe, and combining immunoPET with specific targeting antibodies. These improvements should contribute to the immunoPET becoming more applicable in clinics, which, in turn, will provide critical information for correct patient selection, for right dosing, and for the right time/staging of treatment.
Collapse
|
8
|
McKitrick TR, Goth CK, Rosenberg CS, Nakahara H, Heimburg-Molinaro J, McQuillan AM, Falco R, Rivers NJ, Herrin BR, Cooper MD, Cummings RD. Development of smart anti-glycan reagents using immunized lampreys. Commun Biol 2020; 3:91. [PMID: 32111965 PMCID: PMC7048801 DOI: 10.1038/s42003-020-0819-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 02/12/2020] [Indexed: 12/31/2022] Open
Abstract
Studies on the expression of cellular glycans are limited by a lack of sensitive tools that can discriminate specific structural features. Here we describe the development of a robust platform using immunized lampreys (Petromyzon marinus), which secrete variable lymphocyte receptors called VLRBs as antibodies, for generating libraries of anti-glycan reagents. We identified a wide variety of glycan-specific VLRBs detectable in lamprey plasma after immunization with whole fixed cells, tissue homogenates, and human milk. The cDNAs from lamprey lymphocytes were cloned into yeast surface display (YSD) libraries for enrichment by multiple methods. We generated VLRB-Ig chimeras, termed smart anti-glycan reagents (SAGRs), whose specificities were defined by microarray analysis and immunohistochemistry. 15 VLRB antibodies were discovered that discriminated between linkages, functional groups and unique presentations of the terminal glycan motif. The development of SAGRs will enhance future studies on glycan expression by providing sequenced, defined antibodies for a variety of research applications. Tanya McKitrick et al. develop a platform for generating libraries of anti-glycan reagents using immunized lampreys. They identify 15 glycan-specific lymphocyte receptor antibodies that can distinguish between different functional groups of the terminal glycan motif.
Collapse
Affiliation(s)
- Tanya R McKitrick
- Department of Surgery, Beth Israel Deaconess Medical Center, National Center for Functional Glycomics, Harvard Medical School, Boston, MA, 02215, USA
| | - Christoffer K Goth
- Department of Surgery, Beth Israel Deaconess Medical Center, National Center for Functional Glycomics, Harvard Medical School, Boston, MA, 02215, USA.,University of Copenhagen Glycomics Program, Copenhagen, Denmark
| | - Charles S Rosenberg
- Department of Pathology and Laboratory Medicine, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Hirotomo Nakahara
- Department of Pathology and Laboratory Medicine, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Jamie Heimburg-Molinaro
- Department of Surgery, Beth Israel Deaconess Medical Center, National Center for Functional Glycomics, Harvard Medical School, Boston, MA, 02215, USA
| | - Alyssa M McQuillan
- Department of Surgery, Beth Israel Deaconess Medical Center, National Center for Functional Glycomics, Harvard Medical School, Boston, MA, 02215, USA
| | - Rosalia Falco
- Department of Surgery, Beth Israel Deaconess Medical Center, National Center for Functional Glycomics, Harvard Medical School, Boston, MA, 02215, USA.,Marine Science Center, Northeastern University, Boston, MA, 02115, USA
| | - Nicholas J Rivers
- Department of Surgery, Beth Israel Deaconess Medical Center, National Center for Functional Glycomics, Harvard Medical School, Boston, MA, 02215, USA.,University of Alabama Birmingham, Birmingham, AL, 35294, USA
| | - Brantley R Herrin
- Department of Pathology and Laboratory Medicine, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, 30322, USA.,Acceleron Pharma, Boston, MA, 02110, USA
| | - Max D Cooper
- Department of Pathology and Laboratory Medicine, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, National Center for Functional Glycomics, Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
9
|
Gebauer M, Skerra A. Engineering of binding functions into proteins. Curr Opin Biotechnol 2019; 60:230-241. [DOI: 10.1016/j.copbio.2019.05.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 05/07/2019] [Indexed: 12/13/2022]
|
10
|
Wei W, Ni D, Ehlerding EB, Luo QY, Cai W. PET Imaging of Receptor Tyrosine Kinases in Cancer. Mol Cancer Ther 2019; 17:1625-1636. [PMID: 30068751 DOI: 10.1158/1535-7163.mct-18-0087] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/19/2018] [Accepted: 06/04/2018] [Indexed: 12/22/2022]
Abstract
Overexpression and/or mutations of the receptor tyrosine kinase (RTK) subfamilies, such as epidermal growth factor receptors (EGFR) and vascular endothelial growth factor receptors (VEGFR), are closely associated with tumor cell growth, differentiation, proliferation, apoptosis, and cellular invasiveness. Monoclonal antibodies (mAb) and tyrosine kinase inhibitors (TKI) specifically inhibiting these RTKs have shown remarkable success in improving patient survival in many cancer types. However, poor response and even drug resistance inevitably occur. In this setting, the ability to detect and visualize RTKs with noninvasive diagnostic tools will greatly refine clinical treatment strategies for cancer patients, facilitate precise response prediction, and improve drug development. Positron emission tomography (PET) agents using targeted radioactively labeled antibodies have been developed to visualize tumor RTKs and are changing clinical decisions for certain cancer types. In the present review, we primarily focus on PET imaging of RTKs using radiolabeled antibodies with an emphasis on the clinical applications of these immunoPET probes. Mol Cancer Ther; 17(8); 1625-36. ©2018 AACR.
Collapse
Affiliation(s)
- Weijun Wei
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Department of Radiology, University of Wisconsin-Madison, Wisconsin
| | - Dalong Ni
- Department of Radiology, University of Wisconsin-Madison, Wisconsin
| | - Emily B Ehlerding
- Department of Medical Physics, University of Wisconsin-Madison, Wisconsin
| | - Quan-Yong Luo
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| | - Weibo Cai
- Department of Radiology, University of Wisconsin-Madison, Wisconsin. .,Department of Medical Physics, University of Wisconsin-Madison, Wisconsin.,University of Wisconsin Carbone Cancer Center, Madison, Wisconsin
| |
Collapse
|
11
|
Waters EA, Shusta EV. The variable lymphocyte receptor as an antibody alternative. Curr Opin Biotechnol 2018; 52:74-79. [PMID: 29597074 PMCID: PMC6082701 DOI: 10.1016/j.copbio.2018.02.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 02/26/2018] [Accepted: 02/28/2018] [Indexed: 01/21/2023]
Abstract
Variable lymphocyte receptors (VLRs) are leucine-rich repeat proteins in jawless vertebrates that function similarly to Ig antibodies. However, VLRs possess a distinct crescent-shaped structure and modularity that results in a concave binding interface that contrasts significantly with Ig antibodies. Antigen binding interactions result in specific, high affinity VLR binding interactions with both proteins and glycans. The natural sourcing of VLRs allows for immunization strategies, while the modularity enables a whole host of protein engineering approaches including consensus scaffolds, designed libraries and directed evolution with display technologies. VLR technologies have been recently deployed for applications in cell-specific targeting, drug delivery, tumor diagnostics and even protein stabilization. It is anticipated that the VLR field will continue to emerge to provide unique solutions for targeting glycans, evolutionarily conserved proteins and cellular specificity.
Collapse
Affiliation(s)
- Elizabeth A Waters
- Department of Chemical and Biological Engineering, University of Wisconsin - Madison, Madison, WI 53706, USA
| | - Eric V Shusta
- Department of Chemical and Biological Engineering, University of Wisconsin - Madison, Madison, WI 53706, USA.
| |
Collapse
|