1
|
Moul JW, Shore ND, Pienta KJ, Czernin J, King MT, Freedland SJ. Application of next-generation imaging in biochemically recurrent prostate cancer. Prostate Cancer Prostatic Dis 2024; 27:202-211. [PMID: 37679601 PMCID: PMC11096127 DOI: 10.1038/s41391-023-00711-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 07/27/2023] [Accepted: 08/03/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND Biochemical recurrence (BCR) following primary interventional treatment occurs in approximately one-third of patients with prostate cancer (PCa). Next-generation imaging (NGI) can identify local and metastatic recurrence with greater sensitivity than conventional imaging, potentially allowing for more effective interventions. This narrative review examines the current clinical evidence on the utility of NGI for patients with BCR. METHODS A search of PubMed was conducted to identify relevant publications on NGI applied to BCR. Given other relevant recent reviews on the topic, this review focused on papers published between January 2018 to May 2023. RESULTS NGI technologies, including positron emission tomography (PET) radiotracers and multiparametric magnetic resonance imaging, have demonstrated increased sensitivity and selectivity for diagnosing BCR at prostate-specific antigen (PSA) concentrations <2.0 ng/ml. Detection rates range between 46% and 50%, with decreasing PSA levels for choline (1-3 ng/ml), fluciclovine (0.5-1 ng/ml), and prostate-specific membrane antigen (0.2-0.49 ng/ml) PET radiotracers. Expert working groups and European and US medical societies recommend NGI for patients with BCR. CONCLUSIONS Available data support the improved detection performance and selectivity of NGI modalities versus conventional imaging techniques; however, limited clinical evidence exists demonstrating the application of NGI to treatment decision-making and its impact on patient outcomes. The emergence of NGI and displacement of conventional imaging may require a reexamination of the current definitions of BCR, altering our understanding of early recurrence. Redefining the BCR disease state by formalizing the role of NGI in patient management decisions will facilitate greater alignment across research efforts and better reflect the published literature.
Collapse
Affiliation(s)
- Judd W Moul
- Duke Cancer Institute and Division of Urology, Duke University, Durham, NC, USA
| | - Neal D Shore
- Carolina Urologic Research Center, Myrtle Beach, SC, USA
| | | | - Johannes Czernin
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Martin T King
- Brigham and Women's Hospital and Dana-Farber Cancer Institute, Boston, MA, USA
| | - Stephen J Freedland
- Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Veterans Affairs Medical Center, Durham, NC, USA.
| |
Collapse
|
2
|
Regula N, Kostaras V, Johansson S, Trampal C, Lindström E, Lubberink M, Iyer V, Velikyan I, Sörensen J. Comparison of 68Ga-PSMA PET/CT with fluoride PET/CT for detection of bone metastatic disease in prostate cancer. Eur J Hybrid Imaging 2022; 6:5. [PMID: 35229224 PMCID: PMC8885936 DOI: 10.1186/s41824-022-00127-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/01/2022] [Indexed: 12/12/2022] Open
Abstract
Background 18F-NaF positron emission tomography/computed tomography (fluoride PET/CT) is considered the most sensitive technique to detect bone metastasis in prostate cancer (PCa). 68Ga-PSMA-11 (PSMA) PET/CT is increasingly used for staging of PCa. This study primarily aimed to compare the diagnostic performance of fluoride PET/CT and gallium-based PSMA PET/CT in identifying bone metastasis followed by a comparison of PSMA PET/CT with contrast-enhanced CT (CE-CT) in identifying soft tissue lesions as a secondary objective. Methods Twenty-eight PCa patients with high suspicion of disseminated disease following curative treatment were prospectively evaluated. PET/CT examinations using fluoride and PSMA were performed. All suspicious bone lesions were counted, and the tracer uptake was measured as standardized uptake values (SUV) for both tracers. In patients with multiple findings, ten bone lesions with highest SUVmax were selected from which identical lesions from both scans were considered for direct comparison of SUVmax. Soft tissue findings of local and lymph node lesions from CE-CT were compared with PSMA PET/CT. Results Both scans were negative for bone lesions in 7 patients (25%). Of 699 lesions consistent with skeletal metastasis in 21 patients on fluoride PET/CT, PSMA PET/CT identified 579 lesions (83%). In 69 identical bone lesions fluoride PET/CT showed significantly higher uptake (mean SUVmax: 73.1 ± 36.8) compared to PSMA PET/CT (34.5 ± 31.4; p < 0.001). Compared to CE-CT, PSMA PET/CT showed better diagnostic performance in locating local (96% vs 61%, p = 0.004) and lymph node (94% vs 46%, p < 0.001) metastasis. Conclusion In this prospective comparative study, PSMA PET/CT detected the majority of bone lesions that were positive on fluoride PET/CT. Further, this study indicates better diagnostic performance of PSMA PET/CT to locate soft tissue lesions compared to CE-CT. Supplementary Information The online version contains supplementary material available at 10.1186/s41824-022-00127-4.
Collapse
|
3
|
Zheng XQ, Huang JF, Lin JL, Chen L, Zhou TT, Chen D, Lin DD, Shen JF, Wu AM. Incidence, prognostic factors, and a nomogram of lung cancer with bone metastasis at initial diagnosis: a population-based study. Transl Lung Cancer Res 2019; 8:367-379. [PMID: 31555512 PMCID: PMC6749127 DOI: 10.21037/tlcr.2019.08.16] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 08/12/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND Bone is one of the common metastatic sites of lung cancer, and its prognosis is not optimistic. We performed a study to evaluate the incidence, survival, and prognostic factors of lung cancer with bone metastasis (LCBM) at initial diagnosis, and to develop a nomogram to predict its outcomes. METHODS We conducted a retrospective study choosing 13,541 patients with LCBM from the Surveillance, Epidemiology, and End Results (SEER) 18 registry database. An X-tile analysis provided the optimal age cutoff point. The incidence, overall survival, and prognosis of bone metastasis were evaluated according to the patient information, characteristics of the tumor, and therapy. We also used multivariable Cox regression to estimate mortality hazard ratios (HRs) among patients with LCBM, while a visual nomogram was established to judge the prognosis. RESULTS The incidence of disease increased with age, but survival rates show the opposite trend. The median survival time was about 4 months. In addition, although the differences for patient race is not significant (P=0.445), White patients are prone to have bone metastases from lung cancer according to the incidence analysis. The difference for laterality is also not significant (P=0.534), while the factors of age, gender, the total number of sites, histological types, grade, tumor size, and treatment are significantly related to the outcome of patients with LCBM. Furthermore, our nomogram could predict the probability of surviving to the median survival time of the population with a c-index of 0.72. CONCLUSIONS Age, characteristics of the tumor, and therapy should be considered for prediction of prognosis for patients with lung cancer bone metastasis. Putatively, the younger patients and the patients with chemotherapy and surgery may indicate improved survival.
Collapse
Affiliation(s)
- Xuan-Qi Zheng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
| | - Jin-Feng Huang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
| | - Jia-Liang Lin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
| | - Liang Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
| | - Ting-Ting Zhou
- Department of Thoracic Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Dong Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
| | - Dong-Dong Lin
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Jian-Fei Shen
- Department of Cardiothoracic Surgery, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai 317000, China
| | - Ai-Min Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
| |
Collapse
|
4
|
Velez EM, Desai B, Jadvar H. Treatment Response Assessment of Skeletal Metastases in Prostate Cancer with 18F-NaF PET/CT. Nucl Med Mol Imaging 2019; 53:247-252. [PMID: 31456857 PMCID: PMC6694323 DOI: 10.1007/s13139-019-00601-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/24/2019] [Accepted: 06/18/2019] [Indexed: 01/08/2023] Open
Abstract
PURPOSE To determine the utility of 18F-sodium fluoride positron emission tomography-computed tomography (18F-NaF PET/CT) in the imaging assessment of therapy response in men with osseous-only metastatic prostate cancer. METHODS In this Institutional Review Board-approved single institution retrospective investigation, we evaluated 21 18F-NaF PET/CT scans performed in 14 patients with osseous metastatic disease from prostate cancer and no evidence of locally recurrent or soft-tissue metastatic disease who received chemohormonal therapy. Imaging-based qualitative and semi-quantitative parameters were defined and compared with changes in serum PSA level. RESULTS Qualitative and semi-quantitative image-based assessments demonstrated > 80% concordance with good correlation (SUVmax κ = 0.71, SUVavg κ = 0.62, SUVsum κ = 0.62). Moderate correlation (κ = 0.43) was found between SUVmax and PSA-based treatment response assessments. There was no statistically significant correlation between PSA-based disease progression and semi-quantitative parameters. Qualitative imaging assessment was moderately correlated (κ = 0.52) with PSA in distinguishing responders and non-responders. CONCLUSION 18F-NaF PET/CT is complementary to biochemical monitoring in patients with bone-only metastases from prostate cancer which can be helpful in subsequent treatment management decisions.
Collapse
Affiliation(s)
- Erik M. Velez
- Division of Nuclear Medicine, Department of Radiology, Keck School of Medicine, University of Southern California, 2250 Alcazar St., CSC 102, Los Angeles, CA 90033 USA
| | - Bhushan Desai
- Division of Nuclear Medicine, Department of Radiology, Keck School of Medicine, University of Southern California, 2250 Alcazar St., CSC 102, Los Angeles, CA 90033 USA
| | - Hossein Jadvar
- Division of Nuclear Medicine, Department of Radiology, Keck School of Medicine, University of Southern California, 2250 Alcazar St., CSC 102, Los Angeles, CA 90033 USA
| |
Collapse
|
5
|
Sheikhbahaei S, Jones KM, Werner RA, Salas-Fragomeni RA, Marcus CV, Higuchi T, Rowe SP, Solnes LB, Javadi MS. 18F-NaF-PET/CT for the detection of bone metastasis in prostate cancer: a meta-analysis of diagnostic accuracy studies. Ann Nucl Med 2019; 33:351-361. [PMID: 30877561 DOI: 10.1007/s12149-019-01343-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 02/11/2019] [Indexed: 12/15/2022]
Abstract
PURPOSE This meta-analysis aims to establish the diagnostic performance of 18F-NaF-PET/CT for the detection of bone metastases in prostate cancer patients. The performance of 18F-NaF-PET/CT was compared with other imaging techniques in the same cohort of patients. METHODS A systematic search was performed in PubMed/Medline and EMBASE (last Updated, September 28, 2018). Studies with histopathology confirmation and/or clinical/imaging follow-up as reference standard were eligible for inclusion. RESULTS A total of 14 studies were included. Twelve studies including 507 patients provided per-patient basis information. The pooled sensitivity, specificity, diagnostic odds ratio (DOR) and the area under the summary receiver operating characteristics curve (AUC) of 18F-NaF-PET/CT for the detection of bone metastases were 0.98 (95% CI 0.95-0.99), 0.90 (95% CI 0.86-0.93), 123.2 and 0.97, respectively. Seven studies provided the lesion-based accuracy information of 1812 lesions identified on 18F-NaF-PET/CT with the pooled sensitivity, specificity, DOR and AUC of 0.97 (95% CI 0.95-0.98), 0.84 (95% CI 0.81-0.87), 206.8 and 0.97, respectively. The overall diagnostic performance of 18F-NaF-PET/CT is superior to 99mTc-bone scintigraphy (AUC 0.842; P < 0.001; four studies) and 99mTc-SPECT (AUC 0.896; P < 0.001, four studies). Compared to 18F NaF-PET/CT, whole-body MRI with diffusion-weighted imaging (DWI) was shown to have lower sensitivity (0.83, 95% CI 0.68-0.93), with no significant difference in the overall performance (AUC 0.947; P = 0.18, four studies). CONCLUSION 18F-NaF-PET/CT has excellent diagnostic performance in the detection of bone metastases in staging and restaging of high-risk prostate cancer patients. The performance of 18F-NaF-PET/CT is superior to 99mTc bone scintigraphy and SPECT, and comparable to DWI-MRI.
Collapse
Affiliation(s)
- Sara Sheikhbahaei
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Krystyna M Jones
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rudolf A Werner
- Department of Nuclear Medicine, University Hospital Wuerzburg, Würzburg, Germany
| | - Roberto A Salas-Fragomeni
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Charles V Marcus
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Takahiro Higuchi
- Department of Nuclear Medicine, University Hospital Wuerzburg, Würzburg, Germany
| | - Steven P Rowe
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lilja B Solnes
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mehrbod S Javadi
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
6
|
|
7
|
Jadvar H, Colletti PM. 18F-NaF/ 223RaCl 2 theranostics in metastatic prostate cancer: treatment response assessment and prediction of outcome. Br J Radiol 2018; 91:20170948. [PMID: 29630398 PMCID: PMC6475949 DOI: 10.1259/bjr.20170948] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 03/03/2018] [Accepted: 04/01/2018] [Indexed: 12/15/2022] Open
Abstract
Theranostics refers to companion agents with identical or similar structure targeted to a specific biological entity for imaging and treatment. Although the concept has a long history with radioiodine in thyroidology, but it has experienced remarkable recent renaissance in management of neuroendocrine tumors and prostate cancer. Bone scintigraphy based on osteoblastic reaction and targeted radionuclide therapy with the alpha-particle calcium-mimetic agent, 223RaCl2, also form a theranostic model for imaging and treatment of osseous metastatic disease. Since the regulatory approval of 223RaCl2 in 2013, there has been accumulating evidence on the potential use of 18F-NaF PET scintigraphy in the assessment of response and prediction of outcome in males with metastatic castrate-resistant prostate cancer who undergo 223RaCl2 therapy. We review the 18F-NaF/223RaCl2 as theranostic companion in the management of prostate cancer with emphasis on the utility of 18F-NaF and other relevant PET radiotracers in the therapy response and prognosis assessments.
Collapse
Affiliation(s)
- Hossein Jadvar
- Division of Nuclear Medicine, Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Patrick M Colletti
- Division of Nuclear Medicine, Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
8
|
Reilly CC, Raynor WY, Hong AL, Kargilis DC, Lee JS, Alecxih AG, Gupta N, Lim MK, Al-Zaghal A, Werner TJ, Rhodes SS, Alavi A, Rajapakse CS. Diagnosis and Monitoring of Osteoporosis With 18F-Sodium Fluoride PET: An Unavoidable Path for the Foreseeable Future. Semin Nucl Med 2018; 48:535-540. [PMID: 30322479 DOI: 10.1053/j.semnuclmed.2018.07.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The prevalence of metabolic bone diseases particularly osteoporosis and its precursor, osteopenia, continue to grow as serious global health issues today. On a worldwide perspective, 200million people suffer from osteoporosis and in 2005, over 2million fracture incidents were estimated due to osteoporosis in the United States. Currently, osteoporosis and other metabolic bone diseases are evaluated primarily through dual energy X-ray absorptiometry, and rarely by bone biopsy with tetracycline labeling or Technetium-99m (99mTc) based bone scintigraphy. Deficiencies in these methods have prompted the use of more precise methods of assessment. This review highlights the use of 18F-sodium fluoride (NaF) with PET (NaF-PET), NaF-PET/CT, or NaF-PET/MRI in the evaluation of osteoporosis and osteopenia in the lumbar spine and hip. This imaging modality provides a molecular perspective with respect to the underlying metabolic alterations that lead to osseous disorders by measuring bone turnover through standardized uptake values. Its sensitivity and ability to examine the entire skeletal system make it a more superior imaging modality compared to standard structural imaging techniques. Further research is needed to determine its accuracy in reflecting the efficacy of therapeutic interventions in metabolic bone diseases.
Collapse
Affiliation(s)
| | | | | | | | - Jae S Lee
- University of Pennsylvania, Philadelphia, PA
| | | | | | - Marie K Lim
- University of Pennsylvania, Philadelphia, PA
| | | | | | | | - Abass Alavi
- University of Pennsylvania, Philadelphia, PA
| | | |
Collapse
|
9
|
Peterson LM, O'Sullivan J, Wu QV, Novakova-Jiresova A, Jenkins I, Lee JH, Shields A, Montgomery S, Linden HM, Gralow J, Gadi VK, Muzi M, Kinahan P, Mankoff D, Specht JM. Prospective Study of Serial 18F-FDG PET and 18F-Fluoride PET to Predict Time to Skeletal-Related Events, Time to Progression, and Survival in Patients with Bone-Dominant Metastatic Breast Cancer. J Nucl Med 2018; 59:1823-1830. [PMID: 29748233 DOI: 10.2967/jnumed.118.211102] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 04/30/2018] [Indexed: 12/16/2022] Open
Abstract
Assessing therapy response of breast cancer bone metastases is challenging. In retrospective studies, serial 18F-FDG PET was predictive of time to skeletal-related events (tSRE) and time to progression (TTP). 18F-NaF PET improves bone metastasis detection compared with bone scanning. We prospectively tested 18F-FDG PET and 18F-NaF PET to predict tSRE, TTP, and overall survival (OS) in patients with bone-dominant metastatic breast cancer (MBC). Methods: Patients with bone-dominant MBC were imaged with 18F-FDG PET and 18F-NaF PET before starting new therapy (scan1) and again at a range of times centered around approximately 4 mo later (scan2). Maximum standardized uptake value (SUVmax) and lean body mass adjusted standardized uptake (SULpeak) were recorded for a single index lesion and up to 5 most dominant lesions for each scan. tSRE, TTP, and OS were assessed exclusive of the PET images. Univariate Cox regression was performed to test the association between clinical endpoints and 18F-FDG PET and 18F-NaF PET measures. mPERCIST (Modified PET Response Criteria in Solid Tumors) were also applied. Survival curves for mPERCIST compared response categories of complete response+partial response+stable disease versus progressive disease for tSRE, TTP, and OS. Results: Twenty-eight patients were evaluated. Higher 18F-FDG SULpeak at scan2 predicted shorter time to tSRE (P = <0.001) and TTP (P = 0.044). Higher 18F-FDG SUVmax at scan2 predicted a shorter time to tSRE (P = <0.001). A multivariable model using 18F-FDG SUVmax of the index lesion at scan1 plus the difference in SUVmax of up to 5 lesions between scans was predictive for tSRE and TTP. Among 24 patients evaluable by 18F-FDG PET mPERCIST, tSRE and TTP were longer in responders (complete response, partial response, or stable disease) than in nonresponders (progressive disease) (P = 0.007, 0.028, respectively), with a trend toward improved survival (P = 0.1). An increase in the uptake between scans of up to 5 lesions by 18F-NaF PET was associated with longer OS (P = 0.027). Conclusion: Changes in 18F-FDG PET parameters during therapy are predictive of tSRE and TTP, but not OS. mPERCIST evaluation in bone lesions may be useful in assessing response to therapy and is worthy of evaluation in multicenter, prospective trials. Serial 18F-NaF PET was associated with OS but was not useful for predicting TTP or tSRE in bone-dominant MBC.
Collapse
Affiliation(s)
- Lanell M Peterson
- Division of Medical Oncology, University of Washington, Seattle, Washington
| | - Janet O'Sullivan
- Department of Statistics, University College Cork, Cork, Ireland
| | - Qian Vicky Wu
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | | | - Isaac Jenkins
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Jean H Lee
- Department of Radiology, University of Washington, Seattle, Washington
| | - Andrew Shields
- Department of Radiology, University of Washington, Seattle, Washington
| | | | - Hannah M Linden
- Division of Medical Oncology, University of Washington, Seattle, Washington.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Julie Gralow
- Division of Medical Oncology, University of Washington, Seattle, Washington.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Vijayakrishna K Gadi
- Division of Medical Oncology, University of Washington, Seattle, Washington.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Mark Muzi
- Department of Radiology, University of Washington, Seattle, Washington
| | - Paul Kinahan
- Department of Radiology, University of Washington, Seattle, Washington
| | - David Mankoff
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jennifer M Specht
- Division of Medical Oncology, University of Washington, Seattle, Washington.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| |
Collapse
|
10
|
Czernin J. The National Oncologic PET Registry (NOPR): A Monumental Effort by a Few Leaders. J Nucl Med 2018; 59:379. [DOI: 10.2967/jnumed.117.207860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
11
|
Hicks RJ. The Injustice of Being Judged by the Errors of Others: The Tragic Tale of the Battle for PET Reimbursement. J Nucl Med 2018; 59:418-420. [DOI: 10.2967/jnumed.117.206953] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 01/05/2018] [Indexed: 11/16/2022] Open
|