1
|
He Y, Rogasch JMM, Savic LJ. PET Imaging and Key Radiotracers for Evaluating Response to Locoregional Therapy in Hepatocellular Carcinoma. PET Clin 2025:S1556-8598(25)00024-0. [PMID: 40287367 DOI: 10.1016/j.cpet.2025.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2025]
Abstract
Locoregional therapies (LRTs) play a considerable role in the management of hepatocellular carcinoma (HCC), especially for patients who are not suitable for radical resection or transplantation. In clinical practice, assessment of LRTs is mainly based on computed tomography and MR imaging, but functional and metabolic information is less accessible. This article reviews the use of various the standardized uptake value parameters based on PET and multiple radiotracers for managing HCC after treatment with different LRTs, as well as parts of preclinical research. It discusses the current use of PET in more detail, as well as its advantages, disadvantages, and prospects.
Collapse
Affiliation(s)
- Yubei He
- Department of Radiology, Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Berlin 13353, Germany; Experimental and Clinical Research Center, A Joint Cooperation of Max Delbrück Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Berlin 13125, Germany
| | - Julian M M Rogasch
- Department of Nuclear Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany; Berlin Institute of Health at Charité, Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Lynn Jeanette Savic
- Department of Radiology, Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Berlin 13353, Germany; Experimental and Clinical Research Center, A Joint Cooperation of Max Delbrück Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Berlin 13125, Germany; Berlin Institute of Health at Charité, Universitätsmedizin Berlin, Berlin 10117, Germany.
| |
Collapse
|
2
|
Liu F, Xiao L, Zhao L, Tao Y, Huang D, Chen Z, He C, Wu C. Prostate-specific membrane antigen-targeting radiopharmaceuticals: a new frontier in hepatic malignancies. Front Oncol 2025; 15:1547459. [PMID: 40123907 PMCID: PMC11926431 DOI: 10.3389/fonc.2025.1547459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 02/18/2025] [Indexed: 03/25/2025] Open
Abstract
Background/Objectives Prostate-specific membrane antigen (PSMA) is overexpressed in prostate hypercellularity, making it an effective target for molecular imaging and therapy of prostate cancer. PSMA is expressed in the neovasculature of hepatic malignancies and regulates tumor cell invasion and angiogenesis. The diagnosis and treatment of hepatic malignancies remain challenging. Thus, radiopharmaceuticals targeting PSMA are gaining prominence in the treatment of hepatic malignancies. Therefore, this review aims to discuss the applications of PSMA-targeting radiopharmaceuticals in hepatic malignant tumors, focusing on hepatocellular carcinoma (HCC), to assess their value as a diagnostic and therapeutic agent for hepatic malignancies. Methods The potentials of PSMA-targeting radiopharmaceuticals for diagnostic and therapeutic use in hepatic malignancies were investigated. Moreover, their characteristics, diagnostic and therapeutic efficacies, and potential synergies when used in conjunction with other therapeutic modalities were elucidated. Results Computed tomography (CT) and magnetic resonance imaging (MRI) are the most common imaging modalities in clinical practice; however, their sensitivity is not optimal. PSMA positron emission tomography/CT can be used as a complementary modality to conventional imaging for characterizing lesions, staging and/or re-staging HCC, and assessing treatment response when conventional imaging results are unclear. Moreover, most patients with HCC are diagnosed at an advanced stage in which treatment options are limited. Hence, PSMA-based radioligand therapy serves as a promising alternative treatment when multiple treatments fail. Conclusions Further research and clinical transformation are required to effectively diagnose and treat HCC via PSMA targeting. This will have significant clinical application prospects in primary and secondary hepatic malignancies.
Collapse
Affiliation(s)
- Fucen Liu
- National Health Commission (NHC) Key Laboratory of Nuclear Technology Medical Transformation (MIANYANG CENTRAL HOSPITAL), Mianyang, China
- Department of Nuclear Medicine, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Liming Xiao
- National Health Commission (NHC) Key Laboratory of Nuclear Technology Medical Transformation (MIANYANG CENTRAL HOSPITAL), Mianyang, China
- Department of Nuclear Medicine, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Ling Zhao
- National Health Commission (NHC) Key Laboratory of Nuclear Technology Medical Transformation (MIANYANG CENTRAL HOSPITAL), Mianyang, China
- Department of Nuclear Medicine, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
- Institute of Basic Medicine, North Sichuan Medical College, Nanchong, China
| | - Yi Tao
- National Health Commission (NHC) Key Laboratory of Nuclear Technology Medical Transformation (MIANYANG CENTRAL HOSPITAL), Mianyang, China
- Department of Nuclear Medicine, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Dan Huang
- National Health Commission (NHC) Key Laboratory of Nuclear Technology Medical Transformation (MIANYANG CENTRAL HOSPITAL), Mianyang, China
- Department of Nuclear Medicine, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Zhengguo Chen
- National Health Commission (NHC) Key Laboratory of Nuclear Technology Medical Transformation (MIANYANG CENTRAL HOSPITAL), Mianyang, China
- Department of Nuclear Medicine, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Chuandong He
- National Health Commission (NHC) Key Laboratory of Nuclear Technology Medical Transformation (MIANYANG CENTRAL HOSPITAL), Mianyang, China
- Department of Nuclear Medicine, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Chunyan Wu
- National Health Commission (NHC) Key Laboratory of Nuclear Technology Medical Transformation (MIANYANG CENTRAL HOSPITAL), Mianyang, China
- Department of Nuclear Medicine, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| |
Collapse
|
3
|
Qin C, Song X, Sun S, Song Y, Ruan W, Gai Y, Yang M, Wan C, Lan X. [ 68Ga]Ga-PSMA-617 PET/MRI for imaging patients suspected of hepatocellular carcinoma. Eur J Nucl Med Mol Imaging 2025; 52:1278-1290. [PMID: 39570398 DOI: 10.1007/s00259-024-06973-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 11/01/2024] [Indexed: 11/22/2024]
Abstract
PURPOSE Radiolabeled probes targeting prostate-specific membrane antigen (PSMA) have been used in prostate cancer. Moreover, PSMA is also overexpressed on neovessels in hepatocellular carcinoma (HCC). This study aimed to preliminarily evaluate the diagnostic effectiveness of [68Ga]Ga-PSMA-617 PET/MRI for HCC. METHODS Patients suspected of HCC were prospectively enrolled in this single-center study (NCT05006326, 2021-08-16) to perform [68Ga]Ga-PSMA-617 PET/MRI, along with contrast enhanced CT (ceCT) or ceMRI. The main suspicious intrahepatic lesions were resected and pathologically verified. Visual evaluation of [68Ga]Ga-PSMA-617 PET/MRI images was performed on all lesions. Maximum standard uptake value (SUVmax), mean standard uptake value (SUVmean), tumor-to-liver ratio (TLR), tumor-to-blood ratio (TBR), and tumor-to-parotid ratio (TPR) were measured or calculated. The diagnostic efficiency of different modalities was summarized. PSMA expression was evaluated by immunohistochemistry and the correlation of PSMA expression and [68Ga]Ga-PSMA-617 uptake in HCC primary tumors was quantitatively analyzed. RESULTS A total of 12 patients (ten men and two women; mean age 58.75 ± 12.08 years) were included. Ten patients were diagnosed with HCC, 2 with intrahepatic cholangiocarcinoma (ICC), and 4 with hemangioma. The SUVmax, TLR, TBR, and TPR of HCC primary tumors were higher than those of ICC and hemangioma. The diagnostic accuracy of [68Ga]Ga-PSMA-617 PET/MRI for primary HCC was 82.4%. When combined with ceCT or ceMRI, the accuracy increased to 88.2%. A moderate correlation was observed between SUVmax and mean PSMA expression in HCC primary tumors (R = 0.788). CONCLUSION Utilizing a hybrid PET/MRI system to combine [68Ga]Ga-PSMA-617 PET/MRI with ceMRI is a promising one-stop solution for the accurate diagnosis of HCC. TRIAL REGISTRATION NCT05006326. Registered August 16, 2021, https://clinicaltrials.gov/study/NCT05006326 .
Collapse
Affiliation(s)
- Chunxia Qin
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei Province, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, Hubei Province, China
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, Wuhan, 430022, Hubei Province, China
| | - Xiangming Song
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei Province, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, Hubei Province, China
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, Wuhan, 430022, Hubei Province, China
| | - Shiran Sun
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei Province, China
| | - Yangmeihui Song
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei Province, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, Hubei Province, China
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, Wuhan, 430022, Hubei Province, China
| | - Weiwei Ruan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei Province, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, Hubei Province, China
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, Wuhan, 430022, Hubei Province, China
| | - Yongkang Gai
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei Province, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, Hubei Province, China
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, Wuhan, 430022, Hubei Province, China
| | - Ming Yang
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei Province, China
| | - Chidan Wan
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei Province, China.
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei Province, China.
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, Hubei Province, China.
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, Wuhan, 430022, Hubei Province, China.
| |
Collapse
|
4
|
Chen L, Cheng S, Zhu D, Bao G, Wang Z, Deng X, Liu X, Ma X, Zhao J, Zhu L, Zhu X. Synthesis and Preclinical Evaluation of Dual-Specific Probe Targeting Glypican-3 and Prostate-Specific Membrane Antigen for Hepatocellular Carcinoma PET Imaging. Mol Pharm 2025; 22:209-220. [PMID: 39655726 DOI: 10.1021/acs.molpharmaceut.4c00838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Positron emission tomography (PET) is a promising modality for early diagnosis, accurate detection, and staging of hepatocellular carcinoma (HCC). Hereby, a dual-specific probe targeting Glypican-3 (GPC3) and prostate-specific membrane antigen (PSMA) was evaluated for HCC PET imaging. The probe was prepared by conjugating TJ12P2, a GPC3-targeting peptide previously reported by our group, to a highly potent PSMA inhibitor via a polyethylene glycol linker and further tethered to the 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA) chelator. The resultant probe, NOTA-TJ12P2-PSMA, abbreviated as T2P, was labeled with gallium-68 and fluorine-18, respectively, and evaluated in murine HCC models of various levels of GPC3 and PSMA expression. Targeting specificity was confirmed by blocking studies. The synthesized [68Ga]Ga-T2P and [18F]AlF-T2P were stable in saline and fetal bovine serum for over 2 h, and bound to their respective targets with high affinity and specificity in cell assays. PET imaging at 60 min postinjection (p.i.) showed that [68Ga]Ga-T2P exhibited higher uptake (1.75 ± 0.16%ID/g) in Huh7 models with high expression of GPC3 and PSMA than gallium-68 labeled TJ12P2 (1.25 ± 0.07%ID/g, p < 0.01) or gallium-68 labeled PSMA-617 (1.07 ± 0.06%ID/g, p < 0.001). The uptake of [68Ga]Ga-T2P in Huh7 tumors was higher than that in PC-3 tumors with low expression of GPC3 or PSMA (0.55 ± 0.24%ID/g, p < 0.01). The uptake of [18F]AlF-T2P or [68Ga]Ga-T2P in the Huh7 tumor was substantially blocked by TJ12P2, TJ12P2 + PSMA, or T2P, but only partially blocked by PSMA. And the PSMA and TJ12P2 monomer blocking effect was less than that of TJ12P2 + PSMA and T2P. [18F]AlF-T2P had higher tumor-to-muscle ratios than [68Ga]Ga-T2P at 90 min postinjection (4.31 ± 0.10 vs 3.80 ± 0.17, p < 0.05) in Huh7 tumor models. To conclude, radiolabeled T2P exhibited a higher uptake and longer retention in Huh7 tumors than its monomeric counterparts. PET imaging via gallium-68 and fluorine-18 labeled T2P showed a similar imaging quality with comparable signal-to-background ratios. Our results demonstrate that T2P is a promising tool for future clinical diagnosis of HCC.
Collapse
Affiliation(s)
- Lixing Chen
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Siyuan Cheng
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Dongling Zhu
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Guangfa Bao
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Ziqiang Wang
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Xiaoyun Deng
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Xiaoguang Liu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiang Ma
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jun Zhao
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
- Department of Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lei Zhu
- Department of Surgery, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Xiaohua Zhu
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| |
Collapse
|
5
|
Vengateswaran HT, Habeeb M, You HW, Aher KB, Bhavar GB, Asane GS. Hepatocellular carcinoma imaging: Exploring traditional techniques and emerging innovations for early intervention. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2024; 24:100327. [DOI: 10.1016/j.medntd.2024.100327] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024] Open
|
6
|
Hannah N, Yu C, Nedumannil L, Haridy J, Kong G, Boussioutas A, Sood S. Prostate-Specific Membrane Antigen (PSMA) PET/CT in the Detection and Diagnosis of Hepatocellular Carcinoma (HCC): A Systematic Review and Meta-Analysis. Cancers (Basel) 2024; 16:3865. [PMID: 39594820 PMCID: PMC11592426 DOI: 10.3390/cancers16223865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/12/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Prostate-specific membrane antigen (PSMA) positron emission tomography (PET) is widely used in prostate cancer. Recent studies indicate hepatocellular carcinoma (HCC) demonstrates PSMA PET uptake. The diagnostic accuracy of PSMA PET for HCC is not known. We conducted a systematic review and meta-analysis of studies assessing 68Ga-PSMA-11 in HCC. Nine studies were included, with 196 patients and a total of 491 HCC lesions. Per-patient analysis yielded a pooled sensitivity of 89.8% (95% CI 78.5-95.5). Specificity was poorly reported, with insufficient data. When per-lesion level analysis was performed on seven studies, the pooled sensitivity was 94.5% (95% CI 82.9-98.4), and specificity was again poorly reported with insufficient data. Among the three studies with adequate data for full per-lesion meta-analysis, 115 lesions in 41 patients demonstrated sensitivity of 97.1% (95% CI 87.8-99.4), while specificity was 42.2% (95% CI 0.3-99.4). Two studies provided sufficient data for meta-analysis on a per-patient level (n = 50 patients), demonstrating a sensitivity of 92.5% (95% CI 64.0-98.9) and specificity of 72.4% (95% CI 1.3-99.8). PSMA PET demonstrates a high sensitivity for HCC and shows promise as an imaging modality for diagnosis and staging of HCC. However, the existing literature does not provide enough data to confidently evaluate its specificity and, therefore, accuracy. Further prospective studies are necessary, with a focus on the accurate reporting of benign lesions and inclusion of patients with an intermediate probability of HCC.
Collapse
Affiliation(s)
- Nicholas Hannah
- Melbourne Medical School, The University of Melbourne, Parkville, Melbourne, VIC 3052, Australia (S.S.)
- Department of Gastroenterology & Hepatology, The Royal Melbourne Hospital, Melbourne Health, Parkville, Melbourne, VIC 3052, Australia
- Department of Gastroenterology & Hepatology, The Northern Hospital, Northern Health, Epping, Melbourne, VIC 3076, Australia
- Molecular Imaging and Therapeutic Nuclear Medicine, Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, VIC 3002, Australia
| | - Catherine Yu
- Department of Gastroenterology & Hepatology, The Northern Hospital, Northern Health, Epping, Melbourne, VIC 3076, Australia
| | - Leya Nedumannil
- Department of Gastroenterology & Hepatology, The Northern Hospital, Northern Health, Epping, Melbourne, VIC 3076, Australia
| | - James Haridy
- Department of Gastroenterology & Hepatology, The Royal Melbourne Hospital, Melbourne Health, Parkville, Melbourne, VIC 3052, Australia
| | - Grace Kong
- Molecular Imaging and Therapeutic Nuclear Medicine, Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, VIC 3002, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC 3002, Australia
| | - Alex Boussioutas
- Melbourne Medical School, The University of Melbourne, Parkville, Melbourne, VIC 3052, Australia (S.S.)
- School of Translational Medicine, Monash University, 99 Commercial Rd, Melbourne, VIC 3004, Australia
- Department of Gastroenterology, The Alfred Hospital, 55 Commercial Rd, Melbourne, VIC 3004, Australia
| | - Siddharth Sood
- Melbourne Medical School, The University of Melbourne, Parkville, Melbourne, VIC 3052, Australia (S.S.)
- Department of Gastroenterology & Hepatology, The Northern Hospital, Northern Health, Epping, Melbourne, VIC 3076, Australia
| |
Collapse
|
7
|
Bitar R, Salem R, Finn R, Greten TF, Goldberg SN, Chapiro J, Atzen S. Interventional Oncology Meets Immuno-oncology: Combination Therapies for Hepatocellular Carcinoma. Radiology 2024; 313:e232875. [PMID: 39560477 PMCID: PMC11605110 DOI: 10.1148/radiol.232875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 08/15/2024] [Accepted: 08/27/2024] [Indexed: 11/20/2024]
Abstract
The management of hepatocellular carcinoma (HCC) is undergoing transformational changes due to the emergence of various novel immunotherapies and their combination with image-guided locoregional therapies. In this setting, immunotherapy is expected to become one of the standards of care in both neoadjuvant and adjuvant settings across all disease stages of HCC. Currently, more than 50 ongoing prospective clinical trials are investigating various end points for the combination of immunotherapy with both percutaneous and catheter-directed therapies. This review will outline essential tumor microenvironment mechanisms responsible for disease evolution and therapy resistance, discuss the rationale for combining locoregional therapy with immunotherapy, summarize ongoing clinical trials, and report on developing imaging end points and novel biomarkers that are relevant to both diagnostic and interventional radiologists participating in the management of HCC.
Collapse
Affiliation(s)
- Ryan Bitar
- From the Departments of Radiology (R.B., J.C.) and Digestive Diseases
(Hepatology) (J.C.), Yale University School of Medicine, New Haven, Conn;
Department of Radiology, Feinberg School of Medicine, Northwestern University,
Chicago, Ill (R.S.); Department of Medical Oncology, Geffen School of Medicine,
University of California Los Angeles, Los Angeles, Calif (R.F.); Center for
Cancer Research, National Institutes of Health, Bethesda, Md (T.F.G.);
Department of Radiology, Hadassah Hebrew University Medical Center, Hebrew
University, Jerusalem, Israel (S.N.G.); and Department of Biomedical
Engineering, Yale School of Engineering and Applied Sciences, 789 Howard Ave,
Clinic Bldg 363H, New Haven, CT 06520 (J.C.)
| | - Riad Salem
- From the Departments of Radiology (R.B., J.C.) and Digestive Diseases
(Hepatology) (J.C.), Yale University School of Medicine, New Haven, Conn;
Department of Radiology, Feinberg School of Medicine, Northwestern University,
Chicago, Ill (R.S.); Department of Medical Oncology, Geffen School of Medicine,
University of California Los Angeles, Los Angeles, Calif (R.F.); Center for
Cancer Research, National Institutes of Health, Bethesda, Md (T.F.G.);
Department of Radiology, Hadassah Hebrew University Medical Center, Hebrew
University, Jerusalem, Israel (S.N.G.); and Department of Biomedical
Engineering, Yale School of Engineering and Applied Sciences, 789 Howard Ave,
Clinic Bldg 363H, New Haven, CT 06520 (J.C.)
| | - Richard Finn
- From the Departments of Radiology (R.B., J.C.) and Digestive Diseases
(Hepatology) (J.C.), Yale University School of Medicine, New Haven, Conn;
Department of Radiology, Feinberg School of Medicine, Northwestern University,
Chicago, Ill (R.S.); Department of Medical Oncology, Geffen School of Medicine,
University of California Los Angeles, Los Angeles, Calif (R.F.); Center for
Cancer Research, National Institutes of Health, Bethesda, Md (T.F.G.);
Department of Radiology, Hadassah Hebrew University Medical Center, Hebrew
University, Jerusalem, Israel (S.N.G.); and Department of Biomedical
Engineering, Yale School of Engineering and Applied Sciences, 789 Howard Ave,
Clinic Bldg 363H, New Haven, CT 06520 (J.C.)
| | - Tim F. Greten
- From the Departments of Radiology (R.B., J.C.) and Digestive Diseases
(Hepatology) (J.C.), Yale University School of Medicine, New Haven, Conn;
Department of Radiology, Feinberg School of Medicine, Northwestern University,
Chicago, Ill (R.S.); Department of Medical Oncology, Geffen School of Medicine,
University of California Los Angeles, Los Angeles, Calif (R.F.); Center for
Cancer Research, National Institutes of Health, Bethesda, Md (T.F.G.);
Department of Radiology, Hadassah Hebrew University Medical Center, Hebrew
University, Jerusalem, Israel (S.N.G.); and Department of Biomedical
Engineering, Yale School of Engineering and Applied Sciences, 789 Howard Ave,
Clinic Bldg 363H, New Haven, CT 06520 (J.C.)
| | - S. Nahum Goldberg
- From the Departments of Radiology (R.B., J.C.) and Digestive Diseases
(Hepatology) (J.C.), Yale University School of Medicine, New Haven, Conn;
Department of Radiology, Feinberg School of Medicine, Northwestern University,
Chicago, Ill (R.S.); Department of Medical Oncology, Geffen School of Medicine,
University of California Los Angeles, Los Angeles, Calif (R.F.); Center for
Cancer Research, National Institutes of Health, Bethesda, Md (T.F.G.);
Department of Radiology, Hadassah Hebrew University Medical Center, Hebrew
University, Jerusalem, Israel (S.N.G.); and Department of Biomedical
Engineering, Yale School of Engineering and Applied Sciences, 789 Howard Ave,
Clinic Bldg 363H, New Haven, CT 06520 (J.C.)
| | - Julius Chapiro
- From the Departments of Radiology (R.B., J.C.) and Digestive Diseases
(Hepatology) (J.C.), Yale University School of Medicine, New Haven, Conn;
Department of Radiology, Feinberg School of Medicine, Northwestern University,
Chicago, Ill (R.S.); Department of Medical Oncology, Geffen School of Medicine,
University of California Los Angeles, Los Angeles, Calif (R.F.); Center for
Cancer Research, National Institutes of Health, Bethesda, Md (T.F.G.);
Department of Radiology, Hadassah Hebrew University Medical Center, Hebrew
University, Jerusalem, Israel (S.N.G.); and Department of Biomedical
Engineering, Yale School of Engineering and Applied Sciences, 789 Howard Ave,
Clinic Bldg 363H, New Haven, CT 06520 (J.C.)
| | - Sarah Atzen
- From the Departments of Radiology (R.B., J.C.) and Digestive Diseases
(Hepatology) (J.C.), Yale University School of Medicine, New Haven, Conn;
Department of Radiology, Feinberg School of Medicine, Northwestern University,
Chicago, Ill (R.S.); Department of Medical Oncology, Geffen School of Medicine,
University of California Los Angeles, Los Angeles, Calif (R.F.); Center for
Cancer Research, National Institutes of Health, Bethesda, Md (T.F.G.);
Department of Radiology, Hadassah Hebrew University Medical Center, Hebrew
University, Jerusalem, Israel (S.N.G.); and Department of Biomedical
Engineering, Yale School of Engineering and Applied Sciences, 789 Howard Ave,
Clinic Bldg 363H, New Haven, CT 06520 (J.C.)
| |
Collapse
|
8
|
Srinivasan R, Cook GJR, Patel N, Subesinghe M. Prostate specific membrane antigen (PSMA) avid nonprostatic benign and malignant disease: a pictorial review. Clin Radiol 2024; 79:639-656. [PMID: 38926052 DOI: 10.1016/j.crad.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024]
Abstract
Prostate specific membrane antigen (PSMA) positron emission tomography-computed tomography (PET-CT) is revolutionising the management of prostate cancer (PC) in primary staging and assessment of biochemical recurrence (BCR) through its higher diagnostic accuracy compared to both conventional imaging and previously available PET radiopharmaceuticals. PSMA is a transmembrane glycoprotein, highly expressed in prostate cancer, with its extracellular domain the target for PSMA PET radiopharmaceuticals. However, PSMA expression is not prostate specific and resultant PSMA uptake on PET-CT is not restricted to pathologies arising from the prostate gland. The increasing use of PSMA PET-CT has revealed PSMA uptake in a variety of non-prostatic benign and malignant diseases, which adds complexity to PET-CT interpretation and subsequent clinical management. This pictorial review will provide a thorough knowledge and understanding of the comprehensive range of PSMA avid non-prostatic benign and malignant diseases demonstrable on PSMA PET-CT, whilst highlighting the complimentary nature of other imaging modalities.
Collapse
Affiliation(s)
- R Srinivasan
- King's College London & Guy's and St Thomas' PET Centre, London, UK; Department of Radiology, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - G J R Cook
- King's College London & Guy's and St Thomas' PET Centre, London, UK; Department of Cancer Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - N Patel
- Department of Radiology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - M Subesinghe
- King's College London & Guy's and St Thomas' PET Centre, London, UK; Department of Cancer Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.
| |
Collapse
|
9
|
Shamim SA, Kumar N, Arora G, Jaswal S, Shalimar, Gamanagatti S, Bal C. A prospective study of 68Ga-PSMA PET/CT imaging of HCC as diagnosed on conventional imaging to evaluate for potential 177Lu-PSMA therapy. Ann Nucl Med 2024; 38:103-111. [PMID: 37926772 DOI: 10.1007/s12149-023-01876-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/27/2023] [Indexed: 11/07/2023]
Abstract
OBJECTIVE PSMA expression is seen in many solid tumours in addition to prostate cancer and several studies and case reports have shown PSMA expression and 68Ga-PSMA imaging of hepatocellular carcinoma (HCC). Our prospective study evaluates the role of 68Ga-PSMA in HCC patients and compares it to conventional imaging (CE-CT/MRI). METHODS Patients with radiologically and/or histopathologically confirmed HCC were included and all had undergone serum alpha-fetoprotein (S.AFP) assessment as well as CE-CT/MRI prior to PSMA PET/CT. Acquired whole-body PET/CTs were analysed both visually and quantitatively by two experienced nuclear medicine physicians. RESULTS Forty-one (41) patients (36 male; 5 female) with known HCC and a mean age of 53.9 ± 10.9 years underwent 68Ga-PSMA PET/CT. All patients had lesions on conventional imaging but only 38/41 patients showed 68Ga-PSMA uptake. Conventional imaging revealed 18 patients with single lesions, all of which were tracer avid. Twenty-three (23) of 41 patients had multifocal (> 2) hepatic lesions on CE-CT/MRI of which 3 patients showed no 68Ga-PSMA uptake, 7 showed tracer uptake in a single lesion only and 13 patients had multifocal tracer avid lesions. There was no correlation observed between S. AFP level and tumour SUVmax on 68Ga-PSMA PET/CT. CONCLUSION 68Ga-PSMA PET/CT imaging of HCC may complement conventional imaging and identify patients for potential theranostic intervention.
Collapse
Affiliation(s)
- Shamim Ahmed Shamim
- Department of Nuclear Medicine, All India Institute of Medical Sciences (AIIMS), Ansari Nagar East, New Delhi, 110029, India.
| | - Naresh Kumar
- Department of Nuclear Medicine, All India Institute of Medical Sciences (AIIMS), Ansari Nagar East, New Delhi, 110029, India
| | - Geetanjali Arora
- Department of Nuclear Medicine, All India Institute of Medical Sciences (AIIMS), Ansari Nagar East, New Delhi, 110029, India
| | - Sahil Jaswal
- Department of Nuclear Medicine, All India Institute of Medical Sciences (AIIMS), Ansari Nagar East, New Delhi, 110029, India
| | - Shalimar
- Department of Gastroenterology and Human Nutrition, AIIMS, New Delhi, India
| | | | - Chandrasekhar Bal
- Department of Nuclear Medicine, All India Institute of Medical Sciences (AIIMS), Ansari Nagar East, New Delhi, 110029, India
| |
Collapse
|
10
|
Jiang H, Tian M. Cancer. TRANSPATHOLOGY 2024:297-305. [DOI: 10.1016/b978-0-323-95223-1.00009-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
11
|
Puranik AD, Choudhury S, Ghosh S, Dev ID, Ramchandani V, Uppal A, Bhosale V, Palsapure A, Rungta R, Pandey R, Khatri S, George G, Satamwar Y, Maske R, Agrawal A, Shah S, Purandare NC, Rangarajan V. Tata Memorial Centre Evidence Based Use of Nuclear medicine diagnostic and treatment modalities in cancer. Indian J Cancer 2024; 61:S1-S28. [PMID: 38424680 DOI: 10.4103/ijc.ijc_52_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 01/31/2024] [Indexed: 03/02/2024]
Abstract
ABSTRACT PET/CT and radioisotope therapy are diagnostic and therapeutic arms of Nuclear Medicine, respectively. With the emergence of better technology, PET/CT has become an accessible modality. Diagnostic tracers exploring disease-specific targets has led the clinicians to look beyond FDG PET. Moreover, with the emergence of theranostic pairs of radiopharmaceuticals, radioisotope therapy is gradually making it's way into treatment algorithm of common cancers in India. We therefore would like to discuss in detail the updates in PET/CT imaging and radionuclide therapy and generate a consensus-driven evidence based document which would guide the practitioners of Oncology.
Collapse
Affiliation(s)
- Ameya D Puranik
- Department of Nuclear Medicine and Molecular Imaging, Tata Memorial Hospital and Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Hekman L, Napierkowski E, Hartman NC, Ellis JL, Wagner RH, Bova D, Picken MM, Flanigan RC. Incidental Discovery of Hepatocellular Carcinoma on 18F-PSMA PET CT Performed for Prostate Cancer Reassessment. Case Rep Surg 2023; 2023:1458175. [PMID: 38125746 PMCID: PMC10733019 DOI: 10.1155/2023/1458175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 12/23/2023] Open
Abstract
Prostate-specific membrane antigen positron emission tomography (PSMA PET) has been approved by the Food and Drug Administration (FDA) to identify prostate cancer in the setting of biochemical recurrence but can also identify other malignancies. 18F-PSMA PET has not been studied as a potential tool for hepatocellular carcinoma (HCC). We describe the case of a 76-year-old male with a rising prostate-specific antigen (PSA) after definitive prostate cancer treatment and no prior liver pathology who was incidentally found to have HCC on 18F-PSMA PET.
Collapse
Affiliation(s)
- Lauren Hekman
- Loyola University Medical Center, Department of Urology, USA
| | | | | | | | - Robert H. Wagner
- Loyola University Medical Center, Department of Nuclear Medicine, USA
| | - Davide Bova
- Loyola University Medical Center, Department of Radiology, USA
| | - Maria M. Picken
- Loyola University Medical Center, Department of Pathology, USA
| | | |
Collapse
|
13
|
Ozkan E, Demir B, Oz DK, Soydal C, Dursun E, Celebioglu EC, Idilman R, Kucuk NO. Demonstration of therapy response to radioembolization with 90Y resin microspheres on 68Ga-PSMA PET/MRI in a patient with hepatocellular carcinoma. Eur J Nucl Med Mol Imaging 2023; 51:316-317. [PMID: 37632564 DOI: 10.1007/s00259-023-06413-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/22/2023] [Indexed: 08/28/2023]
Affiliation(s)
- Elgin Ozkan
- Department of Nuclear Medicine, Ankara University Medical School, Cebeci, Ankara, 06590, Turkey
| | - Burak Demir
- Department of Nuclear Medicine, Ankara University Medical School, Cebeci, Ankara, 06590, Turkey.
| | - Digdem Kuru Oz
- Department of Radiology, Ankara University Medical School, Ankara, Turkey
| | - Cigdem Soydal
- Department of Nuclear Medicine, Ankara University Medical School, Cebeci, Ankara, 06590, Turkey
| | - Ecenur Dursun
- Department of Nuclear Medicine, Ankara University Medical School, Cebeci, Ankara, 06590, Turkey
| | | | - Ramazan Idilman
- Department of Internal Medicine, Division of Gastroenterology, Ankara University Medical School, Ankara, Turkey
| | - Nuriye Ozlem Kucuk
- Department of Nuclear Medicine, Ankara University Medical School, Cebeci, Ankara, 06590, Turkey
| |
Collapse
|
14
|
Zhang J, Jiang S, Li M, Xue H, Zhong X, Li S, Peng H, Liang J, Liu Z, Rao S, Chen H, Cao Z, Gong Y, Chen G, Zhang R, Zhang L. Head-to-head comparison of 18F-FAPI and 18F-FDG PET/CT in staging and therapeutic management of hepatocellular carcinoma. Cancer Imaging 2023; 23:106. [PMID: 37899452 PMCID: PMC10614420 DOI: 10.1186/s40644-023-00626-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/19/2023] [Indexed: 10/31/2023] Open
Abstract
BACKGROUND Fluorine 18 (18F) fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) has limitations in staging hepatocellular carcinoma (HCC). The recently introduced 18F-labeled fibroblast-activation protein inhibitor (FAPI) has shown promising prospects in detection of HCC lesions. This study aimed to investigate the initial staging and restaging performance of 18F-FAPI PET/CT compared to 18F-FDG PET/CT in HCC. METHODS This prospective study enrolled histologically confirmed HCC patients from March 2021 to September 2022. All patients were examined with 18F-FDG PET/CT and 18F-FAPI PET/CT within 1 week. The maximum standard uptake value (SUVmax), tumor-to-background ratio (TBR), and diagnostic accuracy were compared between the two modalities. RESULTS A total of 67 patients (57 men; median age, 57 [range, 32-83] years old) were included. 18F-FAPI PET showed higher SUVmax and TBR values than 18F-FDG PET in the intrahepatic lesions (SUVmax: 6.7 vs. 4.3, P < 0.0001; TBR: 3.9 vs. 1.7, P < 0.0001). In diagnostic performance, 18F-FAPI PET/CT had higher detection rate than 18F-FDG PET/CT in intrahepatic lesions [92.2% (238/258) vs 41.1% (106/258), P < 0.0001] and lymph node metastases [97.9% (126/129) vs 89.1% (115/129), P = 0.01], comparable in distant metastases [63.6% (42/66) vs 69.7% (46/66), P > 0.05]. 18F-FAPI PET/CT detected primary tumors in 16 patients with negative 18F-FDG, upgraded T-stages in 12 patients and identified 4 true positive findings for local recurrence than 18F-FDG PET, leading to planning therapy changes in 47.8% (32/67) of patients. CONCLUSIONS 18F-FAPI PET/CT identified more primary lesions, lymph node metastases than 18F-FDG PET/CT in HCC, which is helpful to improve the clinical management of HCC patients. TRIAL REGISTRATION Clinical Trials, NCT05485792 . Registered 1 August 2022, Retrospectively registered.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Nuclear Medicine, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, 78 Hengzhigang Road, Guangzhou, 510095, People's Republic of China
- Department of Nuclear Medicine, the First Affiliated Hospital of Guangzhou Medical University, No.28 Qiaozhong Road, Guangzhou, Guangdong, 510163, P. R. China
| | - Shuqin Jiang
- Department of Nuclear Medicine, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, 78 Hengzhigang Road, Guangzhou, 510095, People's Republic of China
| | - Mengsi Li
- Department of Radiology, the Third Affiliated Hospital of Sun Yat-Sen University, No.600, Tianhe Road, Guangzhou, Guangdong, 510630, P. R. China
| | - Haibao Xue
- Department of Nuclear Medicine, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, 78 Hengzhigang Road, Guangzhou, 510095, People's Republic of China
| | - Xi Zhong
- Department of Radiology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, 78 Hengzhigang Road, Guangzhou, Guangdong, 510095, P. R. China
| | - Shuyi Li
- Department of Nuclear Medicine, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, 78 Hengzhigang Road, Guangzhou, 510095, People's Republic of China
| | - Hao Peng
- Department of Nuclear Medicine, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, 78 Hengzhigang Road, Guangzhou, 510095, People's Republic of China
| | - Jiuceng Liang
- Department of Nuclear Medicine, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, 78 Hengzhigang Road, Guangzhou, 510095, People's Republic of China
| | - Zhidong Liu
- Department of Nuclear Medicine, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, 78 Hengzhigang Road, Guangzhou, 510095, People's Republic of China
| | - Songquan Rao
- Department of Nuclear Medicine, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, 78 Hengzhigang Road, Guangzhou, 510095, People's Republic of China
| | - Haipeng Chen
- Department of Nuclear Medicine, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, 78 Hengzhigang Road, Guangzhou, 510095, People's Republic of China
| | - Zewen Cao
- Department of Nuclear Medicine, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, 78 Hengzhigang Road, Guangzhou, 510095, People's Republic of China
| | - Yuanfeng Gong
- Department of Hepatobiliary Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, 78 Hengzhigang Road, Guangzhou, Guangdong, 510095, P. R. China
| | - Guoshuo Chen
- Department of Interventional Medicine, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, 78 Hengzhigang Road, Guangzhou, Guangdong, 510095, P. R. China
| | - Rusen Zhang
- Department of Nuclear Medicine, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, 78 Hengzhigang Road, Guangzhou, 510095, People's Republic of China.
| | - Linqi Zhang
- Department of Nuclear Medicine, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, 78 Hengzhigang Road, Guangzhou, 510095, People's Republic of China.
| |
Collapse
|
15
|
Nyakale NE, Aldous C, Gutta AA, Khuzwayo X, Harry L, Sathekge MM. Emerging theragnostic radionuclide applications for hepatocellular carcinoma. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2023; 3:1210982. [PMID: 39355044 PMCID: PMC11440867 DOI: 10.3389/fnume.2023.1210982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 09/29/2023] [Indexed: 10/03/2024]
Abstract
Hepatocellular carcinoma (HCC) is a major global health problem. Theragnostic is a term that refers to the integration of diagnostic and therapeutic modalities into a single system for personalized medicine. Theragnostic care in HCC involves the use of imaging techniques to diagnose the cancer and assess its characteristics, such as size, location, and extent of spread. Theragnostics involves the use of molecular and genetic tests to identify specific biomarkers that can help guide treatment decisions and, post-treatment, assess the dosimetry and localization of the treatment, thus guiding future treatment. This can be done through either positron emission tomography (PET) scanning or single photon emission tomography (SPECT) using radiolabeled tracers that target specific molecules expressed by HCC cells or radioembolization. This technique can help identify the location and extent of the cancer, as well as provide information on the tumor's metabolic activity and blood supply. In summary, theragnostics is an emerging field that holds promise for improving the diagnosis and treatment of HCC. By combining diagnostic and therapeutic modalities into a single system, theragnostics can help guide personalized treatment decisions and improve patient outcomes.
Collapse
Affiliation(s)
- N E Nyakale
- Department of Nuclear Medicine, Sefako Makgatho Health Sciences University, Dr George Mukhari Academic Hospital, Pretoria, South Africa
- Department of Nuclear Medicine, University of Kwa-Zulu Natal, Durban, South Africa
| | - C Aldous
- School of Clinical Medicine, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - A A Gutta
- Department of Nuclear Medicine, Sefako Makgatho Health Sciences University, Dr George Mukhari Academic Hospital, Pretoria, South Africa
| | - X Khuzwayo
- Department of Nuclear Medicine, Sefako Makgatho Health Sciences University, Dr George Mukhari Academic Hospital, Pretoria, South Africa
| | - L Harry
- Department of Nuclear Medicine, University of Kwa-Zulu Natal, Durban, South Africa
| | - M M Sathekge
- Department of Nuclear Medicine, University of Pretoria, Steve Biko Academic Hospital, Pretoria, South Africa
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria, South Africa
| |
Collapse
|
16
|
Echavidre W, Fagret D, Faraggi M, Picco V, Montemagno C. Recent Pre-Clinical Advancements in Nuclear Medicine: Pioneering the Path to a Limitless Future. Cancers (Basel) 2023; 15:4839. [PMID: 37835533 PMCID: PMC10572076 DOI: 10.3390/cancers15194839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023] Open
Abstract
The theranostic approach in oncology holds significant importance in personalized medicine and stands as an exciting field of molecular medicine. Significant achievements have been made in this field in recent decades, particularly in treating neuroendocrine tumors using 177-Lu-radiolabeled somatostatin analogs and, more recently, in addressing prostate cancer through prostate-specific-membrane-antigen targeted radionuclide therapy. The promising clinical results obtained in these indications paved the way for the further development of this approach. With the continuous discovery of new molecular players in tumorigenesis, the development of novel radiopharmaceuticals, and the potential combination of theranostics agents with immunotherapy, nuclear medicine is poised for significant advancements. The strategy of theranostics in oncology can be categorized into (1) repurposing nuclear medicine agents for other indications, (2) improving existing radiopharmaceuticals, and (3) developing new theranostics agents for tumor-specific antigens. In this review, we provide an overview of theranostic development and shed light on its potential integration into combined treatment strategies.
Collapse
Affiliation(s)
- William Echavidre
- Biomedical Department, Centre Scientifique de Monaco, 98000 Monaco, Monaco; (W.E.); (V.P.)
| | - Daniel Fagret
- Laboratory of Bioclinical Radiopharmaceutics, Universite Grenoble Alpes, CHU Grenoble Alpes, Inserm, 38000 Grenoble, France;
| | - Marc Faraggi
- Nuclear Medicine Department, Centre Hospitalier Princesse Grace, 98000 Monaco, Monaco;
| | - Vincent Picco
- Biomedical Department, Centre Scientifique de Monaco, 98000 Monaco, Monaco; (W.E.); (V.P.)
| | - Christopher Montemagno
- Biomedical Department, Centre Scientifique de Monaco, 98000 Monaco, Monaco; (W.E.); (V.P.)
| |
Collapse
|
17
|
Lu Q, Long Y, Gai Y, Liu Q, Jiang D, Lan X. [ 177Lu]Lu-PSMA-617 theranostic probe for hepatocellular carcinoma imaging and therapy. Eur J Nucl Med Mol Imaging 2023; 50:2342-2352. [PMID: 36877233 DOI: 10.1007/s00259-023-06155-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 02/13/2023] [Indexed: 03/07/2023]
Abstract
PURPOSE This study aimed to explore the feasibility of using [177Lu]Lu-prostate-specific membrane antigen (PSMA)-617 and [177Lu]Lu-Evans blue (EB)-PSMA-617 for in vivo radioligand therapy by single-dose administration in a PSMA-positive hepatocellular carcinoma (HCC) xenograft mouse model. METHODS [177Lu]Lu-PSMA-617 and [177Lu]Lu-EB-PSMA-617 were prepared, and labelling efficiency and radiochemical purity were determined. A HepG2 human HCC subcutaneous xenograft mouse model was established. After intravenous injection of [177Lu]Lu-PSMA-617 or [177Lu]Lu-EB-PSMA-617 (37 MBq) into the mouse model, single-photon emission computed tomography/computed tomography (SPECT/CT) was performed. Biodistribution studies were conducted to verify targeting specificity and pharmacokinetics. In the radioligand therapy study, mice were randomized into 4 groups: 37 MBq [177Lu]Lu-PSMA-617, 18.5 MBq [177Lu]Lu-PSMA-617, 7.4 MBq [177Lu]Lu-EB-PSMA-617, and saline (control). A single-dose administration was applied at the beginning of therapy studies. Tumor volume, body weight, and survival were monitored every 2 days. After the end of therapy, mice were euthanized. Tumors were then weighed, and systemic toxicity was evaluated via blood testing and histological examination of healthy organs. RESULTS [177Lu]Lu-PSMA-617 and [177Lu]Lu-EB-PSMA-617 were successfully prepared with high purity and stability. SPECT/CT and biodistribution showed that tumor uptake was higher and persisted longer for [177Lu]Lu-EB-PSMA-617 compared with [177Lu]Lu-PSMA-617. [177Lu]Lu-PSMA-617 was rapidly cleared from the blood, while [177Lu]Lu-EB-PSMA-617 persisted for significantly longer. In radioligand therapy studies, tumor growth was significantly suppressed in the 37 MBq [177Lu]Lu-PSMA-617, 18.5 MBq [177Lu]Lu-PSMA-617, and 7.4 MBq [177Lu]Lu-EB-PSMA-617 groups compared to the saline group. Median survival was 40, 44, 43, and 30 days, respectively. No healthy organ toxicity was observed in safety and tolerability evaluation. CONCLUSIONS Radioligand therapy using [177Lu]Lu-PSMA-617 and [177Lu]Lu-EB-PSMA-617 significantly suppressed tumor growth and prolonged survival time in PSMA-positive HCC xenograft mice without obvious toxicity. These radioligands appear promising for clinical use in humans, and future studies are warranted.
Collapse
Affiliation(s)
- Qiaomiao Lu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, Hubei, 430022, China
| | - Yu Long
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, Hubei, 430022, China
| | - Yongkang Gai
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, Hubei, 430022, China
- Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Wuhan, 430022, China
| | - Qingyao Liu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, Hubei, 430022, China
- Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Wuhan, 430022, China
| | - Dawei Jiang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, Hubei, 430022, China
- Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Wuhan, 430022, China
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
- Hubei Key Laboratory of Molecular Imaging, Wuhan, Hubei, 430022, China.
- Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Wuhan, 430022, China.
| |
Collapse
|
18
|
Chandekar KR, Prashanth A, Vinjamuri S, Kumar R. FAPI PET/CT Imaging-An Updated Review. Diagnostics (Basel) 2023; 13:2018. [PMID: 37370912 PMCID: PMC10297281 DOI: 10.3390/diagnostics13122018] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Despite revolutionizing the field of oncological imaging, Positron Emission Tomography (PET) with [18F]Fluorodeoxyglucose (FDG) as its workhorse is limited by a lack of specificity and low sensitivity in certain tumor subtypes. Fibroblast activation protein (FAP), a type II transmembrane glycoprotein, is expressed by cancer-associated fibroblasts (CAFs) that form a major component of the tumor stroma. FAP holds the promise to be a pan-cancer target, owing to its selective over-expression in a vast majority of neoplasms, particularly epithelial cancers. Several radiolabeled FAP inhibitors (FAPI) have been developed for molecular imaging and potential theranostic applications. Preliminary data on FAPI PET/CT remains encouraging, with extensive multi-disciplinary clinical research currently underway. This review summarizes the existing literature on FAPI PET/CT imaging with an emphasis on diagnostic applications, comparison with FDG, pitfalls, and future directions.
Collapse
Affiliation(s)
- Kunal Ramesh Chandekar
- Department of Nuclear Medicine, All India Institute of Medical Sciences, New Delhi 110029, India;
| | - Arun Prashanth
- Department of Nuclear Medicine, MIOT International Hospital, Chennai 600089, India;
| | - Sobhan Vinjamuri
- Department of Nuclear Medicine, Royal Liverpool and Broadgreen University Hospital, Liverpool L7-8YE, UK;
| | - Rakesh Kumar
- Department of Nuclear Medicine, All India Institute of Medical Sciences, New Delhi 110029, India;
| |
Collapse
|
19
|
Pomykala KL, Hadaschik BA, Sartor O, Gillessen S, Sweeney CJ, Maughan T, Hofman MS, Herrmann K. Next generation radiotheranostics promoting precision medicine. Ann Oncol 2023; 34:507-519. [PMID: 36924989 DOI: 10.1016/j.annonc.2023.03.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/03/2023] [Indexed: 03/17/2023] Open
Abstract
Radiotheranostics is a field of rapid growth with some approved treatments including 131I for thyroid cancer, 223Ra for osseous metastases, 177Lu-DOTATATE for neuroendocrine tumors, and 177Lu-PSMA (prostate-specific membrane antigen) for prostate cancer, and several more under investigation. In this review, we will cover the fundamentals of radiotheranostics, the key clinical studies that have led to current success, future developments with new targets, radionuclides and platforms, challenges with logistics and reimbursement and, lastly, forthcoming considerations regarding dosimetry, identifying the right line of therapy, artificial intelligence and more.
Collapse
Affiliation(s)
- K L Pomykala
- Institute for Artificial Intelligence in Medicine, University Hospital Essen, Essen, Germany
| | - B A Hadaschik
- Department of Urology, University Hospital Essen, Essen, Germany
| | - O Sartor
- School of Medicine, Tulane University, New Orleans, USA
| | - S Gillessen
- Oncology Institute of Southern Switzerland, Bellinzona, Switzerland; Università della Svizzera Italiana, Lugano, Switzerland; Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - C J Sweeney
- Dana-Farber Cancer Institute, Boston, USA; Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - T Maughan
- Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - M S Hofman
- Prostate Cancer Theranostics and Imaging Centre of Excellence (ProsTIC), Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - K Herrmann
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany.
| |
Collapse
|
20
|
Schwenck J, Sonanini D, Cotton JM, Rammensee HG, la Fougère C, Zender L, Pichler BJ. Advances in PET imaging of cancer. Nat Rev Cancer 2023:10.1038/s41568-023-00576-4. [PMID: 37258875 DOI: 10.1038/s41568-023-00576-4] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/17/2023] [Indexed: 06/02/2023]
Abstract
Molecular imaging has experienced enormous advancements in the areas of imaging technology, imaging probe and contrast development, and data quality, as well as machine learning-based data analysis. Positron emission tomography (PET) and its combination with computed tomography (CT) or magnetic resonance imaging (MRI) as a multimodality PET-CT or PET-MRI system offer a wealth of molecular, functional and morphological data with a single patient scan. Despite the recent technical advances and the availability of dozens of disease-specific contrast and imaging probes, only a few parameters, such as tumour size or the mean tracer uptake, are used for the evaluation of images in clinical practice. Multiparametric in vivo imaging data not only are highly quantitative but also can provide invaluable information about pathophysiology, receptor expression, metabolism, or morphological and functional features of tumours, such as pH, oxygenation or tissue density, as well as pharmacodynamic properties of drugs, to measure drug response with a contrast agent. It can further quantitatively map and spatially resolve the intertumoural and intratumoural heterogeneity, providing insights into tumour vulnerabilities for target-specific therapeutic interventions. Failure to exploit and integrate the full potential of such powerful imaging data may lead to a lost opportunity in which patients do not receive the best possible care. With the desire to implement personalized medicine in the cancer clinic, the full comprehensive diagnostic power of multiplexed imaging should be utilized.
Collapse
Affiliation(s)
- Johannes Schwenck
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University of Tübingen, Tübingen, Germany
- Nuclear Medicine and Clinical Molecular Imaging, Department of Radiology, Eberhard Karls University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) 'Image-Guided and Functionally Instructed Tumour Therapies', Eberhard Karls University, Tübingen, Germany
| | - Dominik Sonanini
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University of Tübingen, Tübingen, Germany
- Medical Oncology and Pulmonology, Department of Internal Medicine, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Jonathan M Cotton
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) 'Image-Guided and Functionally Instructed Tumour Therapies', Eberhard Karls University, Tübingen, Germany
| | - Hans-Georg Rammensee
- Cluster of Excellence iFIT (EXC 2180) 'Image-Guided and Functionally Instructed Tumour Therapies', Eberhard Karls University, Tübingen, Germany
- Department of Immunology, IFIZ Institute for Cell Biology, Eberhard Karls University of Tübingen, Tübingen, Germany
- German Cancer Research Center, German Cancer Consortium DKTK, Partner Site Tübingen, Tübingen, Germany
| | - Christian la Fougère
- Nuclear Medicine and Clinical Molecular Imaging, Department of Radiology, Eberhard Karls University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) 'Image-Guided and Functionally Instructed Tumour Therapies', Eberhard Karls University, Tübingen, Germany
- German Cancer Research Center, German Cancer Consortium DKTK, Partner Site Tübingen, Tübingen, Germany
| | - Lars Zender
- Cluster of Excellence iFIT (EXC 2180) 'Image-Guided and Functionally Instructed Tumour Therapies', Eberhard Karls University, Tübingen, Germany
- Medical Oncology and Pulmonology, Department of Internal Medicine, Eberhard Karls University of Tübingen, Tübingen, Germany
- German Cancer Research Center, German Cancer Consortium DKTK, Partner Site Tübingen, Tübingen, Germany
| | - Bernd J Pichler
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University of Tübingen, Tübingen, Germany.
- Cluster of Excellence iFIT (EXC 2180) 'Image-Guided and Functionally Instructed Tumour Therapies', Eberhard Karls University, Tübingen, Germany.
- German Cancer Research Center, German Cancer Consortium DKTK, Partner Site Tübingen, Tübingen, Germany.
| |
Collapse
|
21
|
Pommergaard HC. Prognostic biomarkers in and selection of surgical patients with hepatocellular carcinoma. APMIS 2023; 131 Suppl 146:1-39. [PMID: 37186326 DOI: 10.1111/apm.13309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
|
22
|
Labadie KP, Lehnert AL, Kenoyer AL, Hamlin DK, Ludwig AD, Utria AF, Daniel SK, Mihailovic TN, Prossnitz A, Orozco JJ, Li Y, Wilbur DS, Miyaoka RS, Park JO. Glypican-3 targeted positron emission tomography detects sub-centimeter tumors in a xenograft model of hepatocellular carcinoma. EJNMMI Res 2023; 13:35. [PMID: 37103671 PMCID: PMC10140215 DOI: 10.1186/s13550-023-00980-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/29/2023] [Indexed: 04/28/2023] Open
Abstract
BACKGROUND Early intrahepatic recurrence is common after surgical resection of hepatocellular carcinoma (HCC) and leads to increased morbidity and mortality. Insensitive and nonspecific diagnostic imaging contributes to EIR and results in missed treatment opportunities. In addition, novel modalities are needed to identify targets amenable for targeted molecular therapy. In this study, we evaluated a zirconium-89 radiolabeled glypican-3 (GPC3) targeting antibody conjugate (89Zr-αGPC3) for use in positron emission tomography (PET) for detection of small, GPC3+ HCC in an orthotopic murine model. Athymic nu/J mice received hepG2, a GPC3+ human HCC cell line, into the hepatic subcapsular space. Tumor-bearing mice were imaged by PET/computerized tomography (CT) 4 days after tail vein injection of 89Zr-αGPC3. Livers were then excised for the tumors to be identified, measured, bisected, and then serially sectioned at 500 μm increments. Sensitivity and specificity of PET/CT for 89Zr-αGPC3-avid tumors were assessed using tumor confirmation on histologic sections as the gold standard. RESULTS In tumor-bearing mice, 89Zr-αGPC3 avidly accumulated in the tumor within four hours of injection with ongoing accumulation over time. There was minimal off-target deposition and rapid bloodstream clearance. Thirty-eight of 43 animals had an identifiable tumor on histologic analysis. 89Zr-αGPC3 immuno-PET detected all 38 histologically confirmed tumors with a sensitivity of 100%, with the smallest tumor detected measuring 330 μm in diameter. Tumor-to-liver ratios of 89Zr-αGPC3 uptake were high, creating excellent spatial resolution for ease of tumor detection on PET/CT. Two of five tumors that were observed on PET/CT were not identified on histologic analysis, yielding a specificity of 60%. CONCLUSIONS 89Zr-αGPC3 avidly accumulated in GPC3+ tumors with minimal off-target sequestration. 89Zr-αGPC3 immuno-PET yielded a sensitivity of 100% and detected sub-millimeter tumors. This technology may improve diagnostic sensitivity of small HCC and select GPC3+ tumors for targeted therapy. Human trials are warranted to assess its impact.
Collapse
Affiliation(s)
- Kevin P Labadie
- Department of Surgery, University of Washington School of Medicine, 1959 NE Pacific Street, Health Sciences Bldg. Room BB-442, Box 356410, Seattle, WA, 98195-6410, USA
| | - Adrienne L Lehnert
- Department of Radiology, University of Washington School of Medicine, 1959 NE Pacific Street, Seattle, WA, 98195, USA
| | - Aimee L Kenoyer
- Clinical Research Division, Fred Hutch Cancer Research Center, 100 Fairview Ave N, Seattle, WA, 98109, USA
| | - Donald K Hamlin
- Department of Radiation Oncology, University of Washington School of Medicine, 616 NE Northlake Pl., Seattle, WA, 98105, USA
| | - Andrew D Ludwig
- Department of Surgery, University of Washington School of Medicine, 1959 NE Pacific Street, Health Sciences Bldg. Room BB-442, Box 356410, Seattle, WA, 98195-6410, USA
| | - Alan F Utria
- Department of Surgery, University of Washington School of Medicine, 1959 NE Pacific Street, Health Sciences Bldg. Room BB-442, Box 356410, Seattle, WA, 98195-6410, USA
| | - Sara K Daniel
- Department of Surgery, University of Washington School of Medicine, 1959 NE Pacific Street, Health Sciences Bldg. Room BB-442, Box 356410, Seattle, WA, 98195-6410, USA
| | - Tara N Mihailovic
- Department of Surgery, University of Washington School of Medicine, 1959 NE Pacific Street, Health Sciences Bldg. Room BB-442, Box 356410, Seattle, WA, 98195-6410, USA
| | - Alexander Prossnitz
- Department of Bioengineering, University of Washington, 3720 15th Ave NE, Seattle, WA, 98195, USA
| | - Johnnie J Orozco
- Clinical Research Division, Fred Hutch Cancer Research Center, 100 Fairview Ave N, Seattle, WA, 98109, USA
| | - Yawen Li
- Department of Radiation Oncology, University of Washington School of Medicine, 616 NE Northlake Pl., Seattle, WA, 98105, USA
| | - D Scott Wilbur
- Department of Radiation Oncology, University of Washington School of Medicine, 616 NE Northlake Pl., Seattle, WA, 98105, USA
| | - Robert S Miyaoka
- Department of Radiology, University of Washington School of Medicine, 1959 NE Pacific Street, Seattle, WA, 98195, USA
| | - James O Park
- Department of Surgery, University of Washington School of Medicine, 1959 NE Pacific Street, Health Sciences Bldg. Room BB-442, Box 356410, Seattle, WA, 98195-6410, USA.
| |
Collapse
|
23
|
Cox DRA, Chung W, Grace J, Wong D, Kutaiba N, Ranatunga D, Khor R, Perini MV, Fink M, Jones R, Goodwin M, Dobrovic A, Testro A, Muralidharan V. Evaluating treatment response following locoregional therapy for hepatocellular carcinoma: A review of the available serological and radiological tools for assessment. JGH Open 2023; 7:249-260. [PMID: 37125252 PMCID: PMC10134770 DOI: 10.1002/jgh3.12879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 02/01/2023] [Accepted: 02/09/2023] [Indexed: 04/05/2023]
Abstract
Hepatocellular carcinoma (HCC) is an aggressive primary malignancy of the liver and is the third most common cause of cancer-related global mortality. There has been a steady increase in treatment options for HCC in recent years, including innovations in both curative and non-curative therapies. These advances have brought new challenges and necessary improvements in strategies of disease monitoring, to allow early detection of HCC recurrence. Current serological and radiological strategies for post-treatment monitoring and prognostication and their limitations will be discussed and evaluated in this review.
Collapse
Affiliation(s)
- Daniel R A Cox
- Department of Surgery (Austin Precinct)The University of MelbourneMelbourneVictoriaAustralia
- Hepatopancreatobiliary and Liver Transplant Surgery UnitAustin HealthMelbourneVictoriaAustralia
| | - William Chung
- Department of Medicine (Austin Precinct)The University of MelbourneMelbourneVictoriaAustralia
- Liver Transplant Unit, Department of Gastroenterology and HepatologyAustin HealthMelbourneVictoriaAustralia
| | - Josephine Grace
- Department of Medicine (Austin Precinct)The University of MelbourneMelbourneVictoriaAustralia
- Liver Transplant Unit, Department of Gastroenterology and HepatologyAustin HealthMelbourneVictoriaAustralia
| | - Darren Wong
- Department of Medicine (Austin Precinct)The University of MelbourneMelbourneVictoriaAustralia
- Liver Transplant Unit, Department of Gastroenterology and HepatologyAustin HealthMelbourneVictoriaAustralia
| | - Numan Kutaiba
- Department of RadiologyAustin HealthMelbourneVictoriaAustralia
| | | | - Richard Khor
- Department of Radiation OncologyAustin HealthMelbourneVictoriaAustralia
- School of Molecular Sciences, La Trobe UniversityMelbourneVictoriaAustralia
- Department of Medical Imaging and Radiation SciencesMonash UniversityMelbourneVictoriaAustralia
| | - Marcos V Perini
- Department of Surgery (Austin Precinct)The University of MelbourneMelbourneVictoriaAustralia
- Hepatopancreatobiliary and Liver Transplant Surgery UnitAustin HealthMelbourneVictoriaAustralia
| | - Michael Fink
- Department of Surgery (Austin Precinct)The University of MelbourneMelbourneVictoriaAustralia
- Hepatopancreatobiliary and Liver Transplant Surgery UnitAustin HealthMelbourneVictoriaAustralia
| | - Robert Jones
- Department of Surgery (Austin Precinct)The University of MelbourneMelbourneVictoriaAustralia
- Hepatopancreatobiliary and Liver Transplant Surgery UnitAustin HealthMelbourneVictoriaAustralia
- Liver Transplant Unit, Department of Gastroenterology and HepatologyAustin HealthMelbourneVictoriaAustralia
| | - Mark Goodwin
- Department of RadiologyAustin HealthMelbourneVictoriaAustralia
| | - Alex Dobrovic
- Department of Surgery (Austin Precinct)The University of MelbourneMelbourneVictoriaAustralia
| | - Adam Testro
- Department of Medicine (Austin Precinct)The University of MelbourneMelbourneVictoriaAustralia
- Liver Transplant Unit, Department of Gastroenterology and HepatologyAustin HealthMelbourneVictoriaAustralia
| | - Vijayaragavan Muralidharan
- Department of Surgery (Austin Precinct)The University of MelbourneMelbourneVictoriaAustralia
- Hepatopancreatobiliary and Liver Transplant Surgery UnitAustin HealthMelbourneVictoriaAustralia
| |
Collapse
|
24
|
Nyakale N, Filippi L, Aldous C, Sathekge M. Update on PET Radiopharmaceuticals for Imaging Hepatocellular Carcinoma. Cancers (Basel) 2023; 15:cancers15071975. [PMID: 37046636 PMCID: PMC10093680 DOI: 10.3390/cancers15071975] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/12/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
Numerous positron emission tomography (PET) targets for detection and staging of hepatocellular cancer have been developed in recent years. Hepatocellular carcinomas (HCCs) are clinically and pathologically heterogeneous tumours with a high tendency to be aggressive and unresponsive to chemotherapy. Early detection is essential, and the need for an adequate imaging biomarker, which can overcome some of the limitations of conventional radiological imaging, is persistent. Flourine-18 (18F) flourodeoxyglucose (FDG), the most widely used PET radiopharmaceutical, has proven disappointing as a possible staple in the evaluation of HCC. This disappointment had led to experimentation with carious radiotracers, such as the choline derivatives, acetate, and prostate-specific membrane antigen, which appear to complement and/or enhance the role of FDG. In this study, we look at the various PET radiopharmaceuticals that have been used for imaging HCC and the particular pathways that they target in HCC and liver cancers.
Collapse
|
25
|
Wong VCK, Yip J, Fragomeli V, Weltman M, Loh H, Le K, Nguyen D, Bui C, Mansberg R. Comparison between PSMA PET/CT and MRI for Characterizing Hepatocellular carcinoma: A Real-World Study. Tomography 2023; 9:130-138. [PMID: 36648998 PMCID: PMC9844456 DOI: 10.3390/tomography9010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/27/2022] [Accepted: 01/09/2023] [Indexed: 01/17/2023] Open
Abstract
Prostate specific membrane antigen (PSMA) is expressed by hepatocellular carcinoma (HCC). PSMA PET/CT has potential as an imaging agent for the detection of HCC including early diagnosis and monitoring for recurrence following surgical resection. This study aims to compare PSMA PET to standard surveillance imaging in the detection of HCC. Patients with suspected or treated HCC were prospectively recruited from a tertiary hospital outpatient clinic. In addition to routine surveillance imaging as recommended by the multidisciplinary team, a PSMA PET/CT was performed. Imaging and clinical characteristics were compared over a follow-up period of up to 12 months. In a cohort of 19 patients with known HCC or suspected recurrent HCC, PSMA PET/CT had similar efficacy to MRI for the detection of HCC, with a sensitivity of 91% and a specificity of 70% and sensitivity of 87% and a specificity of 73% for PSMA PET/CT and MRI, respectively. PSMA PET/CT had a higher negative predictive value of 90%. In this relatively large single centre study, PSMA is shown to have promising equivalence in performance and its role should be further evaluated in multi-centre prospective trials.
Collapse
Affiliation(s)
- Veronica Chi Ken Wong
- Department of Nuclear Medicine and PET, Nepean Hospital, Kingswood, NSW 2747, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Joshua Yip
- Department of Nuclear Medicine and PET, Nepean Hospital, Kingswood, NSW 2747, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Vincenzo Fragomeli
- Department of Gastroenterology and Hepatology, Nepean Hospital, Kingswood, NSW 2747, Australia
| | - Martin Weltman
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
- Department of Gastroenterology and Hepatology, Nepean Hospital, Kingswood, NSW 2747, Australia
| | - Han Loh
- Department of Nuclear Medicine and PET, Nepean Hospital, Kingswood, NSW 2747, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Ken Le
- Department of Nuclear Medicine and PET, Nepean Hospital, Kingswood, NSW 2747, Australia
| | - Diep Nguyen
- Department of Nuclear Medicine and PET, Nepean Hospital, Kingswood, NSW 2747, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Chuong Bui
- Department of Nuclear Medicine and PET, Nepean Hospital, Kingswood, NSW 2747, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Robert Mansberg
- Department of Nuclear Medicine and PET, Nepean Hospital, Kingswood, NSW 2747, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
- Correspondence: ; Tel.: +61-247342156
| |
Collapse
|
26
|
Kmeid M, Park YN, Chung T, Lukose G, Sullivan L, Brar R, Lee H. PSMA Immunohistochemistry in Hepatic Neoplasms: A Promising Diagnostic Marker With Potential Theranostic Applications. Am J Surg Pathol 2022; 46:1688-1699. [PMID: 36190927 DOI: 10.1097/pas.0000000000001971] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Accurate classification of well-differentiated hepatocellular neoplasms can be challenging especially in core biopsies. Prostate-specific membrane antigen (PSMA) has been shown to highlight tumor-associated neovasculature in many nonprostatic solid tumors including hepatocellular carcinoma (HCC). Archived 164 hepatectomies and explants with 68 HCCs, 31 hepatocellular adenoma (HA), 24 dysplastic nodules (DN), and 42 metastases were retrieved, and pathologic parameters were evaluated. Sensitivity, specificity, accuracy, positive, and negative predictive values for correct diagnosis of HCC were calculated for PSMA and CD34 immunostains in tissue sections and HCC tissue microarrays. PSMA positivity was defined as capillarized sinusoidal/tumor-associated vessel staining involving ≥5% of the tumor area. In all, 55/68 (80.9%) HCC and 37/42 (88.1%) of liver metastasis were PSMA positive. PSMA was negative in HA, DN, and background liver (100% specificity). CD34 had a 98.5% sensitivity but a 65.5% specificity in identifying HCC. PSMA sensitivity remained high in the HCC tissue microarray (89.7%). PSMA was more accurate than CD34 (95.5% vs. 69.7%) in distinguishing grade 1 HCC from HA and high-grade DN while retaining high sensitivity (80%). The degree of PSMA positivity in HCC was greater in older, male, and human immunodeficiency virus patients ( P <0.05). No associations were found between PSMA staining and other tumor parameters ( P >0.05). PSMA is a marker of neoangiogenesis with increased expression in both primary and metastatic hepatic malignancies. Neovascular PSMA expression is more specific and accurate than CD34 for differentiating HCC from benign and precursor hepatic lesions. Diagnostic and therapeutic utility of PSMA radioligands in malignant liver neoplasms warrant further clinical investigations.
Collapse
Affiliation(s)
- Michel Kmeid
- Department of Pathology, Albany Medical Center, Albany
| | | | - Taek Chung
- Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Georgi Lukose
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY
| | - Luz Sullivan
- Department of Pathology, Albany Medical Center, Albany
| | - Rupinder Brar
- Department of Pathology, Albany Medical Center, Albany
| | - Hwajeong Lee
- Department of Pathology, Albany Medical Center, Albany
| |
Collapse
|
27
|
PSMA PET for the Evaluation of Liver Metastases in Castration-Resistant Prostate Cancer Patients: A Multicenter Retrospective Study. Cancers (Basel) 2022; 14:cancers14225680. [PMID: 36428771 PMCID: PMC9688898 DOI: 10.3390/cancers14225680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/09/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
Background: To evaluate the diagnostic performance of PSMA-PET compared to conventional imaging/liver biopsy in the detection of liver metastases in CRPC patients. Moreover, we evaluated a PSMA-PET/CT-based radiomic model able to identify liver metastases. Methods: Multicenter retrospective study enrolling patients with the following inclusion criteria: (a) proven CRPC patients, (b) PSMA-PET and conventional imaging/liver biopsy performed in a 6 months timeframe, (c) no therapy changes between PSMA-PET and conventional imaging/liver biopsy. PSMA-PET sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy for liver metastases were calculated. After the extraction of radiomic features, a prediction model for liver metastases identification was developed. Results: Sixty CRPC patients were enrolled. Within 6 months before or after PSMA-PET, conventional imaging and liver biopsy identified 24/60 (40%) patients with liver metastases. PSMA-PET sensitivity, specificity, PPV, NPV, and accuracy for liver metastases were 0.58, 0.92, 0.82, 0.77, and 0.78, respectively. Either number of liver metastases and the maximum lesion diameter were significantly associated with the presence of a positive PSMA-PET (p < 0.05). On multivariate regression analysis, the radiomic feature-based model combining sphericity, and the moment of inverse difference (Idm), had an AUC of 0.807 (95% CI:0.686-0.920). Conclusion: For liver metastases assessment, [68Ga]Ga-PSMA-11-PET demonstrated moderate sensitivity while high specificity, PPV, and inter-reader agreement compared to conventional imaging/liver biopsy in CRPC patients.
Collapse
|
28
|
Rizzo A, Racca M, Albano D, Dondi F, Bertagna F, Annunziata S, Treglia G. Can PSMA-Targeting Radiopharmaceuticals Be Useful for Detecting Hepatocellular Carcinoma Using Positron Emission Tomography? An Updated Systematic Review and Meta-Analysis. Pharmaceuticals (Basel) 2022; 15:1368. [PMID: 36355540 PMCID: PMC9699564 DOI: 10.3390/ph15111368] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 08/07/2023] Open
Abstract
BACKGROUND Several studies proposed the use of positron emission tomography (PET) with Prostate-Specific Membrane Antigen (PSMA)-targeting radiopharmaceuticals in hepatocellular carcinoma (HCC). Our aim is to calculate the detection rate (DR) of this examination in HCC with a meta-analysis. METHODS A comprehensive literature search of studies on the DR of PET/CT or PET/MRI with PSMA-targeting radiopharmaceuticals in HCC was performed. Original articles evaluating these imaging examinations both in newly diagnosed HCC patients and HCC patients with disease relapse were included. Pooled DR including 95% confidence intervals (95% CI) was calculated. Statistical heterogeneity was also assessed using the I2 test. RESULTS The meta-analysis of six selected studies (126 patients) provided a DR of 85.9% for PET imaging with PSMA-targeting radiopharmaceuticals in the diagnosis of HCC. Moderate statistical heterogeneity among the included studies was found (I2 = 56%). CONCLUSIONS The quantitative data provided demonstrate the high DR of PET/CT or PET/MRI with PSMA-targeting radiopharmaceuticals for HCC lesion detection. However, more studies are needed to confirm the promising role of PSMA-targeted PET in HCC.
Collapse
Affiliation(s)
- Alessio Rizzo
- Department of Nuclear Medicine, Candiolo Cancer Institute, FPO—IRCCS, 10060 Turin, Italy
| | - Manuela Racca
- Department of Nuclear Medicine, Candiolo Cancer Institute, FPO—IRCCS, 10060 Turin, Italy
| | - Domenico Albano
- Division of Nuclear Medicine, Università Degli Studi di Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| | - Francesco Dondi
- Division of Nuclear Medicine, Università Degli Studi di Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| | - Francesco Bertagna
- Division of Nuclear Medicine, Università Degli Studi di Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| | - Salvatore Annunziata
- Unità di Medicina Nucleare, TracerGLab, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Giorgio Treglia
- Clinic of Nuclear Medicine, Imaging Institute of Southern Switzerland, Ente Ospedaliero Cantonale, 6501 Bellinzona, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, 1011 Lausanne, Switzerland
- Faculty of Biomedical Sciences, Università Della Svizzera Italiana, 6900 Lugano, Switzerland
| |
Collapse
|
29
|
PSMA Expression in Solid Tumors beyond the Prostate Gland: Ready for Theranostic Applications? J Clin Med 2022; 11:jcm11216590. [PMID: 36362824 PMCID: PMC9657217 DOI: 10.3390/jcm11216590] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
In the past decades, the expanding use of prostate-specific membrane antigen (PSMA) imaging for prostate cancer has led to the incidental detection of a lot of extra-prostatic malignancies showing an increased uptake of PSMA. Due to these incidental findings, the increasing amount of immunohistochemistry studies and the deeper knowledge of the mechanisms of expression of this antigen, it is now clear that “PSMA” is a misnomer, since it is not specific to the prostate gland. Nevertheless, this lack of specificity could represent an interesting opportunity to bring new insights on the biology of PSMA and its sites of expression to image and treat new conditions, particularly several cancers. In this review, we will describe the main extra-prostatic cancers that exhibit PSMA expression and that can be studied with PSMA-based positron emission tomography–computed tomography (PET/CT) as an additional or alternative tool to conventional imaging. In particular, we will focus on cancers in which a radioligand therapy with 177lutetium has been attempted, aiming to provide an overview of the possible future theragnostic applications of PSMA.
Collapse
|
30
|
Lu Q, Long Y, Fan K, Shen Z, Gai Y, Liu Q, Jiang D, Cai W, Wan C, Lan X. PET imaging of hepatocellular carcinoma by targeting tumor-associated endothelium using [ 68Ga]Ga-PSMA-617. Eur J Nucl Med Mol Imaging 2022; 49:4000-4013. [PMID: 35763056 PMCID: PMC9529836 DOI: 10.1007/s00259-022-05884-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 06/16/2022] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Hepatocellular carcinoma (HCC) is a malignant tumor associated with high morbidity and mortality rates. In many non-prostate solid tumors such as HCC, prostate-specific membrane antigens (PSMA) are overexpressed in tumor-associated endothelial cells. Therefore, the aim of this study was to evaluate the performance of [68Ga]Ga-PSMA-617 PET imaging on HCC with different animal models, including cell line-derived xenografts (CDX) and patient-derived xenografts (PDX), and to explore its mechanisms of function. METHODS [68Ga]Ga-PSMA-617 was prepared. The expression level of PSMA in two human hepatocellular cancer cells (HepG2 and HuH-7) was evaluated, and the cellular uptakes of [68Ga]Ga-PSMA-617 were assayed. HepG2 and HuH-7 subcutaneous xenograft models, HepG2 orthotopic xenograft models, and four different groups of PDX models were prepared. Preclinical pharmacokinetics and performance of [68Ga]Ga-PSMA-617 were evaluated in different types of HCC xenografts models using small animal PET and biodistribution studies. RESULTS Low PSMA expression level of HepG2 and HuH-7 cells was observed, and the cellular uptake and blocking study confirmed the non-specificity of the PSMA-targeted probe binding to HepG2 and HuH-7 cells. In the subcutaneous xenograft models, the tumor uptakes at 0.5 h were 0.76 ± 0.12%ID/g (HepG2 tumors) and 0.78 ± 0.08%ID/g (HuH-7 tumors), respectively, which were significantly higher than those of the blocking groups (0.23 ± 0.04%ID/g and 0.20 ± 0.04%ID/g, respectively). In the orthotopic xenograft models, PET images clearly displayed the tumor locations based on the preferential accumulation of [68Ga]Ga-PSMA-617 in tumor tissue versus normal liver tissue, suggesting the possibility of using [68Ga]Ga-PSMA-617 PET imaging to detect primary HCC lesions in deep tissue. In the four different groups of HCC PDX models, PET imaging with [68Ga]Ga-PSMA-617 provided clear tumor uptakes with prominent tumor-to-background contrast, further demonstrating its potential for the clinical imaging of PSMA-positive HCC lesions. The staining of tumor tissue sections with CD31- and PSMA-specific antibodies visualized the tumor-associated blood vessels and PSMA expression on endothelial cells in subcutaneous, orthotopic tissues, and PDX tissues, confirming the imaging with [68Ga]Ga-PSMA-617 might be mediated by targeting tumor associated endothelium. CONCLUSION In this study, in vivo PET on different types of HCC xenograft models illustrated high uptake within tumors, which confirmed that [68Ga]Ga-PSMA-617 PET may be a promising imaging modality for HCC by targeting tumor associated endothelium.
Collapse
Affiliation(s)
- Qiaomiao Lu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, Wuhan, 430022, China
- Hubei Key Laboratory of Molecular Imaging, Hubei, Wuhan, 430022, China
| | - Yu Long
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, Wuhan, 430022, China
- Hubei Key Laboratory of Molecular Imaging, Hubei, Wuhan, 430022, China
| | - Kevin Fan
- Department of Radiology and Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Zhiwen Shen
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Yongkang Gai
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, Wuhan, 430022, China
- Hubei Key Laboratory of Molecular Imaging, Hubei, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Hubei, Wuhan, 430022, China
| | - Qingyao Liu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, Wuhan, 430022, China
- Hubei Key Laboratory of Molecular Imaging, Hubei, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Hubei, Wuhan, 430022, China
| | - Dawei Jiang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, Wuhan, 430022, China
- Hubei Key Laboratory of Molecular Imaging, Hubei, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Hubei, Wuhan, 430022, China
| | - Weibo Cai
- Department of Radiology and Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Chidan Wan
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, Wuhan, 430022, China.
- Hubei Key Laboratory of Molecular Imaging, Hubei, Wuhan, 430022, China.
- Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Hubei, Wuhan, 430022, China.
| |
Collapse
|
31
|
Jokar N, Moradhaseli F, Ahmadzadehfar H, Jafari E, Nikeghbalian S, Rasekhi AR, Assadi M. Theranostic approach in liver cancer: an emerging paradigm to optimize personalized medicine. Clin Transl Imaging 2022. [DOI: 10.1007/s40336-022-00525-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
32
|
Tariq A, McCart Reed AE, Morton A, Porten S, Vela I, Williams ED, Yaxley JW, Black PC, Roberts MJ. Urothelial Carcinoma and Prostate-specific Membrane Antigen: Cellular, Imaging, and Prognostic Implications. Eur Urol Focus 2022; 8:1256-1269. [PMID: 34429271 DOI: 10.1016/j.euf.2021.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/17/2021] [Accepted: 07/29/2021] [Indexed: 12/16/2022]
Abstract
CONTEXT Staging, restaging, and surveillance of urothelial carcinoma (UC) is challenging due to suboptimal accuracy of standard of care imaging modalities. Prostate-specific membrane antigen (PSMA) imaging may serve to improve characterisation of UC. OBJECTIVE To appraise available literature regarding cellular, imaging, and prognostic implications of PSMA for UC. EVIDENCE ACQUISITION A systematic review was performed considering all available literature (including conference abstracts) published from 1990 to 2020 and reported according to Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines following registration in PROSPERO (CRD42020186744). All relevant texts relating to immunohistochemical analysis and PSMA-based imaging in UC were included and collated. Additionally, FOLH1 (gene encoding PSMA) expression according to The Cancer Genome Atlas (TCGA) database was analysed as well as according to consensus and TCGA molecular classification subtypes and subsequently compared with clinical outcomes. EVIDENCE SYNTHESIS PSMA expression across UC tumour tissue was heterogeneous (0-100%) but appeared to decrease with increased grade and stage. The TCGA analysis demonstrated loss of FOLH1 expression with increasing T stage (p = 0.0180) and N stage (p = 0.0269), and reduced FOLH1 expression was associated with worse disease-free survival. PSMA expression in UC neovasculature was variable but mostly increased (44-100%). Eleven reports of PSMA-based imaging for UC were identified, reporting on 18 patients. PSMA positron emission tomography (PET) imaging was positive in 17 out of 18 patients. The included literature review data were limited by mostly low-quality, retrospective studies. CONCLUSIONS Tissue PSMA, or FOLH1 expression, may inversely be associated with pathological and survival outcomes in localised UC. PSMA PET imaging may improve detection of metastatic disease and response to systemic therapy due to PSMA expression in neovasculature. Available evidence is limited; thus, larger, prospective studies are required to confirm early results and define populations that benefit most. PATIENT SUMMARY In this systematic review, we assess the potential role of prostate-specific membrane antigen in urothelial cancer. We found that its utility is in expression of blood vessels surrounding metastasis. We conclude that it may be beneficial in detecting metastasis and response to systemic therapies.
Collapse
Affiliation(s)
- Arsalan Tariq
- Department of Urology, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia; Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Amy E McCart Reed
- University of Queensland Centre for Clinical Research, Faculty of Medicine, Brisbane, Queensland, Australia
| | - Andrew Morton
- Department of Urology, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia; Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Sima Porten
- Department of Urology, University of California San Francisco, San Francisco, CA, USA
| | - Ian Vela
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia; Department of Urology, Princess Alexandra Hospital, Brisbane, Queensland, Australia; Australian Prostate Cancer Research Centre-Queensland, Brisbane, Queensland, Australia; School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia; Translational Research Institute, Brisbane, Queensland, Australia
| | - Elizabeth D Williams
- Australian Prostate Cancer Research Centre-Queensland, Brisbane, Queensland, Australia; School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia; Translational Research Institute, Brisbane, Queensland, Australia
| | - John W Yaxley
- Department of Urology, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia; Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Peter C Black
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Matthew J Roberts
- Department of Urology, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia; University of Queensland Centre for Clinical Research, Faculty of Medicine, Brisbane, Queensland, Australia; Department of Urology, Redcliffe Hospital, Brisbane, Queensland, Australia.
| |
Collapse
|
33
|
Rizzo A, Dall’Armellina S, Pizzuto DA, Perotti G, Zagaria L, Lanni V, Treglia G, Racca M, Annunziata S. PSMA Radioligand Uptake as a Biomarker of Neoangiogenesis in Solid Tumours: Diagnostic or Theragnostic Factor? Cancers (Basel) 2022; 14:4039. [PMID: 36011032 PMCID: PMC9406909 DOI: 10.3390/cancers14164039] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/10/2022] [Accepted: 08/17/2022] [Indexed: 01/10/2023] Open
Abstract
Due to its overexpression on the surface of prostate cancer cells, prostate-specific membrane antigen (PSMA) is a relatively novel effective target for molecular imaging and radioligand therapy (RLT) in prostate cancer. Recent studies reported that PSMA is expressed in the neovasculature of various types of cancer and regulates tumour cell invasion as well as tumour angiogenesis. Several authors explored the role of diagnostic and therapeutic PSMA radioligands in various malignancies. In this narrative review, we describe the current status of the literature on PSMA radioligands' application in solid tumours other than prostate cancer to explore their potential role as diagnostic or therapeutic agents, with particular regard to the relevance of PSMA radioligand uptake as neoangiogenetic biomarker. Hence, a comprehensive review of the literature was performed to find relevant articles on the applications of PSMA radioligands in non-prostate solid tumours. Data on the general, methodological and clinical aspects of all included studies were collected. Forty full-text papers were selected for final review, 8 of which explored PSMA radioligand PET/CT performances in gliomas, 3 in salivary gland malignancies, 6 in thyroid cancer, 2 in breast cancer, 16 in renal cell carcinoma and 5 in hepatocellular carcinoma. In the included studies, PSMA radioligand PET showed promising performance in patients with non-prostate solid tumours. Further studies are needed to better define its potential role in oncological patients management, especially in those undergoing antineoangiogenic therapies, and to assess the efficacy of PSMA-RLT in this clinical context.
Collapse
Affiliation(s)
- Alessio Rizzo
- Department of Nuclear Medicine, Candiolo Cancer Institute, FPO—IRCCS, 10060 Turin, Italy
| | - Sara Dall’Armellina
- Nuclear Medicine Unit, Department of Medical Sciences, AOU Città della Salute e della Scienza, University of Turin, 10134 Turin, Italy
| | - Daniele Antonio Pizzuto
- Unità di Medicina Nucleare, TracerGLab, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Germano Perotti
- Unità di Medicina Nucleare, TracerGLab, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Luca Zagaria
- Unità di Medicina Nucleare, TracerGLab, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Valerio Lanni
- Unità di Medicina Nucleare, TracerGLab, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Giorgio Treglia
- Imaging Institute of Southern Switzerland, Ente Ospedaliero Cantonale, 6501 Bellinzona, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, 1011 Lausanne, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
| | - Manuela Racca
- Department of Nuclear Medicine, Candiolo Cancer Institute, FPO—IRCCS, 10060 Turin, Italy
| | - Salvatore Annunziata
- Unità di Medicina Nucleare, TracerGLab, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| |
Collapse
|
34
|
Filippi L, Braat AJ, Schillaci O. The era of prostate-specific membrane antigen (PSMA)-based theranostics for hepatocellular carcinoma is upcoming: are we ready for it? Eur J Nucl Med Mol Imaging 2022; 49:3977-3978. [PMID: 35947176 DOI: 10.1007/s00259-022-05928-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/04/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Luca Filippi
- Department of Nuclear Medicine, "Santa Maria Goretti" Hospital, via Canova, 04100, Latina, Italy.
| | - Arthur J Braat
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Orazio Schillaci
- Department of Biomedicine and Prevention, University Tor Vergata, Rome, Italy
- IRCCS Neuromed, Pozzilli, Italy
| |
Collapse
|
35
|
Clinical Applications of PSMA PET Examination in Patients with Prostate Cancer. Cancers (Basel) 2022; 14:cancers14153768. [PMID: 35954432 PMCID: PMC9367427 DOI: 10.3390/cancers14153768] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/21/2022] [Accepted: 07/31/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary The prostate specific membrane antigens, abbreviated as PSMAs, are type II membrane proteins that are highly ex-pressed on the surface of malignant prostate tissue in prostate cancer (PCa), particularly in aggressive, andro-gen-deprived, metastatic, and hormone-refractory PCa. Today, radionuclides that bind to these PSMA peptides are widely available for diagnostic and therapeutic purposes to specifically image and target prostate tumor cells at molec-ular level. In this descriptive review, we aimed to emphasize the usefulness of PSMA positron emission tomography (PET) examination in the management of patients with various stages of PCa. In addition, we outlined the main pitfalls and limitations of this scan to avoid misinterpretation of the results and to improve the decision making process in rela-tion to the patient’s further treatment. We concluded that PSMA PET examination in primary PCa patients has an es-sential role in the high-risk group. It is the new imaging standard in patients with in biochemical recurrence PCa and plays an important role in treatment decision. Furthermore, PSMA PET scan is a gold standard for the evaluation of PSMA targeted therapies in patients having progress of the disease. Future prospective studies, particularly on the im-pact of PSMA PET on therapy stratification, may further strengthen the role of PSMA in the treatment of PCa patients. Abstract With the progressive aging of the population in industrially developed countries, as well as advances in diagnostic and biopsy techniques and improvements in patient awareness, the incidence of prostate cancer (PCa) is continuously increasing worldwide. Therefore, PCa is currently considered as the second leading cause of tumor-related death. Early detection of the tumor and its metastasis is essential, as the rate of disease recurrence is high and occurs in 27% to 53% of all patients who underwent curative therapy with radical prostatectomy or local radiotherapy. In this regard, the prostate specific membrane antigens, abbreviated as PSMAs, are type II membrane proteins that are highly expressed on the surface of malignant prostate tissue in PCa, particularly in aggressive, androgen-deprived, metastatic, and hormone-refractory PCa, and they are inversely associated with the androgen level. Up to 95% of adenocarcinomas of the prostate express PSMA receptors on their surface. Today, radionuclides that bind to these PSMA peptides are widely accepted for diagnostic and therapeutic purposes to specifically image and target prostate tumor cells at the molecular level, a process referred to as targeted theranostics. Numerous studies have demonstrated that the integration of these peptides into diagnostic and therapeutic procedures plays a critical role in the primary staging and treatment decisions of especially high-risk PCa, expands therapeutic options for patients with advanced stage of prostate tumor, and prolongs patients’ survival rate. In this review article, we intend to briefly spotlight the latest clinical utilization of the PSMA-targeted radioligand PET imaging modality in patients with different stages of PCa. Furthermore, limitations and pitfalls of this diagnostic technique are presented.
Collapse
|
36
|
Smart K, Zheng MQ, Ahmed H, Fang H, Xu Y, Cai L, Holden D, Kapinos M, Haider A, Felchner Z, Ropchan JR, Tamagnan G, Innis RB, Pike VW, Ametamey SM, Huang Y, Carson RE. Comparison of three novel radiotracers for GluN2B-containing NMDA receptors in non-human primates: (R)-[ 11C]NR2B-Me, (R)-[ 18F]of-Me-NB1, and (S)-[ 18F]of-NB1. J Cereb Blood Flow Metab 2022; 42:1398-1409. [PMID: 35209743 PMCID: PMC9274863 DOI: 10.1177/0271678x221084416] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/04/2022] [Accepted: 02/08/2022] [Indexed: 11/16/2022]
Abstract
The NMDA receptor GluN2B subunit is a target of interest in neuropsychiatric disorders but to date there is no selective radiotracer available to quantify its availability in vivo. Here we report direct comparisons in non-human primates of three GluN2B-targeting radioligands: (R)-[11C]NR2B-Me, (R)-[18F]OF-Me-NB1, and (S)-[18F]OF-NB1. Plasma free fraction, metabolism, tissue distribution and kinetics, and quantitative kinetic modeling methods and parameters were evaluated in two adult rhesus macaques. Free fraction in plasma was <2% for (R)-[11C]NR2B-Me and (R)-[18F]OF-Me-NB1 and higher for (S)-[18F]OF-NB1 (15%). All radiotracers showed good brain uptake and distribution throughout grey matter, with substantial (>68%) blockade across the brain by the GluN2B-targeting drug Co-101,244 (0.25 mg/kg), including in the cerebellum. Time-activity curves were well-fitted by the one-tissue compartment model, with volume of distribution values of 20-40 mL/cm3 for (R)-[11C]NR2B-Me, 8-16 mL/cm3 for (R)-[18F]OF-Me-NB1, and 15-35 mL/cm3 for (S)-[18F]OF-NB1. Estimates of regional non-displaceable binding potential were in the range of 2-3 for (R)-[11C]NR2B-Me and (S)-[18F]-OF-NB1, and 0.5-1 for (R)-[18F]OF-Me-NB1. Altogether, each radiotracer showed an acceptable profile for quantitative imaging of GluN2B. (S)-[18F]OF-NB1 has particularly promising imaging characteristics for potential translation into humans. However, the source of unexpected displaceable binding in the cerebellum for each of these compounds requires further investigation.
Collapse
Affiliation(s)
- Kelly Smart
- Yale School of Medicine, Yale PET Center, New Haven, Connecticut, USA
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, USA
| | - Ming-Qiang Zheng
- Yale School of Medicine, Yale PET Center, New Haven, Connecticut, USA
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, USA
| | - Hazem Ahmed
- Yale School of Medicine, Yale PET Center, New Haven, Connecticut, USA
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, USA
- Institute of Pharmaceutical Sciences, Zurich, Switzerland
| | - Hanyi Fang
- Yale School of Medicine, Yale PET Center, New Haven, Connecticut, USA
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, USA
- Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yuping Xu
- Yale School of Medicine, Yale PET Center, New Haven, Connecticut, USA
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, USA
- Jiangsu Institute of Nuclear Medicine, Jiangsu, China
| | - Lisheng Cai
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, Maryland, USA
| | - Daniel Holden
- Yale School of Medicine, Yale PET Center, New Haven, Connecticut, USA
| | - Michael Kapinos
- Yale School of Medicine, Yale PET Center, New Haven, Connecticut, USA
| | - Ahmed Haider
- Institute of Pharmaceutical Sciences, Zurich, Switzerland
| | - Zachary Felchner
- Yale School of Medicine, Yale PET Center, New Haven, Connecticut, USA
| | - Jim R Ropchan
- Yale School of Medicine, Yale PET Center, New Haven, Connecticut, USA
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, USA
| | - Gilles Tamagnan
- Yale School of Medicine, Yale PET Center, New Haven, Connecticut, USA
| | - Robert B Innis
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, Maryland, USA
| | - Victor W Pike
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, Maryland, USA
| | - Simon M Ametamey
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, USA
| | - Yiyun Huang
- Yale School of Medicine, Yale PET Center, New Haven, Connecticut, USA
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, USA
| | - Richard E Carson
- Yale School of Medicine, Yale PET Center, New Haven, Connecticut, USA
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, USA
| |
Collapse
|
37
|
Gnanasegaran G, Agrawal K, Wan S. 18F-Fluorodeoxyglucose-PET-Computerized Tomography and non-Fluorodeoxyglucose PET-Computerized Tomography in Hepatobiliary and Pancreatic Malignancies. PET Clin 2022; 17:369-388. [PMID: 35717098 DOI: 10.1016/j.cpet.2022.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Molecular imaging with PET-computerized tomography (PET-CT) plays an important role in oncology. There is current and evolving evidence supporting the use of fluorodeoxyglucose (FDG) and non-FDG tracers in assessment patients with hepatobiliary and pancreatic cancers in various clinical scenarios. In this chapter, we discuss the advantages and limitations of FDG and non-FDG PET-CT in the management of patients with hepatobiliary and pancreatic cancers.
Collapse
Affiliation(s)
| | | | - Simon Wan
- University College London Hospitals NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
38
|
Chen H, Teng M, Zhang H, Liang X, Cheng H, Liu G. Advanced radionuclides in diagnosis and therapy for hepatocellular carcinoma. CHINESE CHEM LETT 2022; 33:3371-3383. [DOI: 10.1016/j.cclet.2022.03.079] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
39
|
Koppula BR, Fine GC, Salem AE, Covington MF, Wiggins RH, Hoffman JM, Morton KA. PET-CT in Clinical Adult Oncology: III. Gastrointestinal Malignancies. Cancers (Basel) 2022; 14:cancers14112668. [PMID: 35681647 PMCID: PMC9179927 DOI: 10.3390/cancers14112668] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/20/2022] [Accepted: 05/20/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Positron emission tomography (PET), typically combined with computed tomography (CT), has become a critical advanced imaging technique in oncology. With PET-CT, a radioactive molecule (radiotracer) is injected in the bloodstream and localizes to sites of tumor because of specific cellular features of the tumor that accumulate the targeting radiotracer. The CT scan, performed at the same time, provides information to facilitate the characterization of radioactivity from deep or dense structures, and to provide detailed anatomic information. PET-CT has a variety of applications in oncology, including staging, therapeutic response assessment, restaging and surveillance. This series of six review articles provides an overview of the value, applications, and imaging interpretive strategies of PET-CT in the more common adult malignancies. The third report in this series provides a review of PET-CT imaging in gastrointestinal malignancies. Abstract PET-CT is an advanced imaging modality with many oncologic applications, including staging, assessment of response to therapy, restaging and longitudinal surveillance for recurrence. The goal of this series of six review articles is to provide practical information to providers and imaging professionals regarding the best use of PET-CT for specific oncologic indications, and the potential pitfalls and nuances that characterize these applications. In the third of these review articles, key tumor-specific clinical information and representative PET-CT images are provided to outline the role that PET-CT plays in the management of patients with gastrointestinal malignancies. The focus is on the use of 18F fluorodeoxyglucose (FDG), rather than on research radiopharmaceuticals under development. Many different types of gastrointestinal tumors exist, both pediatric and adult. A discussion of the role of FDG PET-CT for all of these is beyond the scope of this review. Rather, this article focuses on the most common adult gastrointestinal malignancies that may be encountered in clinical practice. The information provided here will provide information outlining the appropriate role of PET-CT in the clinical management of patients with gastrointestinal malignancies for healthcare professionals caring for adult cancer patients. It also addresses the nuances and provides interpretive guidance related to PET-CT for imaging providers, including radiologists, nuclear medicine physicians and their trainees.
Collapse
Affiliation(s)
- Bhasker R. Koppula
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT 84132, USA; (B.R.K.); (G.C.F.); (A.E.S.); (M.F.C.); (R.H.W.); (J.M.H.)
| | - Gabriel C. Fine
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT 84132, USA; (B.R.K.); (G.C.F.); (A.E.S.); (M.F.C.); (R.H.W.); (J.M.H.)
| | - Ahmed Ebada Salem
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT 84132, USA; (B.R.K.); (G.C.F.); (A.E.S.); (M.F.C.); (R.H.W.); (J.M.H.)
- Department of Radio Diagnosis and Intervention, Faculty of Medicine, Alexandria University, Alexandria 21526, Egypt
| | - Matthew F. Covington
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT 84132, USA; (B.R.K.); (G.C.F.); (A.E.S.); (M.F.C.); (R.H.W.); (J.M.H.)
| | - Richard H. Wiggins
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT 84132, USA; (B.R.K.); (G.C.F.); (A.E.S.); (M.F.C.); (R.H.W.); (J.M.H.)
| | - John M. Hoffman
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT 84132, USA; (B.R.K.); (G.C.F.); (A.E.S.); (M.F.C.); (R.H.W.); (J.M.H.)
| | - Kathryn A. Morton
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT 84132, USA; (B.R.K.); (G.C.F.); (A.E.S.); (M.F.C.); (R.H.W.); (J.M.H.)
- Summit Physician Specialists, Intermountain Healthcare Hospitals, Murray, UT 84123, USA
- Correspondence: ; Tel.: +1-801-581-7553
| |
Collapse
|
40
|
Thompson SM, Suman G, Torbenson MS, Chen ZE, Jondal DE, Patra A, Ehman EC, Andrews JC, Fleming CJ, Welch BT, Kurup AN, Roberts LR, Watt KD, Truty MJ, Cleary SP, Smoot RL, Heimbach JK, Tran NH, Mahipal A, Yin J, Zemla T, Wang C, Fogarty Z, Jacobson M, Kemp BJ, Venkatesh SK, Johnson GB, Woodrum DA, Goenka AH. PSMA as a Theranostic Target in Hepatocellular Carcinoma: Immunohistochemistry and 68 Ga-PSMA-11 PET Using Cyclotron-Produced 68 Ga. Hepatol Commun 2022; 6:1172-1185. [PMID: 34783177 PMCID: PMC9035563 DOI: 10.1002/hep4.1861] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 10/18/2021] [Accepted: 10/26/2021] [Indexed: 02/05/2023] Open
Abstract
Prostate-specific membrane antigen (PSMA) is a validated target for molecular diagnostics and targeted radionuclide therapy. Our purpose was to evaluate PSMA expression in hepatocellular carcinoma (HCC), cholangiocarcinoma (CCA), and hepatic adenoma (HCA); investigate the genetic pathways in HCC associated with PSMA expression; and evaluate HCC detection rate with 68 Ga-PSMA-11 positron emission tomography (PET). In phase 1, PSMA immunohistochemistry (IHC) on HCC (n = 148), CCA (n = 111), and HCA (n = 78) was scored. In a subset (n = 30), messenger RNA (mRNA) data from the Cancer Genome Atlas HCC RNA sequencing were correlated with PSMA expression. In phase 2, 68 Ga-PSMA-11 PET was prospectively performed in patients with treatment-naïve HCC on a digital PET scanner using cyclotron-produced 68 Ga. Uptake was graded qualitatively and semi-quantitatively using standard metrics. On IHC, PSMA expression was significantly higher in HCC compared with CCA and HCA (P < 0.0001); 91% of HCCs (n = 134) expressed PSMA, which principally localized to tumor-associated neovasculature. Higher tumor grade was associated with PSMA expression (P = 0.012) but there was no association with tumor size (P = 0.14), fibrosis (P = 0.35), cirrhosis (P = 0.74), hepatitis B virus (P = 0.31), or hepatitis C virus (P = 0.15). Overall survival tended to be longer in patients without versus with PSMA expression (median overall survival: 4.2 vs. 1.9 years; P = 0.273). FGF14 (fibroblast growth factor 14) mRNA expression correlated positively (rho = 0.70; P = 1.70 × 10-5 ) and MAD1L1 (Mitotic spindle assembly checkpoint protein MAD1) correlated negatively with PSMA expression (rho = -0.753; P = 1.58 × 10-6 ). Of the 190 patients who met the eligibility criteria, 31 patients with 39 HCC lesions completed PET; 64% (n = 25) lesions had pronounced 68 Ga-PSMA-11 standardized uptake value: SUVmax (median [range] 9.2 [4.9-28.4]), SUVmean 4.7 (2.4-12.7), and tumor-to-liver background ratio 2 (1.1-11). Conclusion: Ex vivo expression of PSMA in neovasculature of HCC translates to marked tumor avidity on 68 Ga-PSMA-11 PET, which suggests that PSMA has the potential as a theranostic target in patients with HCC.
Collapse
Affiliation(s)
| | - Garima Suman
- Department of RadiologyMayo ClinicRochesterMNUSA
| | | | - Zong‐Ming E. Chen
- Department of Laboratory Medicine and PathologyMayo ClinicRochesterMNUSA
| | | | | | | | | | | | | | | | - Lewis R. Roberts
- Division of Gastroenterology and HepatologyMayo ClinicRochesterMNUSA
| | - Kymberly D. Watt
- Division of Gastroenterology and HepatologyMayo ClinicRochesterMNUSA
| | - Mark J. Truty
- Division of Hepatobiliary and Pancreas SurgeryMayo ClinicRochesterMNUSA
| | - Sean P. Cleary
- Division of Hepatobiliary and Pancreas SurgeryMayo ClinicRochesterMNUSA
| | - Rory L. Smoot
- Division of Hepatobiliary and Pancreas SurgeryMayo ClinicRochesterMNUSA
| | | | | | - Amit Mahipal
- Division of Medical OncologyMayo ClinicRochesterMNUSA
| | - Jun Yin
- Division of Biostatistics and InformaticsMayo ClinicRochesterMNUSA
| | - Tyler Zemla
- Division of Biostatistics and InformaticsMayo ClinicRochesterMNUSA
| | - Chen Wang
- Division of Computational BiologyMayo ClinicRochesterMNUSA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Filippi L, Braat AJ. Theragnostics in primary and secondary liver tumors: the need for a personalized approach. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF... 2021; 65:353-370. [PMID: 34881847 DOI: 10.23736/s1824-4785.21.03407-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Primary and secondary hepatic tumors have a dramatic impact in oncology. Despite many advances in diagnosis and therapy, the management of hepatic malignancies is still challenging, ranging from various loco-regional approaches to system therapies. In this scenario, theragnostic approaches, based on the administration of a radiopharmaceuticals' pair, the first labeled with a radionuclide suitable for the diagnostic phase and the second one bound to radionuclide emitting particles for therapy, is gaining more and more importance. Selective internal radiation therapy (SIRT) with microspheres labeled with 90Y or 166Ho is widely used as a loco-regional treatment for primary and secondary hepatic tumors. While 166Ho presents both gamma and beta emission and can be therefore considered a real "theragnostic" agent, for 90Y-microspheres theragnostic approach is realized at the diagnostic phase through the utilization of macroaggregates of human albumin, labeled with 99mTc as "biosimilar" agent respect to microspheres. The aim of the present review was to cover theragnostic applications of 90Y/166Ho-labeled microspheres in clinical practice. Furthermore, we report the preliminary data concerning the potential role of some emerging theragnostic biomarkers for hepatocellular carcinoma, such as glypican-3 (GPC3) and prostate specific membrane antigen (PSMA).
Collapse
Affiliation(s)
- Luca Filippi
- Department of Nuclear Medicine, Santa Maria Goretti Hospital, Latina, Italy -
| | - Arthur J Braat
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
42
|
Subramanian S, Mallia MB, Shinto AS, Mathew AS. Clinical Management of Liver Cancer in India and Other Developing Nations: A Focus on Radiation Based Strategies. Oncol Ther 2021; 9:273-295. [PMID: 34046873 PMCID: PMC8593115 DOI: 10.1007/s40487-021-00154-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/12/2021] [Indexed: 11/28/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a global killer with preponderance in Asian and African countries. It poses a challenge for successful management in less affluent or developing nations like India, with large populations and limited infrastructures. This review aims to assess the available options and future directions for management of HCC applicable to such countries. While summarizing current and emerging clinical strategies for detection, staging and therapy of the disease, it highlights radioisotope- and radioactivity-based strategies as part of an overall program. Using the widely accepted Barcelona Clinic Liver Cancer (BCLC) staging system as a base, it evaluates the applicability of different therapeutic approaches and their synergistic combination(s) in the context of a patient-specific dynamic results-based strategy. It distills the conclusions of multiple HCC management-focused consensus recommendations to provide a picture of clinical strategies, especially radiation-related approaches. Additionally, it discusses the logistical and economic feasibility of these approaches in the context of the limitations of the burdened public health infrastructure in India (and like nations) and highlights possible strategies both at the clinical level and in terms of an administrative health policy on HCC to provide the maximum possible benefit to the widest swathe of the affected population.
Collapse
Affiliation(s)
- Suresh Subramanian
- Radiopharmaceuticals Division, RLG Building, Bhabha Atomic Research Centre, Trombay, Mumbai, Maharashtra, 400085, India.
| | - Madhava B Mallia
- Radiopharmaceuticals Division, RLG Building, Bhabha Atomic Research Centre, Trombay, Mumbai, Maharashtra, 400085, India
| | - Ajit S Shinto
- Apollo Proton Cancer Centre, Chennai, 600096, Tamil Nadu, India
| | | |
Collapse
|
43
|
Gerwing M, Krähling T, Schliemann C, Harrach S, Schwöppe C, Berdel AF, Klein S, Hartmann W, Wardelmann E, Heindel WL, Lenz G, Berdel WE, Wildgruber M. Multiparametric Magnetic Resonance Imaging for Immediate Target Hit Assessment of CD13-Targeted Tissue Factor tTF-NGR in Advanced Malignant Disease. Cancers (Basel) 2021; 13:cancers13235880. [PMID: 34884988 PMCID: PMC8657298 DOI: 10.3390/cancers13235880] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/17/2021] [Accepted: 11/21/2021] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Since the knowledge of tumor biology has advanced, a variety of targeted therapies has been developed. These do not immediately affect the tumor size, so optimized oncological imaging is needed. In this phase I study of patients with advanced malignant disease, a multiparametric imaging approach was used to assess changes in tumor perfusion after vessel-occluding therapy with the CD13 targeted truncated tissue factor with a C-terminal NGR-peptide. It comprises different sequences and the use of two different contrast media, ferucarbotran and gadobutrol. This multiparametric MRI protocol enables assessing the therapy effectiveness as early as five hours after therapy initiation. Abstract Early assessment of target hit in anti-cancer therapies is a major task in oncologic imaging. In this study, immediate target hit and effectiveness of CD13-targeted tissue factor tTF-NGR in patients with advanced malignant disease enrolled in a phase I trial was assessed using a multiparametric MRI protocol. Seventeen patients with advanced solid malignancies were enrolled in the trial and received tTF-NGR for at least one cycle of five daily infusions. Tumor target lesions were imaged with multiparametric MRI before therapy initiation, five hours after the first infusion and after five days. The imaging protocol comprised ADC, calculated from DWI, and DCE imaging and vascular volume fraction (VVF) assessment. DCE and VVF values decreased within 5 h after therapy initiation, indicating early target hit with a subsequent decrease in tumor perfusion due to selective tumor vessel occlusion and thrombosis induced by tTF-NGR. Simultaneously, ADC values increased at five hours after tTF-NGR administration. In four patients, treatment had to be stopped due to an increase in troponin T hs, with subsequent anticoagulation. In these patients, a reversed effect, with DCE and VVF values increasing and ADC values decreasing, was observed after anticoagulation. Changes in imaging parameters were independent of the mean vessel density determined by immunohistochemistry. By using a multiparametric imaging approach, changes in tumor perfusion after initiation of a tumor vessel occluding therapy can be evaluated as early as five hours after therapy initiation, enabling early assessment of target hit.
Collapse
Affiliation(s)
- Mirjam Gerwing
- Clinic of Radiology, University Hospital Muenster, D-48149 Muenster, Germany; (T.K.); (W.L.H.); (M.W.)
- Correspondence:
| | - Tobias Krähling
- Clinic of Radiology, University Hospital Muenster, D-48149 Muenster, Germany; (T.K.); (W.L.H.); (M.W.)
| | - Christoph Schliemann
- Department of Medicine A, Hematology, Hemostaseology, Oncology and Pulmonology, University Hospital Muenster, D-48149 Muenster, Germany; (C.S.); (S.H.); (C.S.); (A.F.B.); (G.L.); (W.E.B.)
| | - Saliha Harrach
- Department of Medicine A, Hematology, Hemostaseology, Oncology and Pulmonology, University Hospital Muenster, D-48149 Muenster, Germany; (C.S.); (S.H.); (C.S.); (A.F.B.); (G.L.); (W.E.B.)
| | - Christian Schwöppe
- Department of Medicine A, Hematology, Hemostaseology, Oncology and Pulmonology, University Hospital Muenster, D-48149 Muenster, Germany; (C.S.); (S.H.); (C.S.); (A.F.B.); (G.L.); (W.E.B.)
| | - Andrew F. Berdel
- Department of Medicine A, Hematology, Hemostaseology, Oncology and Pulmonology, University Hospital Muenster, D-48149 Muenster, Germany; (C.S.); (S.H.); (C.S.); (A.F.B.); (G.L.); (W.E.B.)
| | - Sebastian Klein
- Gerhard-Domagk-Institute for Pathology, University of Muenster, D-48149 Muenster, Germany; (S.K.); (W.H.); (E.W.)
| | - Wolfgang Hartmann
- Gerhard-Domagk-Institute for Pathology, University of Muenster, D-48149 Muenster, Germany; (S.K.); (W.H.); (E.W.)
| | - Eva Wardelmann
- Gerhard-Domagk-Institute for Pathology, University of Muenster, D-48149 Muenster, Germany; (S.K.); (W.H.); (E.W.)
| | - Walter L. Heindel
- Clinic of Radiology, University Hospital Muenster, D-48149 Muenster, Germany; (T.K.); (W.L.H.); (M.W.)
| | - Georg Lenz
- Department of Medicine A, Hematology, Hemostaseology, Oncology and Pulmonology, University Hospital Muenster, D-48149 Muenster, Germany; (C.S.); (S.H.); (C.S.); (A.F.B.); (G.L.); (W.E.B.)
| | - Wolfgang E. Berdel
- Department of Medicine A, Hematology, Hemostaseology, Oncology and Pulmonology, University Hospital Muenster, D-48149 Muenster, Germany; (C.S.); (S.H.); (C.S.); (A.F.B.); (G.L.); (W.E.B.)
| | - Moritz Wildgruber
- Clinic of Radiology, University Hospital Muenster, D-48149 Muenster, Germany; (T.K.); (W.L.H.); (M.W.)
- Department of Radiology, University Hospital, LMU Munich, D-81377 Munich, Germany
| |
Collapse
|
44
|
Shahrokhi P, Masteri Farahani A, Tamaddondar M, Rezazadeh F. The utility of radiolabeled PSMA ligands for tumor imaging. Chem Biol Drug Des 2021; 99:136-161. [PMID: 34472217 DOI: 10.1111/cbdd.13946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/06/2021] [Accepted: 08/16/2021] [Indexed: 01/19/2023]
Abstract
Prostate-specific membrane antigen (PSMA) is a glycosylated type-II transmembrane protein expressed in prostatic tissue and significantly overexpressed in several prostate cancer cells. Despite its name, PSMA has also been reported to be overexpressed in endothelial cells of benign and malignant non-prostate disease. So its clinical use was extended to detection, staging, and therapy of various tumor types. Recently small molecules targeting PSMA have been developed as imaging probes for diagnosis of several malignancies. Preliminary studies are emerging improved diagnostic sensitivity and specificity of PSMA imaging, leading to a change in patient management. In this review, we evaluated the first preclinical and clinical studies on PSMA ligands resulting future perspectives radiolabeled PSMA in staging and molecular characterization, based on histopathologic examinations of PSMA expression.
Collapse
Affiliation(s)
- Pejman Shahrokhi
- Nuclear Medicine Center, Payambar Azam Hospital, Hormozgan University of Medical Sciences, Bandar Abbas, Hormozgan, Iran
| | - Arezou Masteri Farahani
- Nuclear Medicine Center, Payambar Azam Hospital, Hormozgan University of Medical Sciences, Bandar Abbas, Hormozgan, Iran
| | - Mohammad Tamaddondar
- Nephrology Department, Payambar Azam Hospital, Hormozgan University of Medical Sciences, Bandar Abbas, Hormozgan, Iran
| | - Farzaneh Rezazadeh
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
45
|
Hirmas N, Leyh C, Sraieb M, Barbato F, Schaarschmidt BM, Umutlu L, Nader M, Wedemeyer H, Ferdinandus J, Rischpler C, Herrmann K, Costa PF, Lange CM, Weber M, Fendler WP. 68Ga-PSMA-11 PET/CT Improves Tumor Detection and Impacts Management in Patients with Hepatocellular Carcinoma. J Nucl Med 2021; 62:1235-1241. [PMID: 33509970 PMCID: PMC8882890 DOI: 10.2967/jnumed.120.257915] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/28/2020] [Indexed: 12/14/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the sixth most prevalent cancer and the third most frequent cause of cancer-related death. A growing number of local and systemic therapies are available, and accurate staging is critical for management decisions. We assessed the impact of neovasculature imaging by 68Ga-PSMA-11 PET/CT on disease staging, prognostic groups, and management of patients with HCC compared with staging with CT. Methods: Forty patients who received imaging with 68Ga-PSMA-11 PET/CT for HCC staging between September 2018 and September 2019 were retrospectively included. Management before and after PET scanning was assessed by standardized surveys. The presence of HCC was evaluated by 3 masked readers on a per-patient and per-region basis for PET/CT (PET criteria) and multiphase contrast-enhanced CT (CT criteria) in separate sessions. Lesions were validated by follow-up imaging or histopathology, and progression-free survival was recorded. Endpoints were detection rate and positive predictive value for 68Ga-PSMA-11 PET versus CT, interreader reproducibility, and changes in stage, prognostic groups, and management plans. Results: Median age was 65 y (range, 37-81 y), and median Child-Pugh score was 5 (range, 5-9). Most patients were treatment-naïve (27/40, 67.5%). The sensitivity of PET versus CT to identify liver lesions for patients with lesion validation was 31 of 32 (97%) for both modalities, whereas it was 6 of 6 (100%) versus 4 of 6 (67%), respectively, for extrahepatic lesions. PET and CT each had a positive predictive value of 100% at the liver level. PET versus CT stage was congruent in 30 of 40 (75%) patients; upstaging was seen in 8 of 40 patients (20%), whereas 2 of 40 (5%) had downstaging by PET. Intended management changed in 19 of 40 patients (47.5%); 9 of 19 of these patients were found to have detectable distant metastases (47.4%) and assigned stage 4 disease, most of whom were shifted to systemic therapy (8/9, 89%). Two patients underwent 177Lu-PSMA-617 radioligand therapy. Median progression-free survival was 5.2 mo for the entire cohort; 5.3 mo for PET M0, and 4.7 mo for PET M1 patients, respectively. Conclusion:68Ga-PSMA-11 PET demonstrated higher accuracy than CT in the detection of HCC metastases and was associated with a management change in about half the patient cohort.
Collapse
Affiliation(s)
- Nader Hirmas
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium-University Hospital Essen, Essen, Germany
| | - Catherine Leyh
- Department of Gastroenterology and Hepatology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany; and
| | - Miriam Sraieb
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium-University Hospital Essen, Essen, Germany
| | - Francesco Barbato
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium-University Hospital Essen, Essen, Germany
| | - Benedikt M Schaarschmidt
- Institute of Diagnostic and Interventional Radiology and Neuroradiology; University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Lale Umutlu
- Institute of Diagnostic and Interventional Radiology and Neuroradiology; University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Michael Nader
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium-University Hospital Essen, Essen, Germany
| | - Heiner Wedemeyer
- Department of Gastroenterology and Hepatology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany; and
| | - Justin Ferdinandus
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium-University Hospital Essen, Essen, Germany
| | - Christoph Rischpler
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium-University Hospital Essen, Essen, Germany
| | - Ken Herrmann
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium-University Hospital Essen, Essen, Germany
| | - Pedro Fragoso Costa
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium-University Hospital Essen, Essen, Germany
| | - Christian M Lange
- Department of Gastroenterology and Hepatology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany; and
| | - Manuel Weber
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium-University Hospital Essen, Essen, Germany
| | - Wolfgang P Fendler
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium-University Hospital Essen, Essen, Germany;
| |
Collapse
|
46
|
Usmani S, Rasheed R, Al Kandari F, Ahmed N. Occult Bone Metastases From Hepatocellular Carcinoma Detected on 68Ga-PMSA PET/CT. Clin Nucl Med 2021; 46:661-663. [PMID: 33512948 DOI: 10.1097/rlu.0000000000003515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
ABSTRACT 68Ga-PSMA is an excellent radiotracer for both staging and detection of recurrence in prostate cancer, but it can also be useful in other solid tumors due to tumor-associated angiogenic factors and endothelial cell sprouting. We report a case of an 82-year-old man with hepatocellular carcinoma who presented with rising tumor marker but stable CT findings 6 months after transarterial chemoembolization. 68Ga-PSMA PET/CT showed high PSMA-expressing hyperneovascular hepatic lesions (primary tumor), additional multifocal hepatic lesions, and with unexpected multiple bone metastases. 68Ga-PSMA expression in hepatocellular carcinoma can influence patient management and potentially guide radionuclide legend therapy.
Collapse
Affiliation(s)
- Sharjeel Usmani
- From the Department of Nuclear Medicine, Kuwait Cancer Control Center, Khaitan, Kuwait
| | - Rashid Rasheed
- From the Department of Nuclear Medicine, Kuwait Cancer Control Center, Khaitan, Kuwait
| | - Fareeda Al Kandari
- From the Department of Nuclear Medicine, Kuwait Cancer Control Center, Khaitan, Kuwait
| | - Najeeb Ahmed
- Jack Brignall PET/CT Centre, Castle Hill Hosptial, Cottingham, United Kingdom
| |
Collapse
|
47
|
Zhao L, Liu C, Xing Y, He J, O'Doherty J, Huang W, Zhao J. Development of a 99mTc-Labeled Single-Domain Antibody for SPECT/CT Assessment of HER2 Expression in Breast Cancer. Mol Pharm 2021; 18:3616-3622. [PMID: 34328338 DOI: 10.1021/acs.molpharmaceut.1c00569] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Accurate determination of human epidermal growth factor receptor 2 (HER2) expression is essential for HER2-targeted therapy in patients with cancer. HER2 expression in a complex environment, such as in a heterogeneous tumor, makes the precise assessment of the HER2 status difficult using current methods. In this study, we developed a novel 99mTc-labeled anti-HER2 single-domain antibody (99mTc-NM-02) as a molecular imaging tracer for the noninvasive detection of HER2 expression and investigated its safety, radiation dosimetry, biodistribution, and tumor-targeting potential in 10 patients with breast cancer. Our data showed that no drug-related adverse reactions occurred. The tracer mainly accumulated in the kidneys and liver with mild uptake in the spleen, intestines, and thyroid; however, only background tracer levels were observed in other organs where primary tumors and metastases typically occurred. The mean effective dose was 6.56 × 10-3 mSv/MBq, and tracer uptake was visually observed in the primary tumors and metastases. A maximal standard uptake value of 1.5 was determined as a reasonable cutoff for identifying HER2 positivity using SPECT/CT imaging. Our 99mTc-NM-02 tracer is safe for use in breast cancer imaging, with reasonable radiation doses, favorable biodistribution, and imaging characteristics. 99mTc-NM-02 SPECT imaging may be an accurate and noninvasive method to detect the HER2 status in patients with breast cancer.
Collapse
Affiliation(s)
- Lingzhou Zhao
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100 Haining Road, Shanghai 200080, China
| | - Changcun Liu
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100 Haining Road, Shanghai 200080, China
| | - Yan Xing
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100 Haining Road, Shanghai 200080, China
| | - Jin He
- Department of Pathology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Jim O'Doherty
- Siemens Healthineers, Malvern, Pennsylvania 19355, United States
| | - Wenhua Huang
- Nanomab Technology Limited, Shanghai 200080, China
| | - Jinhua Zhao
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100 Haining Road, Shanghai 200080, China
| |
Collapse
|
48
|
Heynickx N, Herrmann K, Vermeulen K, Baatout S, Aerts A. The salivary glands as a dose limiting organ of PSMA- targeted radionuclide therapy: A review of the lessons learnt so far. Nucl Med Biol 2021; 98-99:30-39. [PMID: 34020337 DOI: 10.1016/j.nucmedbio.2021.04.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/25/2021] [Accepted: 04/28/2021] [Indexed: 12/24/2022]
Abstract
At present, prostate cancer remains the second most occurring cancer in men, in Europe. Treatment efficacy for therapy of advanced metastatic disease, and metastatic castration-resistant prostate cancer in particular is limited. Prostate-specific membrane antigen (PSMA) is a promising therapeutic target in prostate cancer, seeing the high amount of overexpression on prostate cancer cells. Clinical investigation of PSMA-targeted radionuclide therapy has shown good clinical efficacy. However, adverse effects are observed of which salivary gland hypofunction and xerostomia are among the most prominent. Salivary gland toxicity is currently the dose-limiting side effect for PSMA-targeted radionuclide therapy, and more specifically for PSMA-targeted alpha therapy. To date, mechanisms underlying the salivary gland uptake of PSMA-targeting compounds and the subsequent damage to the salivary glands remain largely unknown. Furthermore, preventive strategies for salivary gland uptake or strategies for treatment of salivary gland toxicity are needed. This review focuses on the current knowledge on uptake mechanisms of PSMA-targeting compounds in the salivary glands and the research performed to investigate different strategies to prevent or treat salivary gland toxicity.
Collapse
Affiliation(s)
- Nathalie Heynickx
- Institute for Environment, Health and Safety, Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium; Department of Molecular Biotechnology, Ghent University, Ghent, Belgium
| | - Ken Herrmann
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States of America; Department of Nuclear Medicine, Medical Faculty, University Hospital Essen, Essen, Germany
| | - Koen Vermeulen
- Institute for Environment, Health and Safety, Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Sarah Baatout
- Institute for Environment, Health and Safety, Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium; Department of Molecular Biotechnology, Ghent University, Ghent, Belgium.
| | - An Aerts
- Institute for Environment, Health and Safety, Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| |
Collapse
|
49
|
Weitzer F, Nazerani-Hooshmand T, Aigner RM, Pernthaler B. Different Appearances of 3 Malignancies in 68Ga-PSMA-11 Versus 18F-FDG PET/CT. Clin Nucl Med 2021; 46:e358-e359. [PMID: 34081054 DOI: 10.1097/rlu.0000000000003538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
ABSTRACT Prostate-specific membrane antigen (PSMA) overexpression has been described in various malignancies. Hereby we present a case of a 69-year-old man simultaneously diagnosed with prostate cancer, esophageal adenocarcinoma, and HCC (hepatocellular carcinoma). 18F-FDG PET/CT showed pathological uptake in the esophageal adenocarcinoma and the primary prostate tumor, whereas 68Ga-PSMA-11 PET/CT performed for staging of the histopathologically confirmed prostate cancer revealed the primary tumor and significant uptake in the HCC. This finding is remarkable because the high physiological liver uptake of 68Ga-PSMA-11 may hamper the detection of small lesions.
Collapse
Affiliation(s)
- Friedrich Weitzer
- From the Division of Nuclear Medicine, Department of Radiology, Medical University of Graz, Graz, Austria
| | | | | | | |
Collapse
|
50
|
Wang H, Zhu W, Ren S, Kong Y, Huang Q, Zhao J, Guan Y, Jia H, Chen J, Lu L, Xie F, Qin L. 68Ga-FAPI-04 Versus 18F-FDG PET/CT in the Detection of Hepatocellular Carcinoma. Front Oncol 2021; 11:693640. [PMID: 34249748 PMCID: PMC8267923 DOI: 10.3389/fonc.2021.693640] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 06/14/2021] [Indexed: 12/21/2022] Open
Abstract
Background Fibroblast activation protein (FAP) is commonly expressed in activated stromal fibroblasts in various epithelial tumours. Recently, 68Ga-FAPI-04 has been used for tumour imaging in positron emission tomography/computed tomography (PET/CT). This study aimed to compare the diagnostic performances of 68Ga-FAPI-04 PET/CT and 18F-FDG PET/CT in hepatocellular carcinoma (HCC), and to assess factors associated with 68Ga-FAPI-04 uptake in HCC. Materials and Methods Twenty-nine patients with suspiciously HCC who received both 18F-FDG and 68Ga-FAPI-04 PET/CT were included in this retrospective study. The results were interpreted by two experienced nuclear medicine physicians independently. The maximum and mean standardized uptake values (SUVmax and SUVmean) were measured in the lesions and liver background, respectively. The tumour-to-background ratio (TBR) was then calculated as lesion's SUVmax divided by background SUVmean. Results A total of 35 intrahepatic lesions in 25 patients with HCC were finally involved in the statistical analysis. 68Ga-FAPI-04 PET/CT showed a higher sensitivity than 18F-FDG PET/CT in detecting intrahepatic HCC lesions (85.7% vs. 57.1%, P = 0.002), including in small (≤ 2 cm in diameter; 68.8% vs. 18.8%, P = 0.008) and well- or moderately-differentiated (83.3% vs. 33.3%, P = 0.031) tumors. SUVmax was comparable between 68Ga-FAPI-04 and 18F-FDG (6.96 ± 5.01 vs. 5.89 ± 3.38, P > 0.05), but the TBR was significantly higher in the 68Ga-FAPI-04 group compared with the 18F-FDG group (11.90 ± 8.35 vs. 3.14 ± 1.59, P < 0.001). SUVmax and the TBR in 68Ga-FAPI-04 positive lesions were associated with tumour size (both P < 0.05), but not the remaining clinical and pathological features (all P > 0.05). Conclusions 68Ga-FAPI-04 PET/CT is more sensitive than 18F-FDG PET/CT in detecting HCC lesions, and 68Ga-FAPI-04 uptake is correlated mainly with tumour size.
Collapse
Affiliation(s)
- Hao Wang
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Wenwei Zhu
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Shuhua Ren
- PET Centre, Huashan Hospital, Fudan University, Shanghai, China
| | - Yanyan Kong
- PET Centre, Huashan Hospital, Fudan University, Shanghai, China
| | - Qi Huang
- PET Centre, Huashan Hospital, Fudan University, Shanghai, China
| | - Jun Zhao
- Department of Nuclear Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yihui Guan
- PET Centre, Huashan Hospital, Fudan University, Shanghai, China
| | - Huliang Jia
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Jinhong Chen
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Lu Lu
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Fang Xie
- PET Centre, Huashan Hospital, Fudan University, Shanghai, China
| | - Lunxiu Qin
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|